首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellobiohydrolase I (CBHI) is the major cellulase of Trichoderma reesei. The enzyme contains a discrete cellulose-binding domain (CBD), which increases its binding and activity on crystalline cellulose. We studied cellulase-cellulose interactions using site-directed mutagenesis on the basis of the three-dimensional structure of the CBD of CBHI. Three mutant proteins which have earlier been produced in Saccharomyces cerevisiae were expressed in the native host organism. The data presented here support the hypothesis that a conserved tyrosine (Y492) located on the flat and more hydrophilic surface of the CBD is essential for the functionality. The data also suggest that the more hydrophobic surface is not directly involved in the CBD function. The pH dependence of the adsorption revealed that electrostatic repulsion between the bound proteins may also control the adsorption. The binding of CBHI to cellulose was significantly affected by high ionic strength suggesting that the interaction with cellulose includes a hydrophobic effect. High ionic strength increased the activity of the isolated core and of mutant proteins on crystalline cellulose, indicating that once productively bound, the enzymes are capable of solubilizing cellulose even with a mutagenized or with no CBD. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Three-dimensional solution structures for three engineered, synthetic CBDs (Y5A, Y31A, and Y32A) of cellobiohydrolase I (CBHI) from Trichoderma reesei were studied with nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. According to CD measurements the antiparallel beta-sheet structure of the CBD fold was preserved in all engineered peptides. The three-dimensional NMR-based structures of Y31A and Y32A revealed only small local changes due to mutations in the flat face of CBD, which is expected to bind to crystalline cellulose. Therefore, the structural roles of Y31 and Y32 are minor, but their functional importance is obvious because these mutants do not bind strongly to cellulose. In the case of Y5A, the disruption of the structural framework at the N-terminus and the complete loss of binding affinity implies that Y5 has both structural and functional significance. The number of aromatic residues and their precise spatial arrangement in the flat face of the type I CBD fold appears to be critical for specific binding. A model for the CBD binding in which the three aligned aromatic rings stack onto every other glucose ring of the cellulose polymer is discussed.  相似文献   

3.
The filamentous fungus Trichoderma reesei produces two cellobiohydrolases (CBHI and CBHII). These, like most other cellulose-degrading enzymes, have a modular structure consisting of a catalytic domain linked to a cellulose-binding domain (CBD). The isolated catalytic domains bind poorly to cellulose and have a much lower activity towards cellulose than the intact enzymes. For the CBDs, no function other than binding to cellulose has been found. We have previously described the reversibility and exchange rate for the binding of the CBD of CBHI to cellulose. In this work, we studied the binding of the CBD of CBHII and showed that it differs markedly from the behaviour of that of CBHI. The apparent binding affinities were similar, but the CBD of CBHII could not be dissociated from cellulose by buffer dilution and did not show a measurable exchange rate. However, desorption could be triggered by shifting the temperature. The CBD of CBHII bound reversibly to chitin. Two variants of the CBHII CBD were made, in which point mutations increased its similarity to the CBD of CBHI. Both variants were found to bind reversibly to cellulose.  相似文献   

4.
The function of the cellulose-binding domain (CBD) of the cellobiohydrolase I of Trichoderma reesei was studied by site-directed mutagenesis of two amino acid residues identified by analyzing the 3D structure of this domain. The mutant enzymes were produced in yeast and tested for binding and activity on crystalline cellulose. Mutagenesis of the tyrosine residue (Y492) located at the tip of the wedge-shaped domain to alanine or aspartate reduced the binding and activity on crystalline cellulose to the level of the core protein lacking the CBD. However, there was no effect on the activity toward small oligosaccharide (4-methylumbelliferyl beta-D-lactoside). The mutation tyrosine to histidine (Y492H) lowered but did not destroy the cellulose binding, suggesting that the interaction of the pyranose ring of the substrate with an aromatic side chain is important. However, the catalytic activity of this mutant on crystalline cellulose was identical to the other two mutants. The mutation P477R on the edge of the other face of the domain reduces both binding and activity of CBHI. These results support the hypothesis that both surfaces of the CBD are involved in the interaction of the binding domain with crystalline cellulose.  相似文献   

