首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
H Nagano  T Okuno  K Mise    I Furusawa 《Journal of virology》1997,71(3):2270-2276
The movement protein (MP) gene of brome mosaic virus (BMV) was precisely replaced with that of cucumber mosaic virus (CMV). Infectivity tests of the chimeric BMV on Chenopodium quinoa, a permissive host for cell-to-cell movement of both BMV and CMV, showed that the chimeric BMV failed to move from cell to cell even though it replicated in protoplasts. A spontaneous mutant of the chimeric BMV that displayed cell-to-cell movement was subsequently obtained from a local lesion during one of the experiments. A cloned cDNA representing the genomic RNA encoding the MP of the chimeric BMV mutant was analyzed and found to contain a mutation in the CMV MP gene resulting in deletion of the C-terminal 33 amino acids of the MP. Directed mutagenesis of the CMV MP gene showed that the C-terminal deletion was responsible for the movement capability of the mutant. When the mutation was introduced into CMV, the CMV mutant moved from cell to cell in C. quinoa, though the movement was less efficient than that of the wild-type CMV. These results indicate that the CMV MP, except the C-terminal 33 amino acids, potentiates cell-to-cell movement of both BMV and CMV in C. quinoa. In addition, since C. quinoa is a common host for both BMV and CMV, these results suggest that the CMV MP has specificity for the viral genomes during cell-to-cell movement of the virus and that the C-terminal 33 amino acids of the CMV MP are involved in that specificity.  相似文献   

2.
Brome mosaic virus (BMV) is a positive-strand RNA virus with a multipartite genome that causes symptomless infection in Nicotiana benthamiana. We have isolated and characterized a strain of BMV that produced uniform vein chlorosis in systemically infected N. benthamiana. Analysis of pseudorecombinants constructed by exchanging RNA 1 and 2 and RNA 3 components between wild-type (non-symptom-inducing) and vein chlorosis-inducing strains of BMV indicated that the genetic determinant for the induction of the chlorotic phenotype is located on RNA 3. Sequence analysis of progeny RNA 3 recovered from symptomatic N. benthamiana plants revealed that vein chlorosis is due to the single nucleotide transition 887G-->887A, which changes the codon for Val-266 to Ile-266 in the movement protein gene. The mutation had no detectable effect on the accumulation of virus in either inoculated or systematically infected leaves of N. benthamiana. The vein chlorosis phenotype is the manifestation of the substitution of Ile-266 for Val-266 in the movement protein gene, since additional alterations in this region (a silent mutation, i.e., 887GUU889-->GUC, and an alteration of valine to phenylalanine, i.e., 887GUU889-->887UUU889) resulted in symptomless infections on N. benthamiana. The modulation of the symptom phenotype by the substitution of Ile-266 for Val-266 is specific for N. benthamiana, since neither movement nor the symptom phenotype in barley plants was affected.  相似文献   

3.
4.
Previously, we reported that CCMV(B3a), a hybrid of bromovirus Cowpea chlorotic mottle virus (CCMV) with the 3a cell-to-cell movement protein (MP) gene replaced by that of cowpea-nonadapted bromovirus Brome mosaic virus (BMV), can form small infection foci in inoculated cowpea leaves, but that expansion of the foci stops between 1 and 2 days postinoculation. To determine whether the lack of systemic movement of CCMV(B3a) is due to restriction of local spread at specific leaf tissue interfaces, we conducted more detailed analyses of infection in inoculated leaves. Tissue-printing and leaf press-blotting analyses revealed that CCMV(B3a) was confined to the inoculated cowpea leaves and exhibited constrained movement into leaf veins. Immunocytochemical analyses to examine the infected cell types in inoculated leaves indicated that CCMV(B3a) was able to reach the bundle sheath cells through the mesophyll cells and successfully infected the phloem cells of 50% of the examined veins. Thus, these data demonstrate that the lack of long-distance movement of CCMV(B3a) is not due to an inability to reach the vasculature, but results from failure of the virus to move through the vascular system of cowpea plants. Further, a previously identified 3a coding change (A776C), which is required for CCMV(B3a) systemic infection of cowpea plants, suppressed formation of reddish spots, mediated faster spread of infection, and enabled the virus to move into the veins of inoculated cowpea leaves. From these data, and the fact that CCMV(B3a) directs systemic infection in Nicotiana benthamiana, a permissive systemic host for both BMV and CCMV, we conclude that the bromovirus 3a MP engages in multiple activities that contribute substantially to host-specific long-distance movement through the phloem.  相似文献   

