首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Muscarinic acetylcholine M1 receptors play an important role in synaptic plasticity in the hippocampus and cortex. Potentiation of NMDA receptors as a consequence of muscarinic acetylcholine M1 receptor activation is a crucial event mediating the cholinergic modulation of synaptic plasticity, which is a cellular mechanism for learning and memory. In Alzheimer's disease, the cholinergic input to the hippocampus and cortex is severely degenerated, and agonists or positive allosteric modulators of M1 receptors are therefore thought to be of potential use to treat the deficits in cognitive functions in Alzheimer's disease. In this study we developed a simple system in which muscarinic modulation of NMDA receptors can be studied in vitro. Human M1 receptors and NR1/2B NMDA receptors were co-expressed in Xenopus oocytes and various muscarinic agonists were assessed for their modulatory effects on NMDA receptor-mediated responses. As expected, NMDA receptor-mediated responses were potentiated by oxotremorine-M, oxotremorine or xanomeline when the drugs were applied between subsequent NMDA responses, an effect which was fully blocked by the muscarinic receptor antagonist atropine. However, in oocytes expressing NR1/2B NMDA receptors but not muscarinic M1 receptors, oxotremorine-M co-applied with NMDA also resulted in a potentiation of NMDA currents and this effect was not blocked by atropine, demonstrating that oxotremorine-M is able to directly potentiate NMDA receptors. Oxotremorine, which is a close analogue of oxotremorine-M, and xanomeline, a chemically distinct muscarinic agonist, did not potentiate NMDA receptors by this direct mechanism. Comparing the chemical structures of the three different muscarinic agonists used in this study suggests that the tri-methyl ammonium moiety present in oxotremorine-M is important for the compound's interaction with NMDA receptors.  相似文献   

2.
Xenopus oocytes were induced to acquire sensitivity to neurotensin and substance P, by injecting them with a fraction of poly(A)+ mRNA from rat brain. Non-injected oocytes, and oocytes injected with other brain mRNAs, failed to show responses, suggesting that receptors to these peptides were expressed by specific brain mRNAs. Responses to substance P and neurotensin comprised an oscillatory chloride current, and a smooth current having different ionic basis. These currents resembled those seen during activation of muscarinic and serotonergic receptors, but were not blocked by the corresponding antagonists atropine and methysergide. The responses to substance P, and to a lesser extent to neurotensin, showed a long-lasting desensitization. Similarities between the oscillatory currents evoked by the peptides acetylcholine and serotonin suggest that all these receptors may 'link in' to a common intracellular messenger pathway.  相似文献   

3.
Mixed and muscarinic cholinergic agonists (acetylcholine, carbamylcholine, methacholine, oxotremorine, and pilocarpine) accelerated in a dose-dependent manner the progesterone-induced maturation of Xenopus laevis oocytes. None of these agonists induced oocyte maturation in the absence of progesterone. The accelerating effect of cholinergic agonists was blocked in a dose-dependent manner by specific muscarinic antagonists (atropine and scopolamine) but not by specific nicotinic antagonists (d-tubocurarine and hexamethonium). The specific nicotinic agonist, dimethylphenylpiperazine, alone induced maturation in the absence of progesterone. The optimal promoting effect of acetylcholine was observed when oocytes were exposed to acetylcholine for 30 min, 5 min after the addition of progesterone, and was markedly better than when oocytes were exposed to acetylcholine throughout their incubation with progesterone. The effect of acetylcholine was observed in both follicle-enclosed and in defolliculated oocytes, indicating that follicular cells were not the target of the cholinergic drugs.  相似文献   

4.
Growth Factor-Like Effects Mediated by Muscarinic Receptors in PC12M1 Cells   总被引:2,自引:0,他引:2  
Rat pheochromocytoma (PC12) cells stably expressing cloned m1 muscarinic acetylcholine receptors (PC12M1) undergo morphological changes when stimulated by muscarinic agonists. These changes, which include the outgrowth of neurite-like processes, are blocked by the muscarinic antagonist atropine and are not observed in PC12 cells. The observed morphological changes, which are independent of RNA and protein synthesis, are blocked by the methylation inhibitor 5'-deoxy-5'-methylthioadenosine, suggesting that methylation plays a role in this process. Analysis of cyclic AMP accumulation and phosphoinositide turnover reveals that both processes are enhanced on activation by muscarinic agonist. Our data suggest, however, that the muscarinic-dependent neurite-like outgrowth processes are not mediated by cyclic AMP, Ca2+, or protein kinase C pathways. The muscarinic-dependent neurite outgrowth effect is enhanced by nerve growth factor, with a resulting increase in both the number of neurite-extending cells and the length of the neurite. In addition, activation of muscarinic receptors in PC12M1 cells stimulates the induction of marker genes for neuronal differentiation. Muscarinic receptors may therefore mediate growth factor-like effects in these cells.  相似文献   

