首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the postcapillary venules in the rat lymph nodes has been studied after a single total overheating at 43.5 degrees C. During the first three days an essential role is played by ultrastructural destructive processes, that demonstrate certain unfavourable states in cells. Nevertheless, the postcapillary venules perform their function quite satisfactory and even increase small lymphocytes transfer. The 7th-15th days are characterized with a steady compensation of the functional activity of these microvessels. By the 30th day some unfavourable changes in the endothelial ultrastructure are noted. This is, evidently, connected with a steady effect of the plasma toxic factor on the endothelium.  相似文献   

2.
Summary The three-dimensional structure of the rat thymus was studied by combined scanning and transmission electron microscopy. The thymus consists mainly of four types of cells: epithelial cells, lymphocytes, macrophages, and interdigitating cells (IDCs).The epithelial cells form a meshwork in the thymus parenchyma. Cortical epithelial cells are stellate in shape, while the medullary cells comprise two types: stellate and large vacuolated elements. A continuous single layer of epithelial cells separates the parenchyma from connective tissue formations of the capsule, septa and vessels. Surrounding the blood vessels, this epithelial sheath is continuous in the cortex, while it is partly interrupted in the medulla, suggesting that the blood-thymus barrier might function more completely in the cortex.Cortical lymphocytes are round and vary in size, whereas medullary lymphocytes are mainly small, although they vary considerably in surface morphology.Two types of large wandering cells, macrophages and IDCs, could be distinguished, as well as intermediate forms. IDCs sometimes embraced or contacted lymphocytes, suggesting their role in the differentiation of the latter cells.Perivascular channels were present around venules and some arterioles in the cortico-medullary region and in the medulla. A few lymphatic vessels were present in extended perivascular spaces.The present study suggests the possible existence of two routes of passage of lymphocytes into the general circulation. One is via the lymphatics, while the other is through the postcapillary venules into the blood circulation. Our SEM images give evidence that lymphocytes use an intracellular route, i.e., the endothelium of venules.  相似文献   

3.
This study centers around the dichotomy found in the literature concerning the presence of smooth muscle cells in the trabeculae and capsule of lymph nodes. Various superficial lymph nodes (mammary, mandibular, popliteal, subiliac, and superficial cervical) of the goat were collected and examined by light and electron microscopy. Smooth muscle cells were demonstrated in the capsule and trabeculae of lymph nodes independent of the blood and lymph vessels.  相似文献   

4.
In the heart, the endothelin (ET)/endothelin-receptor system is markedly involved in pathophysiological mechanisms underlying various cardiac diseases. Based upon pharmacological studies both ET-receptor subtypes take part in the regulation of coronary vascular tone, however, their detailed cellular distribution in the coronary vascular bed based upon direct mRNA and protein detection is unknown. This issue was addressed in the rat heart by means of non-radioactive in situ hybridization, RT-PCR, and immunohistochemistry. Expression of vascular ET(A)-receptors was detected in arterial smooth muscle and capillary endothelium while ET(B)-receptors were present in arterial, venous, and capillary endothelium, and in arterial and venous smooth muscle cells. This differential distribution of the ET-receptor subtypes supports the concept that ET(A)- as well as ET(B)-receptors mediate arterial vasoconstriction, while postcapillary vascular resistance is exclusively regulated by ET(B)-receptors. The observed capillary endothelial expression of the ET(A)-receptor correlates with the known ability of ET(A)-receptor antagonists to attenuate increases in cardiac microvascular permeability during endotoxin shock and ischemia/reperfusion injury.  相似文献   