5.
Genome packaging in the plant-infecting Brome mosaic virus (BMV), a member of the alphavirus-like superfamily, as well as in other positive-strand RNA viruses pathogenic to humans (e.g., poliovirus) and animals (e.g., Flock House virus), is functionally coupled to replication. Although the subcellular localization site of BMV replication has been identified, that of the capsid protein (CP) has remained elusive. In this study, the application of immunofluorescence confocal microscopy to Nicotiana benthamiana leaves expressing replication-derived BMV CP as a green fluorescent protein (GFP) fusion, in conjunction with antibodies to the CP and double-stranded RNA, a presumed marker of RNA replication, revealed that the subcellular localization sites of replication and CP overlap. Our temporal analysis by transmission electron microscopy of ultrastructural modifications induced in BMV-infected N. benthamiana leaves revealed a reticulovesicular network of modified endoplasmic reticulum (ER) incorporating large assemblies of vesicles derived from ER accumulated in the cytoplasm during BMV infection. Additionally, for the first time, we have found by ectopic expression experiments that BMV CP itself has the intrinsic property of modifying ER to induce vesicles similar to those present in BMV infections. The significance of CP-induced vesicles in relation to CP-organized viral functions that are linked to replication-coupled packaging is discussed.  相似文献   

6.
The cylindrical inclusion (CI) protein of potyviruses is involved in virus replication and cell-to-cell movement. These two processes should rely on multiple plant-virus interactions; however, little is known about the host factors that are involved in, or that may interfere with, CI functions. By using a yeast two-hybrid system, the CI protein from Plum pox virus (PPV) was found to interact with the photosystem I PSI-K protein, the product of the gene psaK, of Nicotiana benthamiana. Coexpression of PPV CI was shown to cause a decrease in the accumulation level of PSI-K transiently expressed in N. benthamiana leaves. To test the biological relevance of this interaction, we have analyzed the infection of PPV in N. benthamiana plants in which psaK gene expression has been silenced by RNA interference, as well as in Arabidopsis thaliana psaK knockout plants. Our results show that downregulation of the psaK gene leads to higher PPV accumulation, suggesting a role for the CI-PSI-K interaction in PPV infection.  相似文献   

7.
Tomato bushy stunt virus (TBSV) is one of few RNA plant viruses capable of moving systemically in some hosts in the absence of coat protein (CP). TBSV also encodes another protein (p19) that is not required for systemic movement but functions as a symptom determinant in Nicotiana benthamiana. Here, the role of both CP and p19 in the systemic spread has been reevaluated by utilizing transgenic N. benthamiana plants expressing the movement protein (MP) of Red clover necrotic mosaic virus and chimeric TBSV mutants that express CP of Turnip crinkle virus. Through careful examination of the infection phenotype of a series of mutants with changes in the CP and p19 genes, we demonstrate that both of these genes are required for efficient systemic invasion of TBSV in N. benthamiana. The CP likely enables efficient viral unloading from the vascular system in the form of assembled virions, whereas p19 enhances systemic infection by suppressing the virus-induced gene silencing.  相似文献   