5.
The different segments of the guinea pig vas deferens circular muscle exhibit differential response patterns upon pharmacological stimulation. Namely, apart from barium chloride, the affinity and intrinsic activity of certain agonists and the strength of maximum contractions they induce appear to decrease along the path from the epididymis toward the prostate. If one subdivides the vas deferens into 3 parts of equal length such as epididymal, medial and prostatic portions, then adrenaline, acetylcholine, acetyl-beta-methylcholine, dopamine, histamine and bradykinin induce contractions on each of the 3 parts; whereas tyramine, ephedrine elicit responses in the epididymal and medial portions; amphetamine, DMPP, serotonin and PGF2 alpha in turn provoking contractions exclusively on the epididymal portion. The effects of adrenaline and noradrenaline are blocked by phentolamine and tolazoline; the responses to acetylcholine, acetyl-beta-methylcholine and carbamyl-beta-methylcholine are antagonized by atropine over a specific concentration range. The effects of tyramine, ephedrine and amphetamine are inhibited by phentolamine in an remarkably low dose range (pA2 = 13.51 +/- 0.09; 14.54 +/- 0.31; 14.35 +/- 0.12). The situation was the same when tyramine-dibenamine and tyramine-phenoxybenzamine combinations were tested (pD'2 = 14.03 +/- 0.37; 13.26 +/- 0.03). Based on these findings the presence of a peculiar alpha adrenergic receptor is suggested on the sympathetic postganglionic fibres. In addition to the already identified alpha adrenergic, muscarinic cholinergic and histamine H1 receptors, we could show the presence of dopaminergic receptors too in the vas deferens circular muscle.  相似文献   

6.
We have determined whether the process of agonist-mediated phosphorylation of the muscarinic receptor correlates with the process of muscarinic receptor desensitization in chick cardiac tissue. Exposure of ventricular slices to the agonist carbachol under conditions previously shown to lead to large increases in muscarinic receptor phosphorylation (Kwatra, M. M., and Hosey, M. M. (1986) J. Biol. Chem. 261, 12429-12432) resulted in decreased affinity of the muscarinic receptor for agonists. The agonist oxotremorine mimicked and the antagonist atropine prevented the effects of carbachol on receptor phosphorylation and agonist affinity. The time courses and concentration dependences for agonists to induce phosphorylation of the muscarinic receptor and decreases in agonist affinity were similar. Treatment of chick atria with acetylcholine under conditions which led to receptor phosphorylation resulted in decreased sensitivity of these preparations to the negative inotropic effect of carbachol. Taken together, the results support the concept that phosphorylation of cardiac muscarinic receptors may be related to the process of receptor desensitization. The mechanism by which agonists induce receptor phosphorylation was also investigated. The phosphorylated amino acids formed in response to agonists were serine and threonine. The protein kinase C activator phorbol myristate acetate had no effect on receptor phosphorylation or agonist affinity, nor did it prevent the effects of carbachol on either of these parameters. Receptor phosphorylation also was unaffected by the calmodulin antagonists W-7 and W-13, by elevation of cyclic nucleotides, and by agonists which activate other cardiac receptor systems. The results suggest that the phosphorylation of cardiac muscarinic receptors requires agonist occupancy of the receptor and/or may involve the participation of a selective protein kinase.  相似文献   