5.
Murine and human leukocytes express surface glycoproteins, termed homing receptors (HRs), containing lectin-like, EGF-like (egf), and complement binding-like domains, that apparently endow these cells with the ability to home to peripheral lymph nodes (pln's) by virtue of an adhesive interaction with the pln postcapillary venule endothelium. The murine pln HR was initially characterized with a rat monoclonal antibody, Mel 14, that was specific for the murine form of the receptor. This work demonstrated that Mel 14 blocked the binding of murine lymphocytes to pln endothelium both in vitro and in vivo, a result consistent with the possibility that this monoclonal antibody recognizes a region of the HR that is involved with endothelium recognition and adhesion. In addition, this antibody also blocked the binding to the HR of PPME, a polyphosphomannan carbohydrate known to inhibit lymphocyte-pln endothelium interactions, suggesting that Mel 14 may recognize the lectin domain of the pln HR. Here we show that, while Mel 14 recognized truncated HR containing both the lectin and egf domains, antibody recognition was lost when the lectin domain alone was expressed. Chimeric molecules, in which regions of the lectin domain of the non-Mel 14-reactive human pln HR were replaced with homologous regions of the murine pln HR, demonstrated that the Mel 14 recognition site is within the NH2-terminal 53 amino acids of the lectin domain. These results suggest that the Mel 14 monoclonal antibody recognizes a determinant within the lectin domain of the pln HR whose conformation may be dependent upon the presence of the egf domain. Since Mel 14 efficiently blocks lymphocyte-endothelial interactions, these results support the hypothesis that the pln HR lectin domain may be directly involved with binding of lymphocytes to a carbohydrate ligand on the pln postcapillary venule endothelium.  相似文献   

6.
Smooth muscle membrane potential and tension in rat isolated small mesenteric arteries (inner diameter 100-200 microm) were measured simultaneously to investigate whether the intensity of smooth muscle stimulation and the endothelium influence responses to exogenous K+. Variable smooth muscle depolarization and contraction were stimulated by titration with 0.1-10 microM phenylephrine. Raising external K+ to 10.8 mM evoked correlated, sustained hyperpolarization and relaxation, both of which were inhibited as the smooth muscle depolarized and contracted to around -38 mV and 10 mN, respectively. At these higher levels of stimulation, raising the K+ concentration to 13.8 mM still hyperpolarized and relaxed the smooth muscle. Relaxation to endothelium-derived hyperpolarizing factor, released by ACh, was not altered by the level of stimulation. In endothelium-denuded arteries, the concentration-relaxation curve to K+ was shifted to the right but was not depressed. In denuded arteries, relaxation to K+ was unaffected by the extent of prior stimulation and was blocked with 0.1 mM ouabain but not with 30 microM Ba2+. The ability of K+ to stimulate simultaneous hyperpolarization and relaxation in the mesenteric artery is consistent with a role as an endothelium-derived hyperpolarizing factor activating inwardly rectifying K+ channels on the endothelium and Na+-K+-ATPase on the smooth muscle cells.  相似文献   

7.
An increase in tissue blood flow requires relaxation of smooth muscle cells along entire branches of the resistance vasculature. Whereas the spread of hyperpolarization along the endothelium can coordinate smooth muscle cell relaxation, complementary signaling events have been implicated in the conduction of vasodilation. We tested the hypothesis that Ca(2+) waves propagate from cell to cell along the endothelium of feed arteries exhibiting spontaneous vasomotor tone. Feed arteries of the hamster retractor muscle were isolated, pressurized to 75 mmHg at 37 degrees C, and developed myogenic tone spontaneously. Smooth muscle cells and endothelial cells were loaded with the Ca(2+) indicator Fluo-4. An acetylcholine stimulus was delivered locally using microiontophoresis (1-microm pipette tip, 1 microA, 1 s), and Ca(2+) signaling within and along respective cell layers was determined using laser-scanning confocal microscopy. Acetylcholine triggered an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) of endothelial cells at the site of stimulation that preceded two distinct events: 1) a rapid synchronous decrease in smooth muscle [Ca(2+)](i) along the entire vessel and 2) an ensuing Ca(2+) wave that propagated bidirectionally along the endothelium at approximately 111 microm/s for distances exceeding 1 mm. Maximal dilation of vessels with either nifedipine (1 microM) or sodium nitroprusside (SNP, 100 microM) reduced the distance that Ca(2+) waves traveled to approximately 300 microm (P < 0.05). Thus Ca(2+) waves propagate along the endothelium of resistance vessels with vasomotor tone, and this signaling pathway is compromised during maximal dilation with nifedipine or SNP.  相似文献   