8.
Plasmodesma (PD) is a channel structure that spans the cell wall and provides symplastic connection between adjacent cells. Various macromolecules are known to be transported through PD in a highly regulated manner, and plant viruses utilize their movement proteins (MPs) to gate the PD to spread cell-to-cell. The mechanism by which MP modifies PD to enable intercelluar traffic remains obscure, due to the lack of knowledge about the host factors that mediate the process. Here, we describe the functional interaction between Tobacco mosaic virus (TMV) MP and a plant factor, an ankyrin repeat containing protein (ANK), during the viral cell-to-cell movement. We utilized a reverse genetics approach to gain insight into the possible involvement of ANK in viral movement. To this end, ANK overexpressor and suppressor lines were generated, and the movement of MP was tested. MP movement was facilitated in the ANK-overexpressing plants, and reduced in the ANK-suppressing plants, demonstrating that ANK is a host factor that facilitates MP cell-to-cell movement. Also, the TMV local infection was largely delayed in the ANK-suppressing lines, while enhanced in the ANK-overexpressing lines, showing that ANK is crucially involved in the infection process. Importantly, MP interacted with ANK at PD. Finally, simultaneous expression of MP and ANK markedly decreased the PD levels of callose, β-1,3-glucan, which is known to act as a molecular sphincter for PD. Thus, the MP-ANK interaction results in the downregulation of callose and increased cell-to-cell movement of the viral protein. These findings suggest that ANK represents a host cellular receptor exploited by MP to aid viral movement by gating PD through relaxation of their callose sphincters.  相似文献   

9.
Plant infection by a virus is a complex process influenced by virus‐encoded factors and host components which support replication and movement. Critical factors for a successful tobamovirus infection are the viral movement protein (MP) and the host pectin methylesterase (PME), an important plant counterpart that cooperates with MP to sustain viral spread. The activity of PME is modulated by endogenous protein inhibitors (pectin methylesterase inhibitors, PMEIs). PMEIs are targeted to the extracellular matrix and typically inhibit plant PMEs by forming a specific and stable stoichiometric 1:1 complex. PMEIs counteract the action of plant PMEs and therefore may affect plant susceptibility to virus. To test this hypothesis, we overexpressed genes encoding two well‐characterized PMEIs in tobacco and Arabidopsis plants. Here, we report that, in tobacco plants constitutively expressing a PMEI from Actinidia chinensis (AcPMEI), systemic movement of Tobacco mosaic virus (TMV) is limited and viral symptoms are reduced. A delayed movement of Turnip vein clearing virus (TVCV) and a reduced susceptibility to the virus were also observed in Arabidopsis plants overexpressing AtPMEI‐2. Our results provide evidence that PMEIs are able to limit tobamovirus movement and to reduce plant susceptibility to the virus.  相似文献   

10.
Cell-to-cell spread of tobacco mosaic virus (TMV) through plant intercellular connections, the plasmodesmata, is mediated by a specialized viral movement protein (MP). In vivo studies using transgenic tobacco plants showed that MP is phosphorylated at its C-terminus at amino acid residues Ser258, Thr261 and Ser265. When MP phosphorylation was mimicked by negatively charged amino acid substitutions, MP lost its ability to gate plasmodesmata. This effect on MP-plasmodesmata interactions was specific because other activities of MP, such as RNA binding and interaction with pectin methylesterases, were not affected. Furthermore, TMV encoding the MP mutant mimicking phosphorylation was unable to spread from cell to cell in inoculated tobacco plants. The regulatory effect of MP phosphorylation on plasmodesmal permeability was host dependent, occurring in tobacco but not in a more promiscuous Nicotiana benthamiana host. Thus, phosphorylation may represent a regulatory mechanism for controlling the TMV MP-plasmodesmata interactions in a host-dependent fashion.  相似文献   

