首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Eight fit men [maximum oxygen consumption (O2max) 64.6 (1.9) ml · kg−1 · min−1, aged 28.3 (1.7) years (SE in parentheses) were studied during two treadmill exercise trials to determine the effect of endogenous opioids on insulin and glucagon immunoreactivity during intense exercise (80% O2max). A double-blind experimental design was used with subjects undertaking the two exercise trials in counterbalanced order. Exercise trials were 20 min in duration and were conducted 7 days apart. One exercise trial was undertaken following administration of naloxone (N; 1.2 mg; 3 ml) and the other after receiving a placebo (P; 0.9% NaCl saline; 3 ml). Prior to each experimental trial a flexible catheter was placed into an antecubital vein and baseline blood samples were collected. Immediately after, each subject received either a N or P bolus injection. Blood samples were also collected after 20 min of continuous exercise (running). Glucagon was higher (P < 0.05), while insulin was lower (P < 0.05), during exercise compared with pre-exercise values in both trials. However, glucagon was higher (P < 0.05) in the P than in the N exercise trial [141.4 (8.3) ng · l−1 vs 127.2 (7.6) ng · l−1]. There were no differences in insulin during exercise between the P and N trials [50.2 (4.3) pmol · l−1 vs 43.8 (5) pmol · l−1]. These data suggest that endogenous opioids may augment the glucagon response during intense exercise. Accepted: 15 June 1996  相似文献   

2.
Whereas with advancing age, peak heart rate (HR) and cardiac index (CI) are clearly reduced, peak stroke index (SI) may decrease, remain constant or even increase. The aim of this study was to describe the patterns of HR, SI, CI, arteriovenous difference in oxygen concentration (C a-vO2), mean arterial pressure (MAP), systemic vascular resistance index (SVRI), stroke work index (SWI) and mean systolic ejection rate index (MSERI) in two age groups (A: 20–30 years, n = 20; B: 50–60 years n = 20. After determination of pulmonary function, an incremental bicycle exercise test was performed, with standard gas-exchange measurements and SI assessment using electrical impedance cardiography. The following age-related changes were found: similar submaximal HR response to exercise in both groups and a higher peak HR in A than in B[185 (SD 9) vs 167 (SD 14) beats · min−1, P < 0.0005]; increase in SI with exercise up to 60–90 W and subsequent stabilization in both groups. As SI decreased towards the end of exercise in B, a higher peak SI was found in A [57.5 (SD 14.0) vs 43.6 (SD 7.7) ml · m−2, P < 0.0005]; similar submaximal CI response to exercise, higher peak CI in A [10.6 (SD 2.5) vs 7.2 (SD 1.3) l · min−1 · m−2, P < 0.0005]; no differences in C a-vO2 during exercise; higher MAP at all levels of exercise in B; higher SVRI at all levels of exercise in B; lower SWI in B after recovery; higher MSERI at all levels of exercise in A. The decrease in SI with advancing age would seem to be related to a decrease in myocardial contractility, which can no longer be compensated for by an increase in preload (as during submaximal exercise). Increases in systemic blood pressure may also compromise ventricular function but would seem to be of minor importance. Accepted: 24 September 1996  相似文献   

3.
This study examined the effect of mild hypobaria (MH) on the peak oxygen consumption (O2peak) and performance of ten trained male athletes [ (SEM); O2peak = 72.4 (2.2) ml · kg−1 · min−1] and ten trained female athletes [O2peak = 60.8 (2.1) ml · kg−1 · min−1]. Subjects performed 5-min maximal work tests on a cycle ergometer within a hypobaric chamber at both normobaria (N, 99.33 kPa) and at MH (92.66 kPa), using a counter-balanced design. MH was equivalent to 580 m altitude. O2peak at MH decreased significantly compared with N in both men [− 5.9 (0.9)%] and women [− 3.7 (1.0)%]. Performance (total kJ) at MH was also reduced significantly in men [− 3.6 (0.8)%] and women [− 3.8 (1.2)%]. Arterial oxyhaemoglobin saturation (SaO2) at O2peak was significantly lower at MH compared with N in both men [90.1 (0.6)% versus 92.0 (0.6)%] and women [89.7 (3.1)% versus 92.1 (3.0)%]. While SaO2 at O2peak was not different between men and women, it was concluded that relative, rather than absolute, O2peak may be a more appropriate predictor of exercise-induced hypoxaemia. For men and women, it was calculated that 67–76% of the decrease in O2peak could be accounted for by a decrease in O2 delivery, which indicates that reduced O2 tension at mild altitude (580 m) leads to impairment of exercise performance in a maximal work bout lasting ≈ 5 min. Accepted: 30 July 1996  相似文献   

