首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
In Madin-Darby canine kidney D1 cells extracellular nucleotides activate P2Y receptors that couple to several signal transduction pathways, including stimulation of multiple phospholipases and adenylyl cyclase. For one class of P2Y receptors, P2Y2 receptors, this stimulation of adenylyl cyclase and increase in cAMP occurs via the conversion of phospholipase A2 (PLA2)-generated arachidonic acid (AA) to prostaglandins (e.g. PGE2). These prostaglandins then stimulate adenylyl cyclase activity, presumably via activation of prostanoid receptors. In the current study we show that agents that increase cellular cAMP levels (including PGE2, forskolin, and the beta-adrenergic agonist isoproterenol) can inhibit P2Y receptor-promoted AA release. The protein kinase A (PKA) inhibitor H89 blocks this effect, suggesting that this feedback inhibition occurs via activation of PKA. Studies with PGE2 indicate that inhibition of AA release is attributable to inhibition of mitogen-activated protein kinase activity and in turn of P2Y receptor stimulated PLA2 activity. Although cAMP/PKA-mediated inhibition occurs for P2Y receptor-promoted AA release, we did not find such inhibition for epinephrine (alpha1-adrenergic) or bradykinin-mediated AA release. Taken together, these results indicate that negative feedback regulation via cAMP/PKA-mediated inhibition of mitogen-activated protein kinase occurs for some, but not all, classes of receptors that promote PLA2 activation and AA release. We speculate that receptor-selective feedback inhibition occurs because PLA2 activation by different receptors in Madin-Darby canine kidney D1 cells involves the utilization of different signaling components that are differentially sensitive to increases in cAMP or, alternatively, because of compartmentation of signaling components.  相似文献   

2.
3.
Adenylyl cyclase, the enzyme that converts ATP to cAMP, is regulated by its stimulatory and inhibitory GTP-binding proteins, G(s) and G(i), respectively. Recently, we demonstrated that besides catalyzing the synthesis of cAMP, type V adenylyl cyclase (ACV) can act as a GTPase-activating protein for Galpha(s) and also enhance the ability of activated receptors to stimulate GTP-GDP exchange on heterotrimeric G(s) (Scholich, K., Mullenix, J. B., Wittpoth, C., Poppleton, H. M., Pierre, S. C., Lindorfer, M. A., Garrison, J. C., and Patel, T. B. (1999) Science 283, 1328-1331). This latter action of ACV would facilitate the rapid onset of signaling via G(s). Because the C1 region of ACV interacts with the inhibitory GTP-binding protein Galpha(i), we investigated whether the receptor-mediated activation of heterotrimeric G(i) was also regulated by ACV and its subdomains. Our data show that ACV and its C1 domain increased the ability of a muscarinic receptor mimetic peptide (MIII-4) to enhance activation of heterotrimeric G(i) such that the amount of peptide required to stimulate G(i) in steady-state GTPase activity assays was 3-4 orders of magnitude less than without the C1 domain. Additionally, the MIII-4-mediated binding of guanosine 5'-(gamma-thio)triphosphate (GTPgammaS) to G(i) was also markedly increased in the presence of ACV or its C1 domain. In contrast, the C2 domain of ACV was not able to alter either the GTPase activity or the GTPgammaS binding to G(i) in the presence of MIII-4. Furthermore, in adenylyl cyclase assays employing S49 cyc(-) cell membranes, the C1 (but not the C2) domain of ACV enhanced the ability of peptide MIII-4 as well as endogenous somatostatin receptors to activate endogenous G(i) and to inhibit adenylyl cyclase activity. These data demonstrate that adenylyl cyclase and its C1 domain facilitate receptor-mediated activation of G(i).  相似文献   

4.
ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999   总被引:15,自引:0,他引:15  
P2Y receptors are a class of G protein-coupled receptors activated primarily by ATP, UTP, and UDP. Five mammalian P2Y receptors have been cloned so far including P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11. P2Y1, P2Y2, and P2Y6 couple to the activation of phospholipase C, whereas P2Y4 and P2Y11 couple to the activation of both phospholipase C and the adenylyl cyclase pathways. Additional ADP receptors linked to Galpha(i) have been described but have not yet been cloned. SP1999 is an orphan G protein-coupled receptor, which is highly expressed in brain, spinal cord, and blood platelets. In the present study, we demonstrate that SP1999 is a Galpha(i)-coupled receptor that is potently activated by ADP. In an effort to identify ligands for SP1999, fractionated rat spinal cord extracts were assayed for Ca(2+) mobilization activity against Chinese hamster ovary cells transiently transfected with SP1999 and chimeric Galpha subunits (Galpha(q/i)). A substance that selectively activated SP1999-transfected cells was identified and purified through a series of chromatographic steps. Mass spectral analysis of the purified material definitively identified it as ADP. ADP was subsequently shown to inhibit forskolin-stimulated adenylyl cyclase activity through selective activation of SP1999 with an EC(50) of 60 nM. Other nucleotides were able to activate SP1999 with a rank order of potency 2-MeS-ATP = 2-MeS-ADP > ADP = adenosine 5'-O-2-(thio)diphosphate > 2-Cl-ATP > adenosine 5'-O-(thiotriphosphate). Thus, SP1999 is a novel, Galpha(i)-linked receptor for ADP.  相似文献   