11.
Monocot-adapted brome mosaic virus (BMV) and dicot-adapted cowpea chlorotic mottle virus (CCMV) are closely related bromoviruses with tripartite RNA genomes. Although RNAs 1 and 2 together are sufficient for RNA replication in protoplasts, systemic infection also requires RNA3, which encodes the coat protein and the nonstructural 3a movement protein. We have previously shown with bromoviral reassortants that host specificity determinants in both viruses are encoded by RNA3 as well as by RNA1 and/or RNA2. Here, to test their possible role in host specificity, the 3a movement protein genes were precisely exchanged between BMV and CCMV. The hybrid viruses, but not 3a deletion mutants, systemically infected Nicotiana benthamiana, a permissive host for both parental viruses. The hybrids thus retain basic competence for replication, packaging, cell-to-cell spread, and long-distance (vascular) spread. However, the hybrids failed to systemically infect either barley or cowpea, selective hosts for parental viruses. Thus, the 3a gene and/or its encoded 3a protein contributes to host specificity of both monocot- and dicot-adapted bromoviruses. Tests of inoculated cowpea leaves showed that the spread of the CCMV hybrid containing the BMV 3a gene was blocked at a very early stage of infection. Moreover, the BMV hybrid containing the CCMV 3a gene appeared to spread farther than wt BMV in inoculated cowpea leaves. Several pseudorevertants directing systemic infection in cowpea leaves were obtained from plants inoculated with the CCMV(BMV 3a) hybrid, suggesting that the number of mutations required to adapt the hybrid to dicots is small.  相似文献   

12.
Brome mosaic virus (BMV) requires the coat protein (CP) not only for encapsidation but also for viral cell-to-cell and long-distance movement in barley plants. This suggests that BMV infection is controlled by interactions of CP with putative host factors as well as with viral components. To identify the host factors that interact with BMV CP, we screened a barley cDNA library containing 2.4 x 10(6) independent clones, using a yeast two-hybrid system. Using full-length and truncated BMV CPs as baits, four candidate cDNA clones were isolated. One of the candidate cDNAs encodes a unique oxidoreductase enzyme, designated HCP1. HCP1 was found predominantly in the soluble fractions after differential centrifugation of BMV-infected and mock-inoculated barley tissues. A two-hybrid binding assay using a series of truncated BMV CPs demonstrated that a C-terminal portion of CP is essential for its interaction with HCP1. Interestingly, experiments with CP mutants bearing single amino acid substitutions at the C-terminus revealed that the capacity for mutant CP-HCP1 binding correlates well with the infectivity of the corresponding mutant viruses in barley. These results indicate that CP-HCP1 binding controls BMV infection of barley, interacting directly with CP, probably in the cell cytoplasm.  相似文献   

13.
14.
Plant viruses must interact with host cellular components to replicate and move from cell to cell. In the case of Potato virus X (PVX), it carries stem-loop 1 (SL1) RNA essential for viral replication and movement. Using two-dimensional electrophoresis northwestern blot analysis, we previously identified several host proteins that bind to SL1 RNA. Of those, we further characterized a DnaJ-like protein from Nicotiana benthamiana named NbDnaJ. An electrophoretic mobility shift assay confirmed that NbDnaJ binds only to SL1 minus-strand RNA, and bimolecular fluorescence complementation (BiFC) indicated that NbDnaJ interacts with PVX capsid protein (CP). Using a series of deletion mutants, the C-terminal region of NbDnaJ was found to be essential for the interaction with PVX CP. The expression of NbDnaJ significantly changed upon infection with different plant viruses such as PVX, Tobacco mosaic virus, and Cucumber mosaic virus, but varied depending on the viral species. In transient experiments, both PVX replication and movement were inhibited in plants that over-expressed NbDnaJ but accelerated in plants in which NbDnaJ was silenced. In summary, we suggest that the newly identified NbDnaJ plays a role in PVX replication and movement by interacting with SL1(-) RNA and PVX CP.  相似文献   

15.
Chen MH  Tian GW  Gafni Y  Citovsky V 《Plant physiology》2005,138(4):1866-1876
Cell-to-cell tobacco mosaic virus movement protein (TMV MP) mediates viral spread between the host cells through plasmodesmata. Although several host factors have been shown to interact with TMV MP, none of them coresides with TMV MP within plasmodesmata. We used affinity purification to isolate a tobacco protein that binds TMV MP and identified it as calreticulin. The interaction between TMV MP and calreticulin was confirmed in vivo and in vitro, and both proteins were shown to share a similar pattern of subcellular localization to plasmodesmata. Elevation of the intracellular levels of calreticulin severely interfered with plasmodesmal targeting of TMV MP, which, instead, was redirected to the microtubular network. Furthermore, in TMV-infected plant tissues overexpressing calreticulin, the inability of TMV MP to reach plasmodesmata substantially impaired cell-to-cell movement of the virus. Collectively, these observations suggest a functional relationship between calreticulin, TMV MP, and viral cell-to-cell movement.  相似文献   