4.
The present study investigated the relationship between plasma potassium ion concentration ([K+]) and skeletal muscle torque during three different 15-min recovery periods after fatigue induced by four 30-s sprints. Four males and one female completed the multiple sprint exercise on three separate days; recovery was passive, i.e. no cycling exercise (PRec), active cycling at 30% peak oxygen consumption O2peak (30% Rec) and active cycling at 60% O2peak (60% Rec). Plasma [K+] was measured from blood sampled from an antecubital vein of subjects at rest and at 0, 3, 5, 10 and 15 min into each recovery. Isokinetic leg strength was measured at rest and at 1, 6, 11 and 16 min during each recovery. Following the exhaustive sprints, [K+] increased significantly from an average mean (SEM) resting value of 3.81 (0.07) mmol · l−1 to 4.48 (0.19) mmol · l−1 (P < 0.01). In all recovery conditions, plasma [K+] returned to resting levels within 3 min following the fourth sprint. However, in the two active recovery conditions plasma [K+] increased over the remainder of the recovery periods to 4.36 (0.12) mmol · l−1 in the 30% Rec condition and 4.62 (0.12) mmol · l−1 in the 60% Rec condition, the latter being significantly higher than the former (P < 0.01). The maximum torque measured following the sprints decreased significantly, on average, to 61.1 (8.36)% of peak levels (P < 0.01). After 15 min of recovery, maximum torque was highest in the 30% Rec condition at 92.13 (3.06)% of peak levels (P < 0.01), compared to 85.23 (3.64)% and 85.71 (0.82)% for the PRec and 60% Rec conditions, respectively. In contrast to the significant differences in plasma [K+] across all three recovery conditions, muscle torque recovery was significantly different in only the 30% Rec condition. In summary, recovery of peak levels of muscle torque following fatiguing exercise does not appear to follow changes in plasma [K+]. Accepted: 18 October 1996  相似文献   

5.
This study was designed to determine how changes in oxygen uptake (O2) and heart rate (HR) during submaximal cycle ergometry were determined by changes in cycle geometry and/or lower-limb kinematics. Fourteen trained cyclists [Mean (SD): age, 25.5 (6.4) years; body mass 74.4 (8.8) kg; peak O2, 4.76 (0.79) l. min−1 peak] were tested at three seat-tube angles (70°, 80°, 90°) at each of three trunk angles (10°, 20°, 30°) using a modified Monark cycle ergometer. All conditions were tested at a power output corresponding to 95% of the O2 at each subject's ventilatory threshold while pedalling at 90 rpm and using aerodynamic handlebars. Sagittal-view kinematics for the hip, knee, and ankle joints were also recorded for all conditions and for the subjects' preferred positioning on their own bicycles. No combination of seat-tube and trunk angle could be considered optimal since many of the nine conditions elicited statistically similar mean O2 and HR values. Mean hip angle (HA) was the only kinematic variable that changed consistently across conditions. A regression relationship was not observed between mean O2 or HR and mean hip angle values (P > 0.45). Significant curvilinear relationships were observed, however, between ΔO2 (O2 − minimum O2) and ΔHA (mean HA − preferred HA) using the data from all subjects (R = 0.45, SEE = 0.13 l . min−1) and using group mean values (R = 0.93, SEE = 0.03 l . min−1). In both cases ΔO2 minimized at ΔHA = 0, which corresponded to the subjects' preferred HA from their own bicycles. Thus, subjects optimized their O2 cost at cycle geometries that elicited similar lower-limb kinematics as the preferred geometries from their own bicycles. Accepted: 3 July 1996  相似文献   