5.
To improve the cellulolytic activity of a yeast strain displaying endoglucanase IotaIota (EG II) from Trichoderma reesei, a combinatorial library of the cellulose-binding domain (CBD) of EG II was constructed by using cell surface engineering. When EG II degrades celluloses, CBD binds to cellulose, and its catalytic domain cleaves the glycosidic bonds of cellulose. CBD had a flat face, composed of five amino acids for binding. It was supposed that the three hydrophobic amino acid residues of the five amino acid residues were essential for binding to cellulose. Therefore, by improving the two remaining amino acid residues, construction of mutants with a combinatorial library of the two amino acids in CBD was carried out and binding ability and hydrolysis activity were measured. In the first screening by halo assay using the Congo Red staining method, about 200 of the 2000 colonies formed clear halos, and then five colonies with the clearest halos were finally selected. In the second screening, the binding ability of the five mutants to phosphoric acid-swollen Avicel was measured. In addition, the measurement of hydrolysis activity toward carboxymethylcellulose (CMC) using the screened mutants was carried out. As a result, the mutated EG II exhibiting higher binding ability (1.5-fold) had higher hydrolysis activity (1.3-fold) compared to the parent EG II-displaying yeast cell, demonstrating that CBD has confirmatively some effect on the cellulase activity through its binding ability of the enzyme to cellulose.  相似文献   

6.
The crystal structure of a family-III cellulose-binding domain (CBD) from the cellulosomal scaffoldin subunit of Clostridium thermocellum has been determined at 1.75 A resolution. The protein forms a nine-stranded beta sandwich with a jelly roll topology and binds a calcium ion. conserved, surface-exposed residues map into two defined surfaces located on opposite sides of the molecule. One of these faces is dominated by a planar linear strip of aromatic and polar residues which are proposed to interact with crystalline cellulose. The other conserved residues are contained in a shallow groove, the function of which is currently unknown, and which has not been observed previously in other families of CBDs. On the basis of modeling studies combined with comparisons of recently determined NMR structures for other CBDs, a general model for the binding of CBDs to cellulose is presented. Although the proposed binding of the CBD to cellulose is essentially a surface interaction, specific types and combinations of amino acids appear to interact selectively with glucose moieties positioned on three adjacent chains of the cellulose surface. The major interaction is characterized by the planar strip of aromatic residues, which align along one of the chains. In addition, polar amino acid residues are proposed to anchor the CBD molecule to two other adjacent chains of crystalline cellulose.  相似文献   

7.
The manA gene of Thermoanaerobacterium polysaccharolyticum was cloned in Escherichia coli. The open reading frame of manA is composed of 3,291 bases and codes for a preprotein of 1,097 amino acids with an estimated molecular mass of 119,627 Da. The start codon is preceded by a strong putative ribosome binding site (TAAGGCGGTG) and a putative -35 (TTCGC) and -10 (TAAAAT) promoter sequence. The ManA of T. polysaccharolyticum is a modular protein. Sequence comparison and biochemical analyses demonstrate the presence of an N-terminal leader peptide, and three other domains in the following order: a putative mannanase-cellulase catalytic domain, cellulose binding domains 1 (CBD1) and CBD2, and a surface-layer-like protein region (SLH-1, SLH-2, and SLH-3). The CBD domains show no sequence homology to any cellulose binding domain yet reported, hence suggesting a novel CBD. The duplicated CBDs, which lack a disulfide bridge, exhibit 69% identity, and their deletion resulted in both failure to bind to cellulose and an apparent loss of carboxymethyl cellulase and mannanase activities. At the C-terminal region of the gene are three repeats of 59, 67, and 56 amino acids which are homologous to conserved sequences found in the S-layer-associated regions within the xylanases and cellulases of thermophilic members of the Bacillus-Clostridium cluster. The ManA of T. polysaccharolyticum, besides being an extremely active enzyme, is the only mannanase gene cloned which shows this domain structure.  相似文献   

8.
To improve the cellulolytic activity of a yeast strain displaying endoglucanase II (EGII) from the filamentous fungus Trichoderma reesei QM9414, the genes encoding the cellulose-binding domain (CBD) of EGII, cellobiohydrolase I (CBHI) and cellobiohydrolase II (CBHII) from T. reesei QM9414, were fused with the catalytic domain of EGII and expressed in Saccharomyces cerevisiae. Display of each of the recombinant EGIIs was confirmed using immunofluorescence microscopy. In the case of EGII-displaying yeast strains in which the CBD of EGII was replaced with the CBD of CBHI or CBHII, the binding affinity to Avicel and hydrolytic activity toward phosphoric acid swollen Avicel were similar to that of a yeast strain displaying wild-type EGII. On the other hand, the three yeast strains displaying EGII with two or three tandemly aligned CBDs showed binding affinity and hydrolytic activity higher than that of the yeast strain displaying wild-type EGII. This result indicates that the hydrolytic activity of yeast strains displaying recombinant EGII increases with increased binding ability to cellulose.  相似文献   