5.
In the preceding paper (Pasolli, H. A., Klemke, M., Kehlenbach, R. H. , Wang, Y., and Huttner, W. B. (2000) J. Biol. Chem. 275, 33622-33632), we report on the tissue distribution and subcellular localization of XLalphas (extra large alphas), a neuroendocrine-specific, plasma membrane-associated protein consisting of a novel 37-kDa XL domain followed by a 41-kDa alphas domain encoded by exons 2-13 of the Galphas gene. Here, we have studied the signal transduction properties of XLalphas. Like Galphas, XLalphas undergoes a conformational change upon binding of GTPgammaS (guanosine 5'-O-(thio)triphosphate), as revealed by its partial resistance to tryptic digestion, which generated the same fragments as in the case of Galphas. Two approaches were used to analyze XLalphas-betagamma interactions: (i) ADP-ribosylation by cholera toxin to detect even weak or transient XLalphas-betagamma interactions and (ii) sucrose density gradient centrifugation to reveal stable heterotrimer formation. The addition of betagamma subunits resulted in an increased ADP-ribosylation of XLalphas as well as an increased sedimentation rate of XLalphas in sucrose density gradients, indicating that XLalphas interacts with the betagamma dimer. Surprisingly, however, XLalphas, in contrast to Galphas, was not activated by the beta2-adrenergic receptor upon reconstitution of S49cyc(-) membranes. Similarly, using photoaffinity labeling of pituitary membranes with azidoanilide-GTP, XLalphas was not activated upon stimulation of pituitary adenylyl cyclase-activating polypeptide (PACAP) receptors or other Galphas-coupled receptors known to be present in these membranes, whereas Galphas was. Despite the apparent inability of XLalphas to undergo receptor-mediated activation, XLalphas-GTPgammaS markedly stimulated adenylyl cyclase in S49cyc(-) membranes. Moreover, transfection of PC12 cells with a GTPase-deficient mutant of XLalphas, XLalphas-Q548L, resulted in a massive increase in adenylyl cyclase activity. Our results suggest that in neuroendocrine cells, the two related G proteins, Galphas and XLalphas, exhibit distinct properties with regard to receptor-mediated activation but converge onto the same effector system, adenylyl cyclase.  相似文献   

6.
Platelet responses at sites of vascular injury are regulated by intracellular cAMP levels, which rise rapidly when prostacyclin (PGI(2)) is released from endothelial cells. Platelet agonists such as ADP and epinephrine suppress PGI(2)-stimulated cAMP formation by activating receptors coupled to G(i) family members, four of which are present in platelets. To address questions about the specificity of receptor:G protein coupling, the regulation of cAMP formation in vivo and the contribution of G(i)-mediated pathways that do not involve adenylyl cyclase, we studied platelets from mice that lacked the alpha subunits of one or more of the three most abundantly expressed G(i) family members and compared the results with platelets from mice that lacked the PGI(2) receptor, IP. As reported previously, loss of G(i2)alpha or G(z)alpha inhibited aggregation in response to ADP and epinephrine, respectively, producing defects that could not be reversed by adding an adenylyl cyclase inhibitor. Platelets that lacked both G(i2)alpha and G(z)alpha showed impaired responses to both agonists, but the impairment was no greater than in the individual knockouts. Loss of G(i3)alpha had no effect either alone or in combination with G(z)alpha. Loss of either G(z)alpha or G(i2)alpha impaired the ability of ADP and epinephrine to inhibit PGI(2)-stimulated adenylyl cyclase activity and caused a 40%-50% rise in basal cAMP levels, whereas loss of G(i3)alpha did not. Conversely, deletion of IP abolished responses to PGI(2) and caused cAMP levels to fall by 30%, effects that did not translate into enhanced responsiveness to agonists ex vivo. From these results we conclude that 1) cAMP levels in circulating platelets reflect ongoing signaling through G(i2), G(z), and IP, but not G(i3); 2) platelet epinephrine (alpha(2A)-adrenergic) and ADP (P2Y12) receptors display strong preferences among G(i) family members with little evidence of redundancy; and 3) these receptor preferences do not extend to G(i3). Finally, the failure of ADP and epinephrine to inhibit basal, as opposed to PGI(2)-stimulated, cAMP formation highlights the need during platelet activation for G(i) signaling pathways that involve effectors other than adenylyl cyclase.  相似文献   