6.
 To investigate the role of fluid shifts during the short-term adjustment to acute hypobaric hypoxia (AHH), the changes in lower limb (LV) and forearm volumes (FV) were measured using a strain-gauge plethysmograph technique in ten healthy volunteers exposed to different altitudes (450 m, 2500 m, 3500 m, 4500 m) in a hypobaric chamber. Arterial blood pressure, heart rate, arterial oxygen saturation (S aO2), endtidal gases, minute ventilation and urine flow were also determined. A control experiment was performed with an analogous protocol under normobaric normoxic conditions. The results showed mean decreases both in LV and FV of −0.52 (SD 0.39) ml · 100 ml−1 and −0.65 (SD 0.32) ml · 100 ml−1, respectively, in the hypoxia experiments [controls: LV −0.28 (SD 0.37), FV −0.41 (SD 0.47) ml · 100 ml−1]. Descent to normoxia resulted in further small but not significant decreases in mean LV [−0.02 (SD 0.11) ml · 100 ml−1], whereas mean FV tended to increase slightly [ + 0.02 (SD 0.14) ml · 100 ml−1]; in the control experiments mean LV and FV decreased continuously during the corresponding times [−0.19 (SD 0.31), −0.18 (SD 0.10) ml · 100 ml−1, respectively]. During the whole AHH, mean urine flow increased significantly from 0.84 (SD 0.41) ml · min−1 to 3.29 (SD 1.43) ml · min−1 in contrast to the control conditions. We concluded that peripheral fluid volume shifts form a part of the hypoxia-induced acute cardiovascular changes at high altitude. In contrast to the often reported formation of peripheral oedema after prolonged exposure to hypobaric hypoxia, the results provided no evidence for the development of peripheral oedema during acute induction to high altitude. However, the marked increase in interindividual variance in S aO2 and urine flow points to the appearance of the first differences in the short-term adjustment even after 2 h of acute hypobaric hypoxia. Accepted: 27 August 1996  相似文献   

7.
The effect of a 3-week exercise programme on performance and economy of walking was analysed in 16 male patients with chronic heart failure [mean age 51.8 (SD 6.9) years, height 174.9 (SD 6.3) cm, body mass 75.3 (SD 11.5) kg, ejection fraction 20.8 (SD 5.0)%]. They were submitted to a cardiopulmonary exercise test on a cycle ergometer and a 6-min walking test on a treadmill before and after the period of exercise training. The training programme consisted of interval cycle (five times a week for 15 min), and treadmill ergometer training (three times a week for 10 min) at approximately 70% cycling peak oxygen uptake (O2peak) and supplementary exercises (three times a week for 20 min). Compared to the pre values cycling O2peak [11.9 (SD 2.9) vs 14.0 (SD 2.3) ml ·  kg–1 · min–1], maximal self paced walking speed [0.68 (SD 0.33) vs 1.16 (SD 0.30) m · s–1], and net walking power [2.16 (SD 0.89) vs 2.73 (SD 0.91) W · kg–1] had increased (P < 0.01) while net energy cost [3.31 (SD 0.66) vs 2.33 (SD 0.38) J · kg–1 ·  m–1] had decreased (P < 0.001) after the training period. Approximately 42% of the increase of walking speed resulted from a higher walking power output, whereas approximately 58% corresponded to a positive effect on walking economy. The improvement in walking economy was a function of an increase in walking velocity itself and a result of a more efficient walking technique. These results would indicate that in patients with marked exercise intolerance, adequate exercise training programmes could contribute to favourable metabolic changes with positive effects on the economy of motion. Accepted: 29 August 1996  相似文献   