7.
We studied the effect of excitatory neurotransmitters (10(-5) M) on the intracellular Ca(2+) concentration ([Ca(2+)](i)) of cultured myenteric neurons. ACh evoked a response in 48.6% of the neurons. This response consisted of a fast and a slow component, respectively mediated by nicotinic and muscarinic receptors, as revealed by specific agonists and antagonists. Substance P evoked a [Ca(2+)](i) rise in 68.2% of the neurons, which was highly dependent on Ca(2+) release from intracellular stores, since after thapsigargin (5 microM) pretreatment only 8% responded. The responses to serotonin, present in 90.7%, were completely blocked by ondansetron (10(-5) M), a 5-HT(3) receptor antagonist. Specific agonists of other serotonin receptors were not able to induce a [Ca(2+)](i) rise. Removing extracellular Ca(2+) abolished all serotonin and fast ACh responses, whereas substance P and slow ACh responses were more persistent. We conclude that ACh-induced signaling involves both nicotinic and muscarinic receptors responsible for a fast and a more delayed component, respectively. Substance P-induced signaling requires functional intracellular Ca(2+) stores, and the 5-HT(3) receptor mediates the serotonin-induced Ca(2+) signaling in cultured myenteric neurons.  相似文献   

8.
The effect of the muscarinic receptor antagonist AF-DX 116 on the inhibitory action of muscarinic agonists and on responses mediated by nicotinic or muscarinic ganglionic transmission was studied in the superior cervical ganglion of the anesthetized cat. The postganglionic compound action potential evoked by cervical sympathetic trunk stimulation was depressed by methacholine or acetylcholine (ACh) injected into the ganglionic arterial supply. The depression was blocked by AF-DX 116. The compound action potentials evoked by preganglionic stimulus trains were also depressed when the intratrain frequency was 2 Hz or greater. This intratrain depression was, however, insensitive to AF-DX 116. The anticholinesterase drug physostigmine markedly enhanced the intratrain depression of the compound action potential. This effect was reversed by AF-DX 116. During nicotinic receptor block with hexamethonium, preganglionic stimulus trains with intratrain frequencies of 5 Hz or greater produced nicitating membrane contractions that could be blocked by the M1 muscarinic receptor antagonist pirenzepine. The amplitude of the contractions increased with frequency and reached a maximum at 20-40 Hz. AF-DX 116 had no effect on these responses. After administration of physostigmine, the amplitude of the nictitating membrane responses decreased with increasing intratrain frequency. AF-DX 116 reversed this effect. The data suggest that, in the superior cervical ganglion, AF-DX 116 sensitive muscarinic receptors which depress synaptic transmission are activated by exogenous agonists but not by the ACh released by the preganglionic axon terminals unless cholinesterase activity is inhibited.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The release of acetylcholine from Torpedo electric organ slices following their electrical stimulation was modulated by morphine, by the muscarinic antagonist atropine, and by the nicotinic antagonist tubocurarine. Addition of either atropine or tubocurarine in the presence of the acetylcholinesterase inhibitor phospholine iodide enhanced acetylcholine release. The effects of the two antagonists were additive, a result suggesting that the secreted acetylcholine regulates its own release by activating both muscarinic and nicotinic cholinergic receptors and that these receptors inhibit acetylcholine release by different mechanisms. The effects of opiates on acetylcholine release were examined under conditions in which the cholinergic modulation of release is blocked, i.e., in the presence of atropine and tubocurarine. These experiments revealed that electrically evoked release of acetylcholine is blocked by the opiate agonists morphine and levorphanol. However, the inhibitory effect of morphine on acetylcholine release was not reversed by the opioid antagonist naloxone. Furthermore, dextrorphan, the nonopioid stereoisomer of levorphanol, had the same inhibitory effect as its opioid counterpart. These findings suggest that the effects of opiates on electrically evoked release of acetylcholine are not mediated by opioid receptors. The possible mechanisms underlying these nonopioid effects of morphine and levorphanol are discussed.  相似文献   

