首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of invertebrates show predator-induced plasticity in life-history and morphological traits that are considered adaptive. Evidence is accumulating that vertebrates may also adjust their life-history traits in response to predators; however, some of the patterns of plasticity, which appear to be an adaptive response specifically to the risk of size-selective predation, may instead result from reduced foraging in response to predator presence. Here, we describe a study of predator-induced plasticity in guppies (Poecilia reticulata). We have predicted that the plastic response to cues from a small, gape-limited, natural predator of guppies, the killlifish (Rivulus hartii), would be the opposite of that caused by reduced food intake. We have found that male guppies increased their size at maturity, both length and mass, in response to the non-lethal presence of this predator. This pattern of plasticity is the opposite of that observed in response to reduced food intake, where male guppies reduce size at maturity. The increase in size at maturity that we observed would likely reduce predation on adult male guppies by this native predator because it is gape-limited and can only eat juvenile and small adult guppies. This size advantage would be important especially because male guppies grow very little after maturity. Therefore, the pattern of plasticity that we observed is likely adaptive. In contrast, female guppies showed no significant response in size at first parturition to the experimental manipulation; however, we did find evidence suggesting that females may produce more, smaller offspring in response to cues from this predator.  相似文献   

2.
We analyzed variation in phenotypic plasticity of life history traits between two Cardamine flexuosa populations based on differences in plasticity of age and size at maturity. C. flexuosa (Cruciferae) is a facultative, vernalization-sensitive, long-day annual, and its phenology and the phenotypic expressions of many life history traits are largely controlled by photoperiod and vernalization in natural populations. We used plants from two populations which differed in their responses to chilling and photoperiod treatments. The timing of developmental processes was changed by controlling temperature and photoperiod regimes in growth chambers. Plasticity in size at maturity was analyzed as changes in a growth trajectory using two parameters, age at maturity (Δt) and growth rate (k). Both traits showed plasticity, but differences between the populations were found mostly for Δt. Distinctive differences in size at maturity of individuals in the two populations were mainly due to different amounts of plasticity in Δt. Variations in plasticity of nine other life history traits and their associations to age and size at maturity were also analyzed. Variation for eight of the traits can be described, at least in part, as a function of age and size at maturity for both populations, and most of the variation in the total number of seeds was explained by age and size at maturity. Only age at maturity had any effect on changes in resource allocation. The nine life history traits were integrated through associated character expressions with age and size at maturity. Changes in the association between a trait and age and/or size at maturity were rather conservative compared to changes in the plasticity of a trait between the two populations. Associations with age and size at maturity are mostly explicable in terms of inherent relationships in the developmental processes, and they may limit the ecological range expansion and the adaptive evolution of plasticity in C. flexuosa. The negative correlation between reproductive allocation and age at maturity can be a cost of delaying maturation in C. flexuosa.  相似文献   

3.
We document a strong association between predation environment and life-history phenotypes in the Costa Rican livebearing fish Brachyrhaphis rhabdophora. Populations that co-occurred with piscine predators attained maturity at a smaller size, and produced more, smaller offspring relative to populations from predator-free environments. These differences persisted over 3 years and between wet and dry seasons within a year. Reproductive allotment did not differ between predation environments, but was greater in the wet season than in the dry season. We also examined the phenotypic covariance structure among life-history traits and found traits to be highly correlated. Based on life-history differences, discriminant analyses showed that populations could be neatly classified by predation category, and could be reasonably classified into wet and dry season categories. Finally, we found that the pattern of predator-associated life-history divergence in B. rhabdophora is remarkably similar to that of the taxonomically distinct Trinidadian guppy (Poecilia reticulata), possibly pointing to an evolutionary convergence between these two systems.  相似文献   