7.
Prostaglandin E(2) (PGE(2)) has been implicated in the regulation of inflammatory and immunological events. Using RAW 264.7 macrophages, the present study investigates the influence of PGE(2) on the expression of cyclooxygenase-2 (COX-2). Incubation of cells with PGE(2) increased lipopolysaccharide (LPS)-induced COX-2 mRNA levels in a concentration-dependent manner. Upregulation of COX-2 expression by PGE(2) was completely abolished by the specific adenylyl cyclase inhibitor 2',5'-dideoxyadenosine and mimicked by butaprost, a selective agonist of the adenylyl cyclase-coupled PGE(2) receptor subtype 2 (EP(2)), or 11-deoxy PGE(1), an EP(2)/EP(4) receptor agonist. By contrast, the EP(3)/EP(1) receptor agonists 17-phenyl-omega-trinor PGE(2) and sulprostone left LPS-induced COX-2 expression virtually unaltered. Upregulation of LPS-induced COX-2 expression and subsequent PGE(2) synthesis was also observed in the presence of the cell-permeable cAMP analogue dibutyryl cAMP and the adenylyl cyclase activator cholera toxin. Together, our data demonstrate that PGE(2) potentiates COX-2 mRNA expression via an adenylyl cyclase/cAMP-dependent pathway. In conclusion, upregulation of COX-2 expression via an autocrine feed-forward loop may in part contribute to the well-known capacity of PGE(2)/cAMP to modulate inflammatory processes.  相似文献   

8.
P2Y(12) antagonists such as clopidogrel and AR-C69931MX inhibit aggregation by antagonizing the effects of ADP at P2Y(12) receptors on platelets. Agents such as PGE(1) also inhibit aggregation by stimulating adenylate cyclase to produce cAMP, which interferes with Ca(2+) mobilization within the cell. Since one facet of P2Y(12) receptors is that they mediate inhibition of adenylate cyclase by ADP, it might be expected that P2Y(12) antagonists would interact with PGE(1). We have explored the effects of PGE(1) and AR-C69931MX singly and in combination on ADP-induced intracellular Ca(2+) ([Ca(2+)](i)) responses and aggregation. PGE(1) alone caused parallel dose-dependent inhibition of [Ca(2+)](i) and aggregation responses. AR-C66931MX alone caused only partial inhibition of [Ca(2+)](i) despite a marked inhibitory effect on aggregation. Combinations of PGE(1) with AR-C66931MX were found to act in synergy to reduce both [Ca(2+)](i) and aggregation. This effect was confirmed in patients with acute coronary syndromes by studying the inhibitory effects of PGE(1) on [Ca(2+)](i) and aggregation before and after clopidogrel. In summary, we have shown that P2Y(12) antagonists interact with natural agents such as PGE(1) to provide more effective inhibition of [Ca(2+)](i) and platelet aggregation. This would contribute to the effectiveness of P2Y(12) antagonists as antithrombotic agents in man.  相似文献   

9.
Rat brain capillary endothelial (B10) cells express an unidentified nucleotide receptor linked to adenylyl cyclase inhibition. We show that this receptor in B10 cells is identical in sequence to the P2Y(12) ADP receptor ("P2Y(T)") of platelets. When expressed heterologously, 2-methylthio-ADP (2-MeSADP; EC(50), 2 nm), ADP, and adenosine 5'-O-(2-thio)diphosphate were agonists of cAMP decrease, and 2-propylthio-D-beta,gamma-difluoromethylene-ATP was a competitive antagonist (K(B), 28 nm), as in platelets. However, 2-methylthio-ATP (2-MeSATP) (EC(50), 0.4 nm), ATP (1.9 microm), and 2-chloro-ATP (190 nm), antagonists in the platelet, were also agonists. 2-MeSADP activated (EC(50), 0.1 nm) GIRK1/GIRK2 inward rectifier K(+) channels when co-expressed with P2Y(12) receptors in sympathetic neurons. Surprisingly, P2Y(1) receptors expressed likewise gave that response; however, a full inactivation followed, absent with P2Y(12) receptors. A new P2Y(12)-mediated transduction was found, the closing of native N-type Ca(2+) channels; again both 2-MeSATP and 2-MeSADP are agonists (EC(50), 0.04 and 0.1 nm, respectively). That action, like their cAMP response, was pertussis toxin-sensitive. The Ca(2+) channel inhibition and K(+) channel activation are mediated by beta gamma subunit release from a heterotrimeric G-protein. G alpha subunit types in B10 cells were also identified. The presence in the brain capillary endothelial cell of the P2Y(12) receptor is a significant extension of its functional range.  相似文献   