9.
纤维二糖水解酶I(CBHI)是生物降解纤维素的一种重要的外切酶,它作用于纤维素分子末端,水解β-1,4-糖苷键。纤维二糖水解酶由3个部分组成:具有催化活性的催化结构域,作用为锚定纤维素的纤维素结合域以及连接这两个结构域的一段短肽。已知催化结构域属于糖基水解酶家族7(GH7),纤维素结合域属于糖类结合模块家族1(CBMl)。为进一步探索CBHI编码基因之间的进化关系,本研究依据CBHI的结构域在GenBank数据库中搜索并鉴定CBHI编码基因并据此构建系统发育树。序列的平均长度为1776bp,平均GC含量为57.64%,平均转换颠换比为0.71,平均遗传距离为0.424。得出结论CBHI编码基因只存在于真菌中,是一个相对活跃的基因,它的进化与物种的进化有着密切的关系。  相似文献   

10.
The family IV cellulose-binding domain of Clostridium thermocellum CelK (CBD(CelK)) was expressed in Escherichia coli and purified. It binds to acid-swollen cellulose (ASC) and bacterial microcrystalline cellulose (BMCC) with capacities of 16.03 and 3.95 micromol/g of cellulose and relative affinities (K(r)) of 2.33 and 9.87 liters/g, respectively. The CBD(CelK) is the first representative of family IV CBDs to exhibit an affinity for BMCC. The CBD(CelK) also binds to the soluble polysaccharides lichenin, glucomannan, and barley beta-glucan, which are substrates for CelK. It does not bind to xylan, galactomannan, and carboxymethyl cellulose. The CBD(CelK) contains 1 mol of calcium per mol. The CBD(CelK) has three thiol groups and one disulfide, reduction of which results in total loss of cellulose-binding ability. To reveal amino acid residues important for biological function of the domain and to investigate the role of calcium in the CBD(CelK) four highly conserved aromatic residues (Trp(56), Trp(94), Tyr(111), and Tyr(136)) and Asp(192) were mutated into alanines, giving the mutants W56A, W94A, Y111A, Y136A, and D192A. In addition 14 N-terminal amino acids were deleted, giving the CBD-N(CelK). The CBD-N(CelK) and D192A retained binding parameters close to that of the intact CBD(CelK), W56A and W94A totally lost the ability to bind to cellulose, Y136A bound to both ASC and BMCC but with significantly reduced binding capacity and K(r) and Y111A bound weakly to ASC and did not bind to BMCC. Mutations of the aromatic residues in the CBD(CelK) led to structural changes revealed by studying solubility, circular-dichroism spectra, dimer formation, and aggregation. Calcium content was drastically decreased in D192A. The results suggest that Asp192 is in the calcium-binding site of the CBD(CelK) and that calcium does not affect binding to cellulose. The 14 amino acids from the N terminus of the CBD(CelK) are not important for binding. Tyr136, corresponding to Cellulomonas fimi CenC CBD(N1) Y85, located near the binding cleft, might be involved in the formation of the binding surface, while Y111, W56A, and W94A are essential for the binding process by keeping the CBD(CelK) correctly folded.  相似文献   

11.
We have cloned an endoglucanase (EGI) gene and a cellobiohydrolase (CBHI) gene of Humicola grisea var. thermoidea using a portion of the Trichoderma reesei endoglucanase I gene as a probe, and determined their nucleotide sequences. The deduced amino acid sequence of EGI was 435 amino acids in length and the coding region was interrupted by an intron. The EGI lacks a hinge region and a cellulose-binding domain. The deduced amino acid sequence of CBHI was identical to the H. grisea CBHI previously reported, with the exception of three amino acids. The H. grisea EGI and CBHI show 39.8% and 37.7% identity with the T. Reesei EGI, respectively. In addition to TATA box and CAAT motifs, putative CREA binding sites were observed in the 5′ upstream regions of both genes. The cloned cellulase genes were expressed in Aspergillus oryzae and the gene products were purified. The optimal temperatures of CBHI and EGI were 60 °C and 55–60 °C, respectively. The optimal pHs of these enzymes were 5.0. CBHI and EGI had distinct substrate specificities: CBHI showed high activity toward Avicel, whereas EGI showed high activity toward carboxymethyl cellulose (CMC).  相似文献   