4.
The effects of nonselective predation on the optimal age and size of maturity of their prey are investigated using mathematical models of a simple life history with juvenile and adult stages. Fitness is measured by the product of survival to the adult stage and expected adult reproduction, which is usually an increasing function of size at maturity. Size is determined by both age at maturity and the value of costly traits that increase mean growth rate (growth effort). The analysis includes cases with fixed size but flexible time to maturity, fixed time but flexible size, and adaptively flexible values of both variables. In these analyses, growth effort is flexible. For comparison with previous theory, models with a fixed growth effort are analyzed. In each case, there may be indirect effects of predation on the prey's food supply. The effect of increased predation depends on (1) which variables are flexible; (2) whether increased growth effort requires increased exposure to predators; and (3) how increased predator density affects the abundance of food for juvenile prey. If there is no indirect effect of predators on prey food supply, size at maturity will generally decrease in response to increased predation. However, the indirect effect from increased food has the opposite effect, and the net result of predation is often increased size. Age at maturity may either increase or decrease, depending on functional forms and parameter values; this is true regardless of the presence of indirect effects. The results are compared with those of previous theoretical analyses. Observed shifts in life history in response to predation are reviewed, and the role of size-selective predation is reassessed.  相似文献   

5.
Synopsis Reznick and Endler investigated natural variation in life-history traits of populations of Trinidad guppies exposed to one of three intensities of predation: (i) high predation directed primarily at adults, (ii) moderate predation directed primarily at juveniles, and (iii) low predation. They were able to document significant interpopulational differences in life-history traits associated with this differential predation on a trait-by-trait basis. However, the present extended multivariate analysis indicates that (1) life-history traits do not differ significantly between populations exposed to moderate versus low predation, although both differ greatly from high-predation populations; (2) life-history variation is strongly unifactorial; and (3) despite the importance of predation effects, approximately 17% of the variation in life-history variables cannot be accounted for by predation intensity. Residual variation has no obvious geographical patterns, but instead seems to reflect local environmental variability. Life-history differences between predation regimes are consistent with residual patterns of variation within regimes, suggesting that local variation provides the raw material for extrapolation in response to predation, but also that it influences the direction of correlated change in life-history traits.  相似文献   

6.
Abstract.  1. Some organisms respond adaptively to seasonal time constraints by altering development time to life-history transitions (e.g. metamorphosis, oviposition). Such life-history changes may have costs (e.g. reduced fecundity, mass, offspring quality).
2. The hypothesis that a northern population of the grasshopper Romalea microptera (Beauvois) would show adaptive plasticity in oviposition timing in response to seasonal time constraints was tested by manipulating photoperiod to simulate the middle of the active season (Long photoperiod), the end of the active season (Short photoperiod), and seasonal change (photoperiod Declining from long to short). Females received either high or low food rations. Short or Declining photoperiod were predicted to induce early oviposition with costs of reduced egg number, post-oviposition mass, or egg size, particularly in low-food females.
3. Effects of food ration and photoperiod, but not interaction, were significant in failure time analysis of age at oviposition. mancova on age at oviposition, egg number, and post-oviposition mass yielded similar effects. The multivariate effect of photoperiod resulted primarily from reduced time to oviposition in Short or Declining photoperiod. No costs in egg number or post-oviposition mass were associated with this photoperiod-induced reduction in time to oviposition. The multivariate effect of food ration resulted mainly from lower egg number with low food. Food ration affected egg size, but photoperiod and interaction did not. In all cases, Short and Declining photoperiod produced similar effects.
4. In its northern range, R. microptera accelerates reproduction in response to seasonal constraints, a response that may be adaptive. How R. microptera avoids costs associated with this reduced pre-oviposition period remains unknown.  相似文献   

7.
1. A simple two-stage population model was applied to data from a previously published life-table response experiment (LTRE), which examined the toxicity of 4- n -nonylphenol to life-history traits of the polychaete Capitella sp. I. Population growth rates ( λ ) and the relative sensitivities (= elasticities) of λ to changes in each of the individual life-history traits were calculated.
2. In the present study, the life-history parameters measured in laboratory-reared individuals were manipulated to simulate potential effects of competition and predation on fecundity, time to reproductive maturity and juvenile survival to explore how such factors might influence the sensitivity of population growth rate to toxicant-caused changes in individual life-history traits.
3. Dramatic changes in elasticity patterns among simulations indicate that population growth rates may respond very differently to toxicant exposure depending on the extent to which other demographically limiting factors (e.g. competitors and/or predators) are operating on the population.
4. Effectively predicting the population-level consequences arising from toxicant effects measured on individuals can be improved by exploring the elasticity pattern of λ for the population over a range of realistic ecological situations.  相似文献   