8.
We investigated the effect of training and racing at moderate altitude (MA) on oxidative stress by assessment of serum diene conjugation (DC) and serum antioxidant potential (TRAP). Nine male top level skiers were studied during a national race (20–30 km) at sea level (SL). Thereafter, the athletes trained for 2 weeks at MA, after which they participated in a 20–30 km race at MA. Venous blood samples were taken before and after the race. The DC, indicating early events of lipid peroxi dation, did not change during the race at SL (16 850 vs 15 900 ΔAbsorbance · l−1) or at MA (19 870 vs. 20 630 ΔAbs · l−1). At MA serum DC was higher than at SL both before (25%) and after (30%) the race, the postrace difference being statistically significant (P < 0.05). The TRAP increased during the race at MA (from 1387 to 1943 μmol · 1−1, P  =  0.016), but not at SL (1713 vs 1582 μmol · l−1). These observations would suggest that the level of oxidative stress might be greater during living, training and racing at MA (higher DC levels). Increased TRAP during the race at MA may indicate that the physiological adaptation to extreme acute oxidative stress was altered. The physiological significance of this observation remains to be investigated. Accepted: 18 October 1996  相似文献   

9.
The purpose of this study was to determine the walking speed which has the greatest influence on neural relaxation in healthy elderly women as determined by electromyogram (EMG) and electroencephalogram (EEG) analyses. Seven elderly female volunteers [mean age 68.5 (SD 3.95) years] served as subjects for this study. The EMG signals were recorded from the gastrocnemius (MG), soleus (SL) and tibialis anterior (TA) muscles while walking on a treadmill, starting at 40␣m · min−1 and increasing 6 m · min−1 incrementally for 10␣min. The turning point of muscle activities (by integrated EMG, iEMGtp) was determined as the walking speed at the point at which the mean rate of change of iEMG (MG + SL + TA) abruptly increased. After the determination of iEMGtp, the treadmill was set at three constant speeds, one corresponding to the speed for the iEMGtp and two others 20% higher or lower than that for the iEMGtp. The subjects then walked for 20 min at each of these speeds on 3 separate days and their EEG power spectrum data were obtained for frequencies from the 8 to 13 Hz (α-wave component, AWC). The mean of iEMGtp for our subjects was at a mean walking speed of 64.7 (SD 7.9) m · min−1. Considering the subjects' age and height, iEMGtp was somewhat faster than their expected self-paced normal walking speed. There were no differences between the mean AWC values of the subjects prior to exercising at each of the three speeds. The mean AWC values after exercise were significantly (P < 0.01) greater than before. The extent of the increase in AWC at iEMGtp was greater than those at slower speeds. Our data would suggest that walking exercise at the speed which corresponds with EMG evidence of iEMGtp may induce the most significant relaxing effects in elderly women. Accepted: 11 September 1996  相似文献   

10.
Unlike northern hemisphere conifer families, the southern family, Podocarpaceae, produces a great variety of foliage forms ranging from functionally broad-, to needle-leaved. The production of broad photosynthetic surfaces in podocarps has been linked qualitatively to low-light-environments, and we undertook to assess the validity of this assumption by measuring the light response of a morphologically diverse group of podocarps. The light response, as apparent photochemical electron transport rate (ETR), was measured by modulated fluorescence in ten species of this family and six associated species (including five Cupressaceae and one functionally needle-leaved angiosperm) all grown under identical glasshouse conditions. In all species, ETR was found to increase as light intensity increased, reaching a peak value (ETRmax) at saturating quantum flux (PPFDsat), and decreasing thereafter. ETRmax ranged from 217 μmol electrons · m−2 · s−1 at a PPFDsat of 1725 μmol photons · m−2 · s−1 in Actinostrobus acuminatus to an ETR of 60 μmol electrons · m−2 · s−1 at a PPFDsat of 745 μmol electrons · m−2 · s−1 in Podocarpus dispermis. Good correlations were observed between ETRmax and both PPFDsat and maximum assimilation rate measured by gas-exchange analysis. The effective quantum yield at light saturation remained constant in all species with an average value of 0.278 ± 0.0035 determined for all 16 species. Differences in the shapes of light response curves were related to differences in the response of non-photochemical quenching (q n), with q n saturating faster in species with low PPFDsat. Amongst the species of Podocarpaceae, the log of average shoot width was well correlated with PPFDsat, wider leaves saturating at lower light intensities. This suggests that broadly flattened shoots in the Podocarpaceae are an adaptation to low light intensity. Received: 15 April 1996 / Accepted: 30 September 1996  相似文献   