10.
The alpha7 nicotinic acetylcholine receptor is highly expressed in hippocampus and in cholinergic projection neurons from the basal forebrain, structures that are particularly vulnerable to the ravages of Alzheimer's disease. Previous work suggests that beta-amyloid peptide can interact with alpha7 nicotinic acetylcholine receptors, although the nature of this interaction has not been well characterized. To test whether beta-amyloid peptide can activate alpha7 nicotinic acetylcholine receptors, we expressed these receptors in Xenopus oocytes and performed two-electrode voltage clamp recordings, characterizing the response to beta-amyloid peptide 1-42 applied at concentrations ranging from 1 pm to 100 nm. In alpha7-expressing oocytes, beta-amyloid peptide 1-42 elicits inward currents at low concentrations (1-100 pm), whereas at higher concentrations (nm), less effective receptor activation is observed, indicative of receptor desensitization. Preincubation with the alpha7-selective agents, the antagonist methyllycaconatine, and the agonist 4-OH-GTS-21 blocked beta-amyloid peptide-induced receptor activation. beta-amyloid peptide 1-42 at low concentrations was able to activate the L250T mutant alpha7 receptor. The endogenous Ca(2+)-activated chloride current in Xenopus oocytes is recruited upon receptor activation since replacing Ca(2+) with Ba(2+) in the recording solution reduced current amplitude. Thus, when beta-amyloid peptide activation of alpha7 receptors occurs, these currents are comprised, at least in part, of Ca(2+).  相似文献   

11.
In this study we examine the nature of chemical synaptic transmission between identified filiform hair receptors on the prothoracic segment of a locust and the identified postsynaptic projection interneuron (A4I1). The effects of pressure ejected acetylcholine, and various ligands of acetylcholine receptors on the activity of the postsynaptic neuron A4I1, or on wind-elicited responses in A4I1 are reported. It is suggested that the transmitter of the afferent fibers is acetylcholine, and that fast transmission is mediated by nicotinic acetylcholine-receptors. Both nicotine and carbachol act as agonists, whereas d-tubocurarine and alpha-bungarotoxin act as antagonists. The presence of muscarinic acetylcholine receptors was also evident from the modulatory effects of muscarine, oxotremorine and pilocarpine, which were blocked by bath application of atropine. GABA, and its agonists muscimol and cis-4-amino-crotonic-acid lead to inhibition of A4I1 responses. This inhibition was prevented by the additional application of picrotoxin. This suggests involvement of a ligand-gated GABA receptor which, most likely, increases chloride conductance. Metabotropic GABA-receptors do not seem to be involved, since baclofene, diazepam and bicuculline ejections had no effects. Glutamate also inhibits wind elicited A4I1 responses. Although attempts were made to further characterize the receptor involved, tested substances such as kainic acid, glycine, CNQX or GDEE had no effect.  相似文献   

12.
Abstract: Incubation of intact Xenopus oocytes with the opioid radioligand [3H]diprenorphine (0.5 n M ) resulted in specific binding of 1.7 ± 0.3 fmol per oocyte. Morphine (10 μ M ) inhibited the uptake of 45Ca2+ into the oocyte by 66 ± 9%. The opioid antagonist naltrexone partially blocked this effect of morphine. Preincubation of oocytes with morphine (10 μ M , 2 min) partially inhibited the fast and slow responses of the oocyte to acetylcholine by 26 and 52%, respectively. We conclude that native Xenopus oocytes possess opioid receptors that may modulate the muscarinic response by limiting calcium influx into the cell.  相似文献   

13.
Agonist Regulation of Muscarinic Acetylcholine Receptors in Rat Spinal Cord   总被引:2,自引:0,他引:2  
Abstract: In vitro studies with cultured cells originating from nervous tissue have shown that chronic exposure to muscarinic agonists results in a loss of muscarinic receptors. To determine whether this type of regulation of muscarinic receptor number also occurs in vivo , we infused carbachol into the spinal cords of rats. A single carbachol injection into the lumbar spinal cord caused a significant increase in the nociceptive threshold. This effect of carbachol diminished to control levels after 12 h of repeated agonist injections every 4 h and was blocked by atropine. The desensitization to the antinociceptive effects of carbachol was associated with a loss of muscarinic receptors as determined by the binding of the muscarinic antagonist [3H]quinuclidinyl benzilate. After a 24-h exposure to carbachol given every 4 h, there was about a 60% loss of binding sites. The loss of muscarinic receptors was also blocked by atropine and was reversible. These results represent direct evidence that a muscarinic agonist can regulate receptor number in the central nervous system and suggest that this loss of receptors is associated with a desensitization to the antinociceptive effects of carbachol injected into the spinal cord.  相似文献   