8.
High risk of infection by parasites may select for early reproduction in natural host populations. In a previous study of a freshwater snail (Potamopyrgus antipodarum) we found (1) that different clones of the snail are associated with different depth-structured vegetation zones and (2) that snails in shallow water, where the age-specific risk of infection is highest, mature at a smaller size than snails in deeper habitats. This result suggests that there has been selection for early reproduction in these snails, and that different clonal genotypes have different life-history strategies. Alternatively, the observed life-history variation in the snails might be due to ecological factors that are independent of parasites, but correlated with depth. In the present study, we decoupled parasitism and depth by examining life histories and clonal population structure in a second lake (Lake Tennyson) where the mean prevalence of trematode parasites was low and unrelated to depth. Consistent with the previous results, clones were structured according to vegetation zones in Lake Tennyson. However, we found no relationship between depth and life-history traits, which is inconsistent with the idea that depth-associated factors other than parasites affect snail life histories. Taken together, these results suggest that life-history variation is more likely to result from a depth-specific risk of infection than from depth per se, and that partitioning of habitat zones by different groups of clones may be a general phenomenon in P. antipodarum populations.  相似文献   

9.
I document a genetic basis for parallel evolution of life-history phenotypes in the livebearing fish Brachyrhaphis rhabdophora from northwestern Costa Rica. In previous work, I showed that populations of B. rhabdophora that co-occur with predators attain maturity at smaller sizes than populations that live in predator-free environments. I also demonstrated that this pattern of phenotypic divergence in life histories was independently repeated in at least five isolated drainages. However, life-history phenotypes measured from wild-caught fish could be attributed to environmental effects rather than to genetic differences among populations. In the present study, I reared male fish from four populations (two that co-occur with predators and two from predator-free environments) under four sets of environmental conditions. The pattern of phenotypic divergence in maturation size documented in the field between populations collected from different predation environments persisted after two generations in the laboratory. I also found a genetic basis for differences between populations in the age at which males attain maturity and in growth rates. By rearing fish in four different common environments, I tested for phenotypic plasticity in male life-history traits in response to nonlethal exposure to predators. There was a significant delay in the onset of sexual maturity in fish exposed to predators relative to those in the control, but no differences among treatments in size at maturity or growth rates. These results, coupled with previous work on B. rhabdophora, demonstrate a repeated pattern of parallel evolutionary divergence among genetically isolated populations that is strongly associated with predation.  相似文献   

10.
Seasonal declines in avian clutch size are well documented, but seasonal variation in other reproductive parameters has received less attention. For example, the probability of complete brood mortality typically explains much of the variation in reproductive success and often varies seasonally, but we know little about the underlying cause of that variation. This oversight is surprising given that nest predation influences many other life-history traits and varies throughout the breeding season in many songbirds. To determine the underlying causes of observed seasonal decreases in risk of nest predation, we modeled nest predation of Dusky Flycatchers (Empidonax oberholseri) in northern California as a function of foliage phenology, energetic demand, developmental stage, conspecific nest density, food availability for nest predators, and nest predator abundance. Seasonal variation in the risk of nest predation was not associated with seasonal changes in energetic demand, conspecific nest density, or predator abundance. Instead, seasonal variation in the risk of nest predation was associated with foliage density (early, but not late, in the breeding season) and seasonal changes in food available to nest predators. Supplemental food provided to nest predators resulted in a numerical response by nest predators, increasing the risk of nest predation at nests that were near supplemental feeders. Our results suggest that seasonal changes in foliage density and factors associated with changes in food availability for nest predators are important drivers of temporal patterns in risk of avian nest predation.  相似文献   