11.
The purpose of this study was to investigate the effect of a thiamin derivative, thiamin tetrahydrofurfuryl disulfide (TTFD), on oxygen uptake (˙VO2), lactate accumulation and cycling performance during exercise to exhaustion. Using a randomized, double-blind, cross-over design with a 10-day washout between trials, 14 subjects ingested either 1 g · day−1 of TTFD or a placebo (PL) for 4 days. On day 3, subjects performed a progressive exercise test to exhaustion on a cycle ergometer for the determination of ˙VO2submax, ˙VO2peak, lactate concentration ([La ]), lactate threshold (ThLa) and heart rate ( f c). On day 4, subjects performed a maximal 2000-m time trial on a cycle ergometer. A one-way analysis of variance (ANOVA) with repeated measures was used to determine significant differences between trials. There were no significant differences detected between trials for serial measures of ˙VO2submax, [La] or f c. Likewise, ˙VO2peak [PL 4.06 (0.19) TTFD 4.12 (0.19) l · min−1, P = 0.83], ThLa [PL 2.47 (0.17), TTFD 2.43 (0.16) l · min−1, P = 0.86] and 2000-m performance time [PL 204.5 (5.5), TTFD 200.9 (4.3) s, P = 0.61] were not significantly different between trials. The results of this study suggest that thiamin derivative supplementation does not influence high-intensity exercise performance. Accepted: 19 December 1996  相似文献   

12.
Canopy CO2 concentrations in a tropical rainforest in French Guiana were measured continuously for 5 days during the 1994 dry season and the 1995 wet season. Carbon dioxide concentrations ([CO2]) throughout the canopy (0.02–38 m) showed a distinct daily pattern, were well-stratified and decreased with increasing height into the canopy. During both seasons, daytime [CO2] in the upper and middle canopy decreased on average 7–10 μmol mol−1 below tropospheric baseline values measured at Barbados. Within the main part of the canopy (≥ 0.7 m), [CO2] did not differ between the wet and dry seasons. In contrast, [CO2] below 0.7 m were generally higher during the dry season, resulting in larger [CO2] gradients. Supporting this observation, soil CO2 efflux was on average higher during the dry season than during the wet season, either due to diffusive limitations and/or to oxygen deficiency of root and microbial respiration. Soil respiration rates decreased by 40% after strong rain events, resulting in a rapid decrease in canopy [CO2] immediately above the forest floor of about 50␣μmol mol−1. Temporal and spatial variations in [CO2]canopy were reflected in changes of δ13Ccanopy and δ18Ocanopy values. Tight relationships were observed between δ13C and δ18O of canopy CO2 during both seasons (r 2 > 0.86). The most depleted δ13Ccanopy and δ18Ocanopy values were measured immediately above the forest floor (δ13C = −16.4‰; δ18O = 39.1‰ SMOW). Gradients in the isotope ratios of CO2 between the top of the canopy and the forest floor ranged between 2.0‰ and 6.3‰ for δ13C, and between 1.0‰ and 3.5‰ for δ18O. The δ13Cleaf and calculated c i/c a of foliage at three different positions were similar for the dry and wet seasons indicating that the canopy maintained a constant ratio of photosynthesis to stomatal conductance. About 20% of the differences in δ13Cleaf within the canopy was accounted for by source air effects, the remaining 80% must be due to changes in c i/c a. Plotting 1/[CO2] vs. the corresponding δ13C ratios resulted in very tight, linear relationships (r 2 = 0.99), with no significant differences between the two seasons, suggesting negligible seasonal variability in turbulent mixing relative to ecosystem gas exchange. The intercepts of these relationships that should be indicative of the δ13C of respired sources were close to the measured δ13C of soil respired CO2 and to the δ13C of litter and soil organic matter. Estimates of carbon isotope discrimination of the entire ecosystem, Δe, were calculated as 20.3‰ during the dry season and as 20.5‰ during the wet season. Received: 3 March 1996 / Accepted: 19 October 1996  相似文献   