12.
大多数纤维素酶含有催化区和可与纤维素结合且氨基酸序列较为保守的纤维素吸附区(cellulosebindingdomain,CBD)。纤维素吸附区促进酶与底物的结合,有利于催化区对不溶性底物的作用,但对可溶性底物的催化作用无影响。对CBD结构的研究和进一步的诱变研究揭示:纤维素吸附区是通过几个芳香族氨基酸结合到纤维素表面。有实验证明外切葡聚糖酶的CBD对结晶纤维素有疏解作用。CBD结构域已成功地应用于一系列重组融合蛋白的纯化和固定化。对纤维素吸附区结构与功能的深入了解对进一步了解酶的作用机制,促进纤维素酶类生物技术的发展是重要的 。  相似文献   

13.
The Cel5 cellulase (formerly known as endoglucanase Z) from Erwinia chrysanthemi is a multidomain enzyme consisting of a catalytic domain, a linker region, and a cellulose binding domain (CBD). A three-dimensional structure of the CBD(Cel5) has previously been obtained by nuclear magnetic resonance. In order to define the role of individual residues in cellulose binding, site-directed mutagenesis was performed. The role of three aromatic residues (Trp18, Trp43, and Tyr44) in cellulose binding was demonstrated. The exposed potential hydrogen bond donors, residues Gln22 and Glu27, appeared not to play a role in cellulose binding, whereas residue Asp17 was found to be important for the stability of Cel5. A deletion mutant lacking the residues Asp17 to Pro23 bound only weakly to cellulose. The sequence of CBD(Cel5) exhibits homology to a series of five repeating domains of a putative large protein, referred to as Yheb, from Escherichia coli. One of the repeating domains (Yheb1), consisting of 67 amino acids, was cloned from the E. coli chromosome and purified by metal chelating chromatography. While CBD(Cel5) bound to both cellulose and chitin, Yheb1 bound well to chitin, but only very poorly to cellulose. The Yheb protein contains a region that exhibits sequence homology with the catalytic domain of a chitinase, which is consistent with the hypothesis that the Yheb protein is a chitinase.  相似文献   

14.
Protegrin antimicrobial peptides possess activity against gram-positive and gram-negative bacteria and yeasts. An extensive structure-activity relationship (SAR) study was conducted on several hundred protegrin analogues to gain understanding of the relationship between the primary and secondary structure of the protegrins and their antimicrobial activities, and to identify a protegrin analogue for clinical development. Native sequence protegrins are cationic, amphiphilic peptides that are characterized by the presence of a beta-sheet structure that is maintained by two disulfide bridges. The presence of the beta-sheet is key to the stability of the protegrin structure; linearized analogues or analogues that have amino acid substitutions that eliminate hydrogen bonding across the beta-sheet have reduced activity, especially in the presence of physiological concentrations of NaCl. Also, maintaining amphiphilicity of the beta-sheet is key; analogues with substitutions of polar amino acids in the hydrophobic face have reduced activity. Analogues with reduced positive charge tend to be less active, an observation that is more marked for gram-negative than gram-positive bacteria, and may implicate binding to lipopolysaccharide as a key mechanistic step in the killing of gram-negative bacteria. A very large number of amino acid substitutions are tolerated by the protegrin structure, implying that overall structural features such as amphiphilicity, charge, and shape are more important to activity than the presence of specific amino acids. This lack of importance of specific stereochemistry is supported by the fact that completely D-amino acid substituted protegrins are fully potent. Based on the SAR studies, and on the microbiological data from an animal model, one protegrin analogue, IB-367, was selected for clinical development as a topical agent to prevent the oral mucositis associated with cancer therapy.  相似文献   

15.
A physico-chemical and structural characterization of three 1,4-beta-D-glucan cellobiohydrolases (EC. 3.2.1.91), isolated from a culture filtrate of the white-rot fungus Phanerochaete chrysosporium, reveals that the cellulolytic enzyme secretion pattern and thus the general degradation strategy for P. chrysosporium is similar to that of Trichoderma reesei. Partial sequence data show that two of the isolated enzymes, i.e., CBHI, pI 3.82 and CBH62, pI 4.85, are homologous with CBHI and EGI from T. reesei; while, the third, i.e., CBH50, pI 4.87, is homologous to T. reesei CBHII. Limited proteolysis with papain cleaved each of the three enzymes into two domains: a core protein which retained full catalytic activity against low molecular weight substrates and a peptide fragment corresponding to the cellulose binding domain, in striking similarity to the structural organization of T. reesei. CBHI and CBH62 have their binding domain located at the C-terminus, whereas in CBH50 it is located at the N-terminus. It is evident that synergistically acting cellobiohydrolases is a general requirement for efficient hydrolysis of crystalline cellulose by cellulolytic fungi.  相似文献   