8.
The first step in the migration of lymphocytes out of the blood is adherence of lymphocytes to endothelial cells (EC) in the postcapillary venule. It is thought that in inflammatory reactions cytokines activate the endothelium to promote lymphocyte adherence and migration into the inflammatory site. Injection of IFN-gamma, IFN-alpha/beta, and TNF-alpha into the skin of rats stimulated the migration of small peritoneal exudate lymphocytes (sPEL) into the injection site, and these cytokines mediated lymphocyte recruitment to delayed-type hypersensitivity, sites of virus injection, and in part to LPS. The effect of cytokines on lymphocyte adherence to rat microvascular EC was examined. IFN-gamma, IFN-alpha/beta, IL-1, TNF-alpha, and TNF-beta increased the binding of small peritoneal exudate lymphocyte (sPEL) to EC. IFN-gamma was more effective and stimulated adherence at much lower concentrations than the other cytokines. IL-2 did not increase lymphocyte adherence. LPS strongly stimulated lymphocyte binding. Treatment of EC, but not sPEL, enhanced adhesion, and 24 h of treatment with IFN-gamma and IL-1 induced near maximal adhesion. Lymph node lymphocytes, which migrate poorly to inflammatory sites, adhered poorly to unstimulated and stimulated EC, whereas sPEL demonstrated significant spontaneous adhesion which was markedly increased by IFN-gamma, IL-1, and LPS. Spleen lymphocytes showed an intermediate pattern of adherence. Combinations of IFN-gamma and TNF-alpha were additive in stimulating sPEL-EC adhesion. Depletion of sPEL and spleen T cells by adherence to IFN-gamma stimulated EC decreased the in vivo migration of the lymphocytes to skin sites injected with IFN-gamma, IFN-alpha/beta, TNF-alpha, poly I:C, LPS, and to delayed-type hypersensitivity reactions by 50%, and significantly increased the migration of these cells to normal lymph nodes, as compared to unfractionated lymphocytes. Thus the cytokines and lymphocytes involved in migration to cutaneous inflammation in the rat stimulate lymphocyte adhesion to rat EC in vitro, and IFN-gamma stimulated EC appear to promote the selective adhesion of inflammatory site-seeking lymphocytes.  相似文献   

9.
Summary Immunohistological analysis of sections prepared from human palatine tonsils revealed marked differences in the distribution of the adhesion molecule, leucocyte function antigen-1 (LFA-1) and its counter receptor, intercellular adhesion molecule-1 (ICAM-1). Light microscopy showed that LFA-1 was restricted to the leucocytes, particularly the lymphocytes. In contrast, staining of ICAM-1 was predominantly confined to the vascular endothelium with the greatest expression seen on the morphologically distinct high endothelial venules in the parafollicular areas; these are the sites that appear to support lymphocyte migration. Electron microscopy revealed that ICAM-1 was present on the luminal and lateral surfaces of the high endothelium and absent from the abluminal surface supported by basal lamina. The ICAM-1 was also absent from those surfaces of the endothelium that were in close contact with intravascular lymphocytes. Other cells stained by the anti-ICM-1 antibody included dendritic cells, plasma cells and epithelial cells in the reticulated crypt epithelium and in the upper strata of the non-keratinised stratified squamous epithelium. The high expression of LFA-1 was most prominent on lymphocytes, low on antigen-presenting cells and activated lymphoid cells, and not detectable on plasma cells, epithelial and endothelial cells. We propose that LFA-1/ICAM-1 binding participates in mediating the transendothelial migration of lymphocytes across the high endothelial venules of palatine tonsil.  相似文献   