13.
Phosphorus magnetic resonance spectroscopy (31P-MRS) was used to investigate the influence of maximal aerobic power (˙VO 2max) on the recovery of human calf muscle from high-intensity exercise. The (˙VOO2max) of 21 males was measured during treadmill exercise and subjects were assigned to either a low-aerobic-power (LAP) group (n = 10) or a high-aerobic-power (HAP) group (n = 11). Mean (SE) ˙VO 2max of the groups were 46.6 (1.1) and 64.4 (1.4) ml · kg−1 · min−1, respectively. A calf ergometry work capacity test was used to assign the same relative exercise intensity to each subject for the MRS protocol. At least 48 h later, subjects performed the rest (4 min), exercise (2 min) and recovery (10 min) protocol in a 1.5 T MRS scanner. The relative concentration of phosphocreatine (PCr) was measured throughout the protocol and intracellular pH (pHi) was determined from the chemical shift between inorganic phospate (Pi) and PCr. End-exercise PCr levels were 27 (3.4) and 25 (3.5)% of resting levels for LAP and HAP respectively. Mean resting pHi was 7.07 for both groups, and following exercise it fell to 6.45 (0.04) for HAP and 6.38 (0.04) for LAP. Analysis of data using non-linear regression models showed no differences in the rate of either PCr or pHi recovery. The results suggest that ˙VO2max is a poor predictor of metabolic recovery rate from high-intensity exercise. Differences in recovery rate observed between individuals with similar ˙VO2max imply that other factors influence recovery. Accepted: 17 December 1996  相似文献   

14.
Plasma and urine of toadfish (Opsanus tau) in sea water and 10% sea water were analyzed to assess responses of an aglomerular fish to hypoosmotic challenge. Following transfer to 10% sea water, plasma osmotic pressure decreased slowly from 318 to 241 mmol · kg H2O−1, over a period of 10–15 days. Urine osmotic pressure decreased in parallel from 299 to 207 mmol · kg H2O−1, leaving urine/plasma ratios of osmotic pressure essentially unchanged. In contrast, the volume and composition of urine changed rapidly following transfer to 10% sea water. Urine flow rate increased 110% from 3.0 to 6.3 μl · 100g−1 · h−1 and Na+ excretion increased 346%, while excretion of Mg2− and SO4 2− decreased 81% and 90%, respectively. Excretion rates for Cl were low in seawater toadfish and decreased further in 10% sea water. An unknown sulfur-containing anion, present in the urine of seawater toadfish, contributed significantly to the composition and ionic balance in urine of toadfish in 10% sea water. These results suggest that the inability to produce strongly dilute urine obliges toadfish to lose salt in order to excrete water, in hypoosmotic media. The decrease in plasma osmotic pressure may be both a strategy to reduce osmotic and ionic gradients in dilute media and a consequence of the kidney's inability to excrete water without salt. Accepted: 22 August 1996  相似文献   

15.
Xiahong Feng 《Oecologia》1998,117(1-2):19-25
To evaluate how the land carbon reservoir has been responding to the rising CO2 concentration of the atmosphere, it is important to study how plants in natural forests adjust physiologically to the changing atmospheric conditions. Many experimental studies have addressed this issue, but it has been difficult to scale short-term experimental observations to long-term ecosystem-level responses. This paper derives carbon-isotope-related variables for the past 100–200 years from measurements on trees from natural forests. Calculations show that the c i/c a ratios [c i/c a is the ratio of the CO2 concentration (μmol mol−1) in the intercellular space of leaves to that in the atmosphere] of the trees were constant or increased slightly before the 20th century, but changed more rapidly in the 20th century; some increased, some decreased, and some stayed constant. In contrast, the CO2 concentration inside plant leaves increased monotonically for all trees. Received: 12 June 1997 / Accepted: 29 June 1998  相似文献   