16.
17.
Bipartite geminiviruses, such as squash leaf curl virus (SqLCV), encode two movement proteins (MPs), BR1 and BL1, that are essential for viral movement in and subsequent infection of the host plant. To elucidate the biochemical functions of these MPs and define their respective contributions to viral infection, we have generated transgenic Nicotiana benthamiana plants expressing SqLCV BR1 and BL1. Transgenic plants expressing BR1 or a truncated BL1 were phenotypically indistinguishable from wild-type N. benthamiana. In contrast, transgenic plants expressing full-length BL1, alone or in combination with BR1, were strikingly abnormal both in their growth properties and phenotypic appearance, with leaves that were mosaic and curled under, thus mimicking typical SqLCV disease symptoms in this host. BL1 was localized to the cell wall and plasma membrane fractions, whereas BR1 was predominantly in the microsomal membrane fraction. These findings demonstrate that expression of BL1 in transgenic plants is sufficient to produce viral disease symptoms, and they further suggest that BL1 and BR1 carry out distinct and independent functions in viral movement.  相似文献   

18.
The movement protein (MP) and coat protein (CP) encoded by Alfalfa mosaic virus (AMV) RNA 3 are both required for virus transport. RNA 3 vectors that expressed nonfused green fluorescent protein (GFP), MP:GPF fusions, or GFP:CP fusions were used to study the functioning of mutant MP and CP in protoplasts and plants. C-terminal deletions of up to 21 amino acids did not interfere with the function of the CP in cell-to-cell movement, although some of these mutations interfered with virion assembly. Deletion of the N-terminal 11 or C-terminal 45 amino acids did not interfere with the ability of MP to assemble into tubular structures on the protoplast surface. Additionally, N- or C-terminal deletions disrupted tubule formation. A GFP:CP fusion was targeted specifically into tubules consisting of a wild-type MP. All MP deletion mutants that showed cell-to-cell and systemic movement in plants were able to form tubular structures on the surface of protoplasts. Brome mosaic virus (BMV) MP did not support AMV transport. When the C-terminal 48 amino acids were replaced by the C-terminal 44 amino acids of the AMV MP, however, the BMV/AMV chimeric protein permitted wild-type levels of AMV transport. Apparently, the C terminus of the AMV MP, although dispensable for cell-to-cell movement, confers specificity to the transport process.  相似文献   

19.
The role of the movement protein (MP) and nuclear shuttle protein (NSP) in the pathogenicity of Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus, was studied. Both genes were expressed in Nicotiana benthamiana, Nicotiana tabacum, and Lycopersicon esculentum plants with the Potato virus X (PVX) expression vector or by stable transformation of gene constructs under the control of the 35S promoter in N. tabacum. No phenotypic changes were observed in any of the three species when the MP was expressed from the PVX vector or constitutively expressed in transgenic plants. Expression of the ToLCNDV NSP from the PVX vector in N. benthamiana resulted in leaf curling that is typical of the disease symptoms caused by ToLCNDV in this species. Expression of NSP from PVX in N. tabacum and L. esculentum resulted in a hypersensitive response (HR), demonstrating that the ToLCVDV NSP is a target of host defense responses in these hosts. The NSP, when expressed as a transgene under the control of the 35S promoter, resulted in necrotic lesions in expanded leaves that initiated from a point and then spread across the leaf. The necrotic response was systemic in all the transgenic plants. Deletion of 100 amino acids from the C terminus did not compromise the HR response, suggesting that this region has no role in HR. Deletion of 60 or 100 amino acids from the N terminus of NSP abolished the HR response, suggesting that these sequences are required for the HR response. These findings demonstrate that the ToLCNDV NSP is a pathogenicity determinant as well as a target of host defense responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号