14.
An assay for the increase in potassium permeability mediated by muscarinic acetylcholine receptors (mAChR) in cultured cardiac cells is described, using the K+ ion substitute 86Rb+ as the tracer ion. Cardiac cells accumulate 86Rb+ from the extracellular medium in a Na+/K+ ATPase-dependent manner. Subsequent efflux of 86Rb+ in the absence and presence of muscarinic agonists follows kinetics similar to those previously reported for 42K+. The mAChR agonist carbamylcholine (carbachol) stimulated 86Rb+ efflux with an EC50 of 50 nM. The half-time for efflux is reduced by greater than 40% at maximally effective concentrations of agonist. Stimulation of 86Rb+ efflux by carbachol is blocked by the mAChR antagonist atropine with an IC50 of 15 nM. The stimulation of 86Rb+ efflux by carbachol is not affected by the presence of the Na+/K+ ATPase inhibitor ouabain. This assay provides a method for quantitating the mAChR-mediated increase in K+ permeability in cardiac cells without the use of 42K+.  相似文献   

15.
Recent findings suggest that astrocytes respond to neuronally released neurotransmitters with Ca2+ elevations. These Ca2+ elevations may trigger astrocytes to release glutamate, affecting neuronal activity. Neuronal activity is also affected by modulatory neurotransmitters that stimulate G protein-coupled receptors. These neurotransmitters, including acetylcholine and histamine, might affect neuronal activity by triggering Ca2+-dependent release of neurotransmitters from astrocytes. However, there is no physiological evidence for histaminergic or cholinergic receptors on astrocytes in situ. We asked whether astrocytes have these receptors by imaging Ca2+-sensitive dyes sequestered by astrocytes in hippocampal slices. Our results show that immunocytochemically identified astrocytes respond to carbachol and histamine with increases in intracellular free Ca2+ concentration. The H1 histamine receptor antagonist chlorpheniramine inhibited responses to histamine. Similarly, atropine and the M1-selective muscarinic receptor antagonist pirenzepine inhibited carbachol-elicited responses. Astrocyte responses to histamine and carbachol were compared with responses elicited by alpha1-adrenergic and metabotropic glutamate receptor agonists. Individual astrocytes responded to different subsets of receptor agonists. Ca2+ oscillations were the prevalent response pattern only with metabotropic glutamate receptor stimulation. Finally, functional alpha1-adrenergic receptors and muscarinic receptors were not detected before postnatal day 8. Our data show that astrocytes have acetylcholine and histamine receptors coupled to Ca2+. Given that Ca2+ elevations in astrocytes trigger neurotransmitter release, it is possible that these astrocyte receptors modulate neuronal activity.  相似文献   

16.
Muscarinic acetylcholine receptors mediate transmission of an extracellular signal represented by released acetylcholine to neuronal or effector cells. There are five subtypes of closely homologous muscarinic receptors which are coupled by means of heterotrimeric G-proteins to a variety of signaling pathways resulting in a multitude of target cell effects. Endogenous agonist acetylcholine does not discriminate among individual subtypes and due to the close homology of the orthosteric binding site the same holds true for most of exogenous agonists. In addition to the classical binding site muscarinic receptors have one or more allosteric binding sites at extracellular domains. Binding of allosteric modulators induces conformational changes in the receptor that result in subtype-specific changes in orthosteric binding site affinity for both muscarinic agonists and antagonists. This overview summarizes our recent experimental effort in investigating certain aspects of M2 muscarinic receptor functioning concerning i) the molecular determinants that contribute to the binding of allosteric modulators, ii) G-protein coupling specificity and subsequent cellular responses and iii) possible functional assays that exploit the unique properties of allosteric modulators for characterization of muscarinic receptor subtypes in intact tissue. A detailed knowledge of allosteric properties of muscarinic receptors is required to permit drug design that will modulate signal transmission strength of specific muscarinic receptor subtypes. Furthermore, allosteric modulation of signal transmission strength is determined by cooperativity rather than concentration of allosteric modulator and thus reduces the danger of overdose.  相似文献   