10.
We have studied the combined effects of platelet-derived soluble factors and three types of macromolecular substrata on the proliferation and migration of smooth muscle cells in vitro. Bovine aortic smooth muscle cells were plated onto three-dimensional gels of type I collagen or onto cell-free extracellular matrices deposited on such gels by either bovine aortic endothelial cells or smooth muscle cells. The cells were cultured in the presence of whole-blood serum (WBS) or platelet-poor plasma (PPP). Smooth muscle cell proliferation on type I collagen gels was dependent on the presence of platelet-derived factors, i.e. the cells proliferated in the presence of WBS but not in PPP. In contrast, cell proliferation on the extracellular matrices occurred at the same rate in PPP and WBS. Smooth muscle cells plated onto collagen gels rapidly migrated down into the gel matrix; the percentage of cells migrating was inversely proportional to cell density. The presence of extracellular matrices did not alter the rate of cell migration into the underlying gel matrix. Irrespective of the substratum used, smooth muscle cell migration was independent of platelet-derived or plasma factors and occurred in the absence of proliferation. These results indicate that possible chemotactic, chemokinetic, and/or mitogenic factors produced by the vascular cells and deposited within the extracellular matrix may play an important role in modulating smooth muscle cell behaviour in the vascular wall.  相似文献   

11.
Scanning electron microscopy (SEM) shows that the postcapillary high-endothelial venules of lymph nodes and Peyer's patches consist of two segments each with a different surface relief: a proximal segment with a cobblestone surface pattern and a distal segment of interlacing cytoplasmic plates. Both segments have deep adluminal crevices in which lymphocytes are lodged. The internal structural configuration of this endothelium has been examined by transmission electron microscopy (TEM) of serial sections of lymph nodes and Peyer's patches of mice, rats, and guinea pigs. The serial sections revealed that the endothelial cell bodies and their cytoplasmic extensions were disposed in a direction generally lateral to the luminal surface and intruded into the intercellular spaces of similarly disposed neighboring endothelial cells, resulting in a complex interlacing cellular pattern. Lymphocytes penetrated the endothelial cell body and secondarily followed an intracellular pathway through which they entered the extravascular compartment. At the exposed surfaces of the adluminal venule wall, recirculating lymphocytes were seen in SEM images to enter the endothelium by penetrating the endothelial cell body. The mode of migration of lymphocytes lodged in the endothelial crevices could be determined by SEM and has been examined by TEM of serial sections. At these locations as at the exposed surfaces, lymphocytes also entered the venule by penetrating the endothelial cell body. At both sites this transcellular pathway was followed by lymphocyte entry into the intercellular spaces from which they migrated into the extravascular compartment.  相似文献   

12.
Autogeneic bone marrow was implanted into an artificially created cavity in a segment of rat sciatic nerve, after removal of nerve fascicles, without damaging the epineurium or surrounding microcirculation. Under these conditions, the bone marrow induces capillary growth and forms granulation tissue from surrounding tissues, the behavior of pericytes being studied in the preformed (preexisting) postcapillary venules of the latter. Beginning 20 h after bone marrow implantation, the pericytes of the preexisting postcapillary venules hypertrophy, with shortening of their processes, prominent nucleoli, dispersal of ribosomes into their free form, fragmentation of basal lamina, and increased DNA synthesis. The number of contact surfaces between pericytes and endothelium is noticeably lower than in controls. Many pericytes are in mitosis. Cells with a shape transitional between pericytes and interstitial fibroblast-like cells appear. In some cases, Monastral Blue (MB) was used as a marker of the cells in preexisting venule walls of the graft bed. In the earlier stages of the experiment, the MB labelling is restricted to the cytoplasm of pericytes and endothelial cells of postcapillary venules, and to the macrophages that occur in the space between pericytes and endothelium. Furthermore, the marker continues to be observed, at a later stage, in some of the following cells: pericytes and endothelial cells of the newly formed vessels, macrophages migrating into the interstitium, transitional cells between pericytes and fibroblasts, and typical fibroblasts of the granulation tissue. The present study provides greater evidence that preformed microvasculature pericytes are substantially activated during postnatal angiogenesis and granulation tissue formation, suggesting that they may contribute to the origin of new pericytes and fibroblasts.  相似文献   

13.
Laminins, one of the major functional components of basement membranes, are found underlying endothelium, and encasing pericytes and smooth muscle cells in the vessel wall. Depending on the type of blood vessel (capillary, venule, postcapillary venule, vein or artery) and their maturation state, both the endothelial and mural cell phenotype vary, with associated changes in laminin isoform expression. Laminins containing the α4 and α5 chains are the major isoforms found in the vessel wall, with the added contribution of laminin α2 in larger vessels. We here summarize current data on the precise localization of these laminin isoforms and their receptors in the different layers of the vessel wall, and their potential contribution to vascular homeostasis.  相似文献   