16.
This study examined hypertrophy after head extension resistance training to assess which muscles of the complicated cervical neuromuscular system were used in this activity. We also determined if conventional resistance exercises, which are likely to evoke isometric action of the neck, induce generalized hypertrophy of the cervical muscle. Twenty-two active college students were studied. [mean (SE) age, weight and height: 21 (1) years, 71 (4) kg and 173 (3) cm, respectively]. Subjects were assigned to one of three groups: RESX (head extension exercise and other resistance exercises), RES (resistance exercises without specific neck exercise), or CON (no training). Groups RESX (n = 8) and RES (n = 6) trained 3 days/week for 12 weeks with large-muscle mass exercises (squat, deadlift, push press, bent row and mid-thigh pull). Group RESX also performed three sets of ten repetitions of a head extension exercise 3 days/week with a load equal to the 3 × 10 repetition maximum (RM). Group CON (n = 8) was a control group. The cross-sectional area (CSA) of nine individual muscles or muscle groups was determined by magnetic resonance imaging (MRI) of the cervical region. The CSA data were averaged over four contiguous transaxial slices in which all muscles of interest were visible. The 3 × 10 RM for the head extension exercise increased for RESX after training [from 17.9 (1.0) to 23.9 (1.4) kg, P < 0.05] but not for RES [from 17.6 (1.4) to 17.7 (1.9)␣kg] or CON [from 10.1 (2.2) to 10.3 (2.1) kg]. RESX showed an increase in total neck muscle CSA after training [from 19.5 (3.0) to 22.0 (3.6) cm2, P < 0.05], but RES and CON did not [from 19.6 (2.9) to 19.7 (2.9)␣cm2 and 17.0 (2.5) to 17.0 (2.4) cm2, respectively]. This hypertrophy for RESX was due mainly to increases in CSA of 23.9 (3.2), 24.0 (5.8), and 24.9 (5.3)% for the splenius capitis, and semispinalis capitis and cervicis muscles, respectively. The lack of generalized neck muscle hypertrophy in RES was not due to insufficient training. For example, the CSA of their quadriceps femoris muscle group, as assessed by MRI, increased by 7 (1)% after this short-term training (P < 0.05). The results suggest that: (1) the splenius capitis, and semispinalis capitis and cervicis muscles are mainly responsible for head extension; (2) short-term resistance training does not provide a sufficient stimulus to evoke neck muscle hypertrophy unless specific neck exercises are performed; and (3) the postural role of head extensors provides modest loading in bipeds. Accepted: 15 October 1996  相似文献   

17.
This study investigated the effects on running economy (RE) of ingesting either no fluid or an electrolyte solution with or without 6% carbohydrate (counterbalanced design) during 60-min running bouts at 80% maximal oxygen consumption (O2max). Tests were undertaken in either a thermoneutral (22–23°C; 56–62% relative humidity, RH) or a hot and humid natural environment (Singapore: 25–35°C; 66–77% RH). The subjects were 15 young adult male Singaporeans [O2max = 55.5 (4.4 SD) ml kg−1 min−1]. The RE was measured at 3 m s−1 [65 (6)% O2max] before (RE1) and after each prolonged run (RE2). Fluids were administered every 2 min, at an individual rate determined from prior tests, to maintain body mass (group mean = 17.4 ml min−1). The O2 during RE2 was higher (P < 0.05) than that during the RE1 test for all treatments, with no differences between treatments (ANOVA). The mean increase in O2 from RE1 to RE2 ranged from 3.4 to 4.7 ml kg−1 min−1 across treatments. In conclusion, the deterioration in RE at 3 m s−1 (65% O2max) after 60 min of running at 80% O2max appears to occur independently of whether fluid is ingested and regardless of whether the fluid contains carbohydrates or electrolytes, in both a thermoneutral and in a hot, humid environment. Accepted: 30 October 1997  相似文献   

18.
To assess muscle metabolism and inorganic phosphate (Pi) peak splitting during exercise, 31-phosphorus nuclear magnetic resonance spectroscopy was performed during ramp incremental and submaximal step exercise with and without circulatory occlusion. Seven healthy men performed calf flexion in a superconducting magnet. There was no Pi splitting during ramp incremental exercise with the circulation present and phosphocreatine (PCr) decreased linearly by 0.07 (SEM 0.01) mmol · l−1 · s−1, while exercise with the circulation occluded caused the Pi peak to split into a high and a low pH peak. The rate of PCr decrease during exercise with the circulation occluded was 0.15 (SEM 0.03) mmol · l−1 · s−1 which with the efficiency of the adenosine 5′-triphosphate (ATP) hydrolysis reaction corresponded well to the mechanical energy. Both with and without occlusion of the circulation PCr decreased with some time lag which may reflect the consumption of residual oxygen. In submaximal step exercise PCr decreased exponentially at the onset of exercise with the circulation open whereas it decreased linearly by 0.15␣mmol · l−1 · s−1 when the circulation was occluded. After exercise, occlusion of the circulation was maintained for 1 min more and there was no PCr resynthesis. It is suggested that ATP synthesis was limited by the availability of oxygen. Accepted: 14 August 1996  相似文献   