17.
In this study we document the sensitivity of the leech pharynx to acetylcholine and begin to characterize the acetylcholine receptor mediating this response by examining the effects of selective cholinergic agonists and antagonists on the contractile behavior of the pharynx. The order of potency derived from the EC50 of each agonist was (+/-)epibatidine > acetylcholine (in the presence of physostigmine) > McN A-343 > carbachol > nicotine. However, when response amplitude was considered, the order of potency to the tested agonists was (+/-)epibatidine > nicotine > McN A-343 > carbachol > acetylcholine. Acetylcholine-induced contractions of the pharynx were antagonized by d-tubocurarine, but not by alpha-bungarotoxin, alpha-conotoxin M1, or mecamylamine. Application of high concentrations of hexamethonium (1 mM) augmented the acetylcholine-induced contractions. However, this augmentation was apparently due to inhibition of acetylcholinesterase by hexamethonium. The muscarinic antagonist atropine produced complex actions and apparently acted as a mixed agonist/antagonist. Atropine by itself produced an increase in basal tonus and increased the frequency and amplitude of phasic contractions. Atropine increased the peak tension of the acetylcholine-induced response; however, it reduced the amplitude of both the acetylcholine-induced increase in basal tonus and integrated area. Based on the pharmacological profile of the pharyngeal acetylcholine response, we conclude that the acetylcholine receptor mediating the response is a nicotinic receptor. However, the responsiveness of the pharynx to muscarinic agents diverges from that of a classical nicotinic receptor.  相似文献   

18.
The binding of agonists and antagonists to muscarinic acetylcholine receptors on intact cultured cardiac cells has been compared with the binding observed in homogenized membrane preparations. The antagonists [3H]quinuclidinyl benzilate and [3H]N-methylscopolamine bind to a single class of receptor sites on intact cells with affinities similar to those seen in membrane preparations. In contrast with the heterogeneity of agonist binding sites observed in membrane preparations, the agonist carbachol binds to a homogeneous class of low-affinity sites on intact cells with an affinity identical to that found for the low-affinity agonist site in membrane preparations in the presence of guanyl nucleotides. Kinetic studies of antagonist binding to receptors in the absence and presence of agonist did not provide evidence for the existence of a transient (greater than 30 s) high-affinity agonist site that was subsequently converted to a site of lower affinity. Nathanson N. M. Binding of agonists and antagonists to muscarinic acetylcholine receptors on intact cultured heart cells.  相似文献   

19.
The TE671 human medulloblastoma cell line expresses a variety of characteristics of human neurons. Among these characteristics is the expression of membrane-bound high-affinity binding sites for alpha-bungarotoxin, which is a potent antagonist of functional nicotinic acetylcholine receptors on these cells. These toxin binding sites represent a class of nicotinic receptor isotypes present in mammalian brain. Treatment of TE671 cells during proliferative growth phase with nicotine or carbamylcholine, but not with muscarine or d-tubocurarine, induced up to a five-fold increase in the density of radiolabeled toxin binding sites in crude membrane fractions. This effect was blocked by co-incubation with the nicotinic antagonists d-tubocurarine and decamethonium, but not by mecamylamine or by muscarinic antagonists. Following a 10-13 h lag phase upon removal of agonist, recovery of the up-regulated sites to control values occurred within an additional 10-20 h. These studies indicate that the expression of functional nicotinic acetylcholine receptors on TE671 cells is subject to regulation by nicotinic agonists. Studies of the murine CNS have consistently indicated nicotine-induced up-regulation of nicotinic acetylcholine receptors, thereby supporting the identification of the toxin binding site on these cells as the functional nicotinic receptor. Although a mechanism for this effect is not apparent, nicotine-induced receptor blockade does not appear to be involved.  相似文献   

20.
Receptors for the specific muscarinic radioligand [3H]quinuclidinyl benzilate ([3H]QNB) were solubilized by digitonin from a particulate preparation of bovine brain without significant alteration in binding affinities for muscarinic antagonists. Electron microscopy and sucrose density gradient sedimentation analysis confirmed the solubility of these receptors in aqueous solutions of digitonin. Equilibrium and kinetic studies of [3H]QNB binding to solubilized receptors indicated that binding was stereoselective and was blocked by muscarinic compounds. These tests permit tentative identification of digitonin-solubilized [3H]QNB binding sites as muscarinic acetylcholine receptors. Digitonin-solubilized receptors were homogeneous with respect to sedimentation behavior and binding affinities for agonist and antagonist drugs, unlike membrane-bound receptors. Enzyme digestion studies and treatment with group-specific reagents indicated that muscarinic receptors are proteins whose binding activity could be disrupted by reduction with dithiothreitol or by modification of sulfhydryl residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号