14.
Interstitial cells of Cajal (ICC) have been proposed as stretch receptors for vagal afferent nerves in the stomach based on immunohistochemical studies. The aim of the present study was to use electron microscopy and the anterograde degeneration technique to investigate ultrastructural features and survival dependency of ICC associated with vagal afferent innervation of the cat esophagus. This is the first report on the ultrastructural characteristics of ICC in the cat esophagus. Intramuscular ICC (ICC-IM) were identified throughout the musculature, whereas ICC in the myenteric plexus were rare. ICC-IM were particularly numerous in septa aligned with smooth muscle bundles. They were in synapse-like contact with nerve varicosities and in gap junction contact with smooth muscle cells. Smooth muscle cells also made contact with ICC through peg and socket junctions. Precision damage through small-volume injection of saline in the center of the nodose ganglion from the lateral side, known to selectively affect sensory nerves, was followed within 24 h by degeneration of a subset of nerve varicosities associated with ICC-IM, as well as degeneration of the associated ICC-IM. Smooth muscle cells were not affected. Nerves of Auerbachs plexus and associated ICC were not affected. In summary, ICC-IM aligning the esophageal muscle bundles form specialized synapse-like contacts with vagal afferent nerves as well as gap junction and peg-and-socket contacts with smooth muscle cells. This is consistent with a role of ICC-IM as stretch receptors associated with vagal afferent nerves; the ICC-vagal nerve interaction appears essential for the survival of the ICC.  相似文献   

15.
Reperfusion of ischemic tissues results in development of a proinflammatory, prothrombogenic phenotype, culminating in the recruitment of leukocytes and platelets within postcapillary venules. Recent studies have indicated an interdependence of platelet and leukocyte adhesion, suggesting that heterotypic blood cell interactions may account for postischemic platelet recruitment. The objectives of this study were to 1) determine whether ischemia-reperfusion (I/R)-induced platelet recruitment is leukocyte dependent and 2) quantify the contributions of leukocytes and endothelial cells in this platelet recruitment. Intravital microscopy was used to monitor the recruitment of fluorescently labeled platelets in postcapillary venules of the small intestine after 45-min ischemia and 4-h reperfusion. To assess the leukocyte dependence of platelet adhesion, platelets from wild-type mice were infused into mice deficient in neutrophils and/or lymphocytes and mice deficient in key leukocyte adhesion molecules (CD18 and ICAM-1). These antileukocyte strategies resulted in significantly reduced platelet recruitment. Simultaneous visualization of platelets and leukocytes enabled quantification of leukocyte-dependent and endothelium-dependent platelet adhesion. It was observed that in wild-type animals 74% of I/R-induced platelet adhesion was a result of platelet-leukocyte interactions. Although the majority of adherent platelets were associated with leukocytes, <50% of adherent leukocytes were platelet bearing, suggesting that not all adherent leukocytes support platelet adhesion. These results are consistent with leukocytes playing a major role in supporting I/R-induced platelet adhesion.  相似文献   

16.
We are investigating the hypothesis that carbohydrate-binding molecules on the cell surface are involved in the recirculation of lymphocytes from the bloodstream into lymphoid organs. This phenomenon requires the specific attachment of circulating lymphocytes to the endothelial cells of postcapillary venules. Using an in vitro assay to measure the adhesive interaction between lymphocytes and postcapillary venules, we have found that L-fucose, D mannose, and the L-fucose-rich, sulfated polysaccharide fucoidin specifically inhibit this binding interaction. L-fucose shows stereo-selective inhibitory activity at concentrations greater than 18 mM while fucoidin produces 50% inhibition at approximately 1-5 X 10(-8) M. Fucoidin appears to interact with the lymphocyte, and not the postcapillary venule, to inhibit binding. These data suggest that cell surface carbohydrates (fucoselike) and carbohydrate-binding molecules (cell surface lectins) may contribute to the specific attachment of lymphocytes to postcapillary venules.  相似文献   