11.
Predation risk is widely hypothesized as an important force structuring communities, but this potential force is rarely tested experimentally, particularly in terrestrial vertebrate communities. How animals respond to predation risk is generally considered predictable from species life-history and natural-history traits, but rigorous tests of these predictions remain scarce. We report on a large-scale playback experiment with a forest bird community that addresses two questions: (i) does perceived predation risk shape the richness and composition of a breeding bird community? And (ii) can species life-history and natural-history traits predict prey community responses to different types of predation risk? On 9 ha plots, we manipulated cues of three avian predators that preferentially prey on either adult birds or offspring, or both, throughout the breeding season. We found that increased perception of predation risk led to generally negative responses in the abundance, occurrence and/or detection probability of most prey species, which in turn reduced the species richness and shifted the composition of the breeding bird community. Species-level responses were largely predicted from the key natural-history trait of body size, but we did not find support for the life-history theory prediction of the relationship between species'' slow/fast life-history strategy and their response to predation risk.  相似文献   

12.
Quantifying demographic parameters and variable vital rates, such as somatic growth rates, time to maturity, and reproductive longevity, is important for effective management of threatened and endangered populations such as sea turtles (Cheloniidae). To address these knowledge gaps, we applied skeletochronology to analyze and compare somatic growth rates and variation in life-history traits such as age and size at sexual maturity for 65 green turtles (Chelonia mydas) in the eastern Pacific Ocean (EP), along the west coast of the United States; turtles belonged to ≥2 nesting subpopulations that differed in body size (mean nesting size). Green turtles in the EP spend approximately 5 years in the oceanic stage before recruiting to nearshore habitats, males may be smaller and younger than females at maturation (x̅ = 17.7 ± 5.5 yr vs. 28.0 ± 8.2 yr), and younger age at sexual maturity was associated with smaller size at sexual maturity, suggesting that mean nesting body size may be reflective of maturation timing for subpopulations. Smaller body sizes for females nesting at Michoacán, Mexico (continental) rookeries, yielded a younger predicted age at sexual maturity (x̅ = ~17 yr) compared to females from Revillagigedo Islands, Mexico rookeries, which displayed larger body sizes and older age at sexual maturity (x̅ = ~30 yr). We consider possible mechanisms driving the observed divergence in life-history traits, including the possibility that earlier maturation (reduced generation length) for turtles in the Michoacán nesting subpopulation may be a response to intense harvesting in the past 50 years, and consideration of such anthropogenic impacts is warranted by population managers. Finally, our results indicate green turtles moved into nearshore neritic habitats at a young age (4–6 yr), emphasize the importance of protecting neritic habitats along the southwestern United States and northwestern Mexican coasts, and encourage the incorporation of variable maturation time in population recovery assessments.  相似文献   

13.
Seasonal variation of egg size and number in a Daphnia pulex population   总被引:4,自引:4,他引:0  
Seasonal variation of egg size and number was examined in a Daphnia pulex population inhabiting a vernal pond. In this population, size at maturity declines at midseason, probably as an adaptive response to size-selective predation by larvae of the salamander Ambystoma. The larger early season individuals produce more and larger eggs than the smaller late season individuals. Age at maturity does not vary between seasons. Laboratory experiments indicate that temperature may affect egg size, egg number and size at maturity. However, field data suggest that temperature accounts for only a small fraction of the total variation in egg size and number. Indirect measures of nutrition indicate that food limitation does not cause the seasonal decline in egg size and number. The seasonal change in reproductive traits is well correlated with changes in invertebrate and vertebrate predation. Examination of predator feeding preferences and their impact on Daphnia mortality indicate that variation of reproductive traits is most likely a complex adaptation to changing predation regimes.  相似文献   

14.
Populations of bluegill sunfish Lepomis macrochirus , experiencing heavy juvenile predation, showed increased growth rates and increased age and size at maturity relative to populations experiencing decreased predation on juveniles but increased predation on adults. This study examined bluegills experimentally from both types of populations and a cross between them in a common environment to determine if variation in growth and age at maturity is genetically or environmentally induced. Two factorial experiments, varying strain of bluegills and resource availability, were used to evaluate differences in growth rate. One experiment, varying strain of bluegills, was used to assess differences in age at maturity. Growth was strongly influenced by resource level, but growth rate did not vary among populations. Nearly all bluegills in each population matured at 1 year of age in a common environment. Thus, variation observed in source populations must be mostly attributable to differences in the environment between populations. At least three factors could potentially cause differences in growth and age at maturity: (1) variation in resource availability; (2) variation in demographic structure; and (3) variation in size-specific mortality rates caused by differences in predator abundance between populations. Observed patterns of variation between populations are best explained by effects of differences in predator populations.  相似文献   