19.
Integrated electromyography (iEMG) of the m. vastus lateralis was analysed during cycle ergometry in male subjects (n = 8). Two work trials were conducted, one under normoxia (N), the other under environmental normobaric hypoxia (EH in which the oxygen fraction in inspired gas = 0.116), each trial lasting 10 min. The absolute power output (180 W) was the same for both trials and was equivalent to 77 (4)% of maximum heart rate in trial N. Maximal voluntary isometric contractions were performed after each trial to assess changes in force, muscle fibre conduction velocity (MFCV), electromechanical delay (EMD), median frequency of EMG (MF) and maximal iEMG (iEMGmax). Biopy samples of muscle were obtained from the m. vastus medialis before testing. Myosin heavy chain (MHC) differences were determined through sodium dodecyl-polyacrylamide gel electrophoresis followed by densitometric analysis. No differences in submaximal iEMG were observed between EH and N trials during the first minute of work. At the end of both work trials iEMG was significantly elevated compared with starting values, however the iEMG recorded in EH exceeded N values by 15%. At the end of the EH trials the following were observed: a decrease in isometric force, MFCV and MF with an increase in EMD and the iEMGmax/force ratio. The iEMGmax was unchanged. No differences in any of these variables were observed after the N trial. Mean (SD) lactate concentrations following EH and N trials were 9.2 (4.4) mmol · 1−1 and 3.5 (1.1) mmol · 1−1, respectively. Results indicate that an increased motor unit recruitment and rate coding was needed in EH to maintain the required power output. The increased motor unit recruitment and rate coding were associated with myoelectric evidence of “peripheral” muscle fatigue. Subjects with higher compositions of type II MHC accumulated more lactate and displayed greater reductions in MF and MFCV during fatigue. Accepted: 16 June 1996  相似文献   

20.
The vertical profile of stable carbon isotope ratios (δ13C) of leaves was analyzed for 13 tree species in a cool-temperate deciduous forest in Japan. The vertical distribution of long-term averaged δ13C in atmospheric CO2a) was estimated from δ13C of dry matter from NADP-malic enzyme type C4 plant (Zea mays L. var. saccharata Sturt.) grown at a tower in the forest for 32␣days, assuming constant Δ value (3.3‰) in Z. mays against height. The δa value obtained from δ13C in Z.␣mays was lowest at the forest floor (−9.30 ± 0.03‰), increased with height, and was almost constant above 10␣m (−7.14 ± 0.14‰). Then leaf Δ values for the tree species were calculated from tree leaf δ13 C andδa. Mean leaf Δ values for the three tall deciduous species (Fraxinus mandshurica, Ulmus davidiana, and Alnus hirsuta) were significantly different among three height levels in the forest: 23.1 ± 0.7‰ at the forest floor (understory), 21.4 ± 0.5‰ in lower canopy, and 20.5 ± 0.3‰ in upper canopy. The true difference in tree leaf Δ among the forest height levels might be even greater, because Δ in Z. mays probably increased with shading by up to ∼‰. The difference in tree leaf Δ among the forest height levels would be mainly due to decreasing intercellular CO2 (C i) with the increase in irradiance. Potential assimilation rate for the three tree species probably increased with height, since leaf nitrogen content on an area basis for these species also increased with height. However, the increase in stomatal conductance for these tree species would fail to meet the increase in potential assimilation rate, which might lead to increasing the degree of stomatal limitation in photosynthesis with height. Received: 30 September 1995 / Accepted: 25 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号