17.
The arrangement and structure of sinus hair muscles in the snout of the shrew, Sorex unguiculatus, were studied by electron microscopy and serial section light microscopy. Both striated and smooth muscles are directly associated with sinus hair follicles. The striated muscle fibers originate from the base of a follicle and insert onto the superficial portion of adjoining caudally positioned follicles. Some fibers insert into the corium instead of inserting into a follicle. The fibers show a fine structure typical of red fibers. Smooth muscle cells form a network with elastic fibers beneath the corium. Some cells are directly attached to the capsule of the sinus, thus forming a type of M. arrector pili. Striated muscle fibers that appear to end in the corium are connected with the smooth muscle network through the elastic fibers which appear to function as the tendon of these two types of muscle cell.  相似文献   

18.
The cellular distribution of AMP deaminase (AMPda) isozymes was documented for rat soleus and plantaris muscles, utilizing immunofluorescence microscopy and immunoprecipitation methods. AMPda is a ubiquitous enzyme existing as three distinct isozymes, A, B and C, which were initially purified from skeletal muscle, liver (and kidney), and heart, respectively. AMPda-A is primarily concentrated subsarcolemmally and intermyofibrillarly within muscle cells, while isozymes B and C are concentrated within non-myofiber elements of muscle tissue. AMPda-B is principally associated with connective tissues surrounding neural elements and the muscle spindle capsule, and AMPda-C is predominantly associated with circulatory elements, such as arterial and venous walls, capillary endothelium, and red blood cells. These specific localizations, combined with documented differences in kinetic properties, suggest multiple functional roles for the AMPda isozymes or temporal segregation of similar AMPda functions. Linkage of the AMPda substrate with adenosine production pathways at the AMP level and the localization of isozyme-C in vascular tissue suggest a regulatory role in the microcirculation.  相似文献   

19.
We investigated the structure of the hemal node in six healthy hair goats using histological and enzyme histochemical methods. After processing, tissue sections were stained with Crossman's trichrome, Gordon-Sweet's silver and Pappenheim's panoptic stains. Alpha-naphthyl acetate esterase (ANAE) and acid phosphatase (ACP-ase) were demonstrated in frozen sections. Hemal nodes were encapsulated by connective tissue and few smooth muscle cells. Several trabeculae originated from the capsule and extended into the hemal node. A subcapsular sinus was present beneath the capsule and was continuous with the deeper sinuses. Subcapsular and deep sinuses were filled with erythrocytes. The parenchyma consisted of lymphoid follicles, diffuse interfollicular lymphocytes and irregular wide lymphoid cords. Cortical and medullary regions were not distinct. ANAE (+) and ACP-ase (+) cells were located mainly in the germinal centers of the lymphoid follicles and also were scattered equally in the interfollicular region and lymphoid cords. Monocytes, macrophages and reticular cells displayed a diffuse positive reaction, whereas localized granular positivity was observed in lymphocytes. We demonstrated that the general structure of the hair goat hemal nodes is similar to that of other ruminant species.  相似文献   

20.
Summary Lymphoid organs are highly organized structures made up of different tissue compartments, each with its own specific cell populations. However, the cellular elements of the lingual tonsil, which forms a significant part of Waldeyer's pharyngeal ring, are not yet documented. This study, therefore, describes the fine structure and tissue organization of tonsilla lingualis in Macaca fascicularis. Ten selected crypto-lymphatic units originating from five perfusion-fixed animals were analysed ultrastructurally. Based on the fine-structural elements contained within, the lymphoid tissue of tonsillar units could be subdivided into follicular (germinal centre) and parafollicular areas. The latter contained predominantly small lymphocytes, lymphoblasts resembling T-blasts, plasma cells, macrophages, occasional neutrophils and many reticular cells resembling fibroblasts. A distinct feature of the parafollicular area was the presence of numerous high endothelial (HEV)or postcapillary venules (PCV). The follicular areas contained many small and large lymphoid cells, mitotic cells, plasmablasts, macrophages and specialised reticular cells resembling follicular dendritic cells (FDC) with distinct desmosomal junctions. These observations show that the crypto-lymphatic units of the lingual tonsil are, in fact, organised into distinct B- and T-cell compartments with their own specific lymphoid and accessory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号