15.
Abstract Mortality is a fundamental demographic rate, the nature of which has profound consequences for both the dynamics of populations and the life-history evolution of species. For example, if per capita mortality rates are age- or stage-specific, life-history traits should evolve in response to age- and stage-specific differences in selection arising from these temporally variable rates. Similarly, variation in the average mortality rate across ages and/or stages can also select for shifts in life history. Mortality rates of recently settled reef fishes can be very high and per capita mortality is commonly assumed to decrease with increasing age. A review of evidence for age-specific per capita mortality rates in reef fishes from early postsettlement up to 13 months postsettlement suggests that during this period these rates are often age invariant. The data on which these interpretations are based, however, are extremely limited both in terms of the proportion of the life cycle over which mortality rates have been sampled and the quality of these data. Nonetheless, these data do suggest that selective pressures associated with patterns of mortality may vary among species of reef fishes and that these species therefore could be more effectively used in the study of life-history evolution. At present, reef fishes are under-represented in the study of life-history evolution compared with other vertebrate taxa.  相似文献   

16.
Age at maturation is a key life history trait influencing individual fitness, population age structure, and ecological interactions. We investigated the evolution of age at maturity through changes in the von Bertalanffy growth constant for organisms with a simple juvenile-adult life history. We used Gillespie eco-evolutionary models to uncover the role of predation in driving the evolution of the growth constant when eco-evolutionary dynamics are present. We incorporated both size-independent and size-dependent predation into our models to generate differences in selection and dynamics in the system. Our results generally support the idea that faster ontogenetic growth is beneficial when populations are growing but that predation tends to have little effect on age at maturity unless there are trade-offs with other life history traits. In particular, if faster ontogenetic growth comes at the cost of fecundity, our results suggest that predation selects for intermediate levels of growth and fecundity. Eco-evolutionary dynamics influenced the nature of selection only when growth was linked to fecundity. We also found that predators that increasingly consume larger prey tend to have higher population sizes due to the greater energy intake from larger prey, but the growth rate-fecundity trade-off reversed this pattern. Overall, our results suggest an important role for interactions between size-dependent foraging and life-history trade-offs in generating varying selection on age at maturity through underlying growth traits.  相似文献   

17.
Elevation has long been considered a major influence on the evolution of life-history traits. Most elevation-induced variation in life history traits has been attributed to changes in climate, duration of breeding season, predation, and food limitation. I use a phylogenetic approach to show that life histories are closely associated with breeding elevation in extant cardueline finches. Finches at high elevations had smaller clutches, fewer broods, and longer incubation periods. Neither food limitation nor nest predation appear to readily account for this strong elevational variation in cardueline life histories. However, juvenile survival may be greater at higher elevations as a result of prolonged parental care and shorter natal dispersal and can potentially compensate for reduced fecundity in high-elevation finches. Received: 28 September 1996 / Accepted: 24 March 1997  相似文献   

18.
Placental reproduction is widespread across vertebrate taxa, but little is known about its life-history correlates and putative adaptive value. We studied variation in life-history traits in two populations of the placental poeciliid fish Poeciliopsis prolifica to determine whether differences in post-fertilization maternal provisioning to embryos have a genetic basis and how food availability affects reproduction. Life histories were characterized for wild-caught females and for second-generation lab-born females raised under two levels of food availability. We found that the two populations did not differ significantly in the wild for any life-history traits except for the lipid dry weight in females and in embryos at an advanced stage of development. When environmental effects were experimentally controlled, however, populations exhibited significant differences in several traits, including the degree of maternal provisioning to embryos. Food availability significantly affected female size at first parturition, brood size and offspring dry weight at birth. Altogether, these results demonstrate that population differences in maternal provisioning and other life-history traits have a genetic basis and show a plastic response to food availability. We infer that phenotypic plasticity may mask population differences in the field. In addition, when comparing life-history patterns in these two populations with known patterns in placental and non-placental poeciliids, our results support the hypotheses that placentation is an adaptive reproductive strategy under high-resource conditions but that it may represent a cost under low-food conditions. Finally, our results highlight that age at maturity and reproductive allotment may be key life-history traits accompanying placental evolution.  相似文献   