16.
Endoglucanase C (CenC), a beta1,4 glucanase from the soil bacterium Cellulomonas fimi, binds to amorphous cellulose via two homologous cellulose binding domains, termed CBD(N1) and CBD(N2). In this work, the contributions of 10 amino acids within the binding cleft of CBD(N1) were evaluated by single site-directed mutations to alanine residues. Each isolated domain containing a single mutation was analyzed for binding to an insoluble amorphous preparation of cellulose, phosphoric acid swollen Avicel (PASA), and to a soluble glucopyranoside polymer, barley beta-glucan. The effect of any given mutation on CBD binding was similar for both substrates, suggesting that the mechanism of binding to soluble and insoluble substrates is the same. Tyrosines 19 and 85 were essential for tight binding by CBD(N1) as their replacement by alanine results in affinity decrements of approximately 100-fold on PASA, barley beta-glucan, and soluble cellooligosaccharides. The tertiary structures of unbound Y19A and Y85A were assessed by heteronuclear single quantum coherence (HSQC) spectroscopy. These studies indicated that the structures of both mutants were perturbed but that all perturbations are very near to the site of mutation.  相似文献   

17.
Summary An extracellular endoxylanase from Fusarium oxysporum binds onto crystalline cellulose. A small peptide (~ 2kDa) could be isolated after partial proteolysis of the native protein. It consists of 18 amino acids, is located in the C-terminal region of the protein and corresponds functionally to a cellulose binding domain (CBD), the first one to be reported in a fungal xylanase. The amino acid sequence of this peptide shows no homology with any known CBD.  相似文献   

18.
The nucleotide sequence of the Clostridium thermocellum F7 cbhA gene, coding for the cellobiohydrolase CbhA, has been determined. An open reading frame encoding a protein of 1,230 amino acids was identified. Removal of a putative signal peptide yields a mature protein of 1,203 amino acids with a molecular weight of 135,139. Sequence analysis of CbhA reveals a multidomain structure of unusual complexity consisting of an N-terminal cellulose binding domain (CBD) homologous to CBD family IV, an immunoglobulin-like β-barrel domain, a catalytic domain homologous to cellulase family E1, a duplicated domain similar to fibronectin type III (Fn3) modules, a CBD homologous to family III, a highly acidic linker region, and a C-terminal dockerin domain. The cellulosomal localization of CbhA was confirmed by Western blot analysis employing polyclonal antibodies raised against a truncated enzymatically active version of CbhA. CbhA was identified as cellulosomal subunit S3 by partial amino acid sequence analysis. Comparison of the multidomain structures indicates striking similarities between CbhA and a group of cellulases from actinomycetes. Average linkage cluster analysis suggests a coevolution of the N-terminal CBD and the catalytic domain and its spread by horizontal gene transfer among gram-positive cellulolytic bacteria.  相似文献   

19.
Protein-carbohydrate interactions typically rely on aromatic stacking interactions of tyrosine, phenylalanine and tryptophan side chains with the sugar rings whereas histidine residues are rarely involved. The small cellulose-binding domain of the Cel7A cellobiohydrolase (formerly CBHI) from Trichoderma reesei binds to crystalline cellulose primarily using a planar strip of three tyrosine side chains. Binding of the wild-type Cel7A CBD is practically insensitive to pH. Here we have investigated how histidine residues mediate the binding interaction and whether the protonation of a histidine side chain makes the binding sensitive to pH. Protein engineering of the Cel7A CBD was thus used to replace the tyrosine residues in two different positions with histidine residues. All of the mutants exhibited a clear pH-dependency of the binding, in clear contrast to the wild-type. Although the binding of the mutants at optimal pH was less than for the wild-type, in one case, Y31H, this binding almost reached the wild-type level.  相似文献   

20.
A full length cDNA for human 3-hydroxy-3-methylglutaryl coenzyme A reductase, the membrane-bound glycoprotein that regulates cholesterol synthesis, was isolated from a human fetal adrenal cDNA library. The nucleotide sequence of this cDNA shows that the human reductase is 888 amino acids long and shares a high degree of homology with the hamster enzyme. The amino-terminal membrane-bound domain is the most conserved region between the two species (7 substitutions out of 339 amino acids). This region, which is predicted to span the endoplasmic reticulum membrane seven times, mediates accelerated degradation of reductase in the presence of sterols. The carboxyl-terminal catalytic domain is also highly conserved (22 substitutions out of 439 amino acids). However, the linker region between these two domains has diverged (32 substitutions out of 110 amino acids). Conservation of the structure of the membrane-bound domain in HMG-CoA reductase supports the hypothesis that sterol-regulated degradation is an important mechanism for suppression of reductase activity and for regulation of cholesterol metabolism in humans as well as in hamsters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号