19.
Steroid hormones have similar functions across vertebrates, but circulating concentrations can vary dramatically among species. We examined the hypothesis that variation in titres of corticosterone (Cort) and testosterone (T) is related to life-history traits of avian species. We predicted that Cort would reach higher levels under stress in species with higher annual adult survival rates since Cort is thought to promote physiological and behavioural responses that reduce risk to the individual. Conversely, we predicted that peak T during the breeding season would be higher in short-lived species with high mating effort as this hormone is known to promote male fecundity traits. We quantified circulating hormone concentrations and key life-history traits (annual adult survival rate, breeding season length, body mass) in males of free-living bird species during the breeding season at a temperate site (northern USA) and a tropical site (central Panama). We analysed our original data by themselves, and also combined with published data on passerine birds to enhance sample size. In both approaches, variation in baseline Cort (Cort0) among species was inversely related to breeding season length and body mass. Stress-induced corticosterone (MaxCort) also varied inversely with body mass and, as predicted, also varied positively with annual adult survival rates. Furthermore, species from drier and colder environments exhibited lower MaxCort than mesic and tropical species; T was lowest in species from tropical environments. These findings suggest that Cort0, MaxCort and T modulate key vertebrate life-history responses to the environment, with Cort0 supporting energetically demanding processes, MaxCort promoting survival and T being related to mating success.  相似文献   

20.
A growing body of work suggests that breeding birds have a significant capacity to assess and respond, over ecological time, to changes in the risk of predation to both themselves and their eggs or nestlings. This review investigates the nature of this flexibility in the face of predation from both behavioural and reproductive perspectives, and also explores several directions for future research. Most available work addresses different aspects of nest predation. A substantial change in breeding location is perhaps the best documented response to nest predation, but such changes are not always observed and not necessarily the best strategy. Changes in nesting microhabitat (to more concealed locations) following predation are known to occur. Surprisingly little work addresses the proactive avoidance of areas with many nest predators, but such avoidance is probably widespread. Individual birds could conceivably adopt anti‐predator strategies based on the nest predators actually present in an area, but such effects have yet to be demonstrated. In fact, the ways in which birds assess the risk of nest predation is unclear. Nest defence in birds has historically received much attention, but little is known about how it interacts with other aspects of decision‐making by parents. Other studies concentrate on predation risk to adults. Some findings suggest that risk to adults themselves influences territory location, especially relative to raptor nests. An almost completely unexplored area concerns the sorts of social protection from predators that might exist during the breeding season. Flocking typical of the non‐breeding season appears unusual while breeding, but a mated pair may sometimes act as a “flock of two”. Opportunistic heterospecific sociality may exist, with heterospecific protector species associations more prevalent than currently appreciated. The dynamics of singing during the breeding season may also respond to variation in predation risk, but empirical research on this subject is limited. Furthermore, a few theoretical and empirical studies suggest that changes in predation risk also influence the behaviour of lekking males. The major influence of predators on avian life histories is undoubtedly expressed at a broad phylogenetic scale, but several studies hint at much flexibility on an ecological time scale. Some species may forgo breeding completely if the risk of nest predation is too high, and a few studies document smaller clutch sizes in response to an increase in nest predation. Recent evidence suggests that a female may produce smaller eggs rather than smaller clutches following an increase in nest predation risk. Such an increase may also influence decisions about intraspecific brood parasitism. There are no clear examples of changes in clutch/egg size with changes in risk experienced by adults, but parental responses to predators have clear consequences for offspring fitness. Changes in risk to adults may also influence body mass changes across the breeding season, although research here is sparse. The topics highlighted herein are all in need more empirical attention, and more experimental field work whenever feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号