10.
In this review we summarize the present status of our knowledge on the enzymes involved in the extracellular metabolism of nucleotides and the receptors involved in nucleotide signalling. We focus on the mechanism of the ATP and ADP signalling pathways in glioma C6, representative of the type of nonexcitable cells. In these cells, ATP acts on the P2Y(2) receptor coupled to phospholipase C, whereas ADP on two distinct P2Y receptors: P2Y(1) and P2Y(12). The former is linked to phospholipase C and the latter is negatively coupled to adenylyl cyclase. The possible cross-talk between the ATP-, ADP- and adenosine-induced pathways, leading to simultaneous regulation of inositol 1,4,5-trisphosphate and cAMP mediated signalling, is discussed.  相似文献   

11.
Prostaglandin E (PGE) receptor is coupled to a pertussis toxin-insensitive GTP-binding protein in bovine adrenal medulla, but PGE receptor partially purified from bovine adrenal medulla was functionally reconstituted with Gi into phospholipid vesicles (Negishi, M., Ito, S., Yokohama, H., Hayashi, H., Katada, T., Ui, M., and Hayaishi, O. (1988) J. Biol. Chem. 263, 6893-6900). We demonstrate here that PGE2 inhibited forskolin-induced accumulation of cAMP in cultured bovine chromaffin cells. In plasma membranes prepared from bovine adrenal medulla, PGE2 inhibited forskolin-stimulated adenylate cyclase activity in a GTP-dependent manner. This inhibitory action of PGE2 was abolished by treatment of the membrane with pertussis toxin. Reconstitution of the membranes ADP-ribosylated by pertussis toxin with Gi purified from bovine brain restored the potency of PGE2 to inhibit the adenylate cyclase activity. Inhibition of forskolin-induced cAMP accumulation by PGE2 was also abolished by exposure to the toxin in the cells, indicating that PGE receptors are coupled to Gi. In contrast, PGE2 stimulated the formation of inositol phosphates in chromaffin cells, but this effect was not affected by treatment of the cells with pertussis toxin, suggesting that the PGE receptors are coupled to phosphoinositide metabolism via a pertussis toxin-insensitive G-protein. Both the inhibitory action of cAMP accumulation and stimulation of phosphoinositide metabolism were specific for PGE1 and PGE2, and the Scatchard plot analysis of PGE2 binding to the membrane showed a single high-affinity binding site (Kd = 2 nM). In bovine adrenal chromaffin cells PGE2 enhanced catecholamine release in the presence of ouabain by stimulation of phosphoinositide metabolism (Yokohama, H., Tanaka, T., Ito, S., Negishi, M., Hayashi, H., and Hayaishi, O. (1988) J. Biol. Chem. 263, 1119-1122). We further examined the modulation of catecholamine release by PGE2 through its inhibitory coupling to the adenylate cyclase system. Prior exposure of chromaffin cells to forskolin or dibutyryl-cAMP reduced nicotine-stimulated catecholamine release, and PGE2 attenuated forskolin-induced inhibition of catecholamine release stimulated by nicotine, but not dibutyryl-cAMP-induced inhibition. In the absence of evidence that PGE receptor subtypes exist, these results suggest that the PGE receptor is coupled to two signal transduction systems leading to inhibition of cAMP accumulation via Gi and to production of inositol phosphates via a pertussis toxin-insensitive G-protein, both of which may modulate catecholamine release from bovine chromaffin cells.  相似文献   

12.
The effects of 2'- and 3'-O-(4-benzoylbenzoyl)-ATP (BzATP) on intracellular Ca2+ mobilization and cyclic AMP accumulation were investigated using rat brain capillary endothelial cells which express an endogenous P2Y1 receptor, human platelets which are known to express a P2Y1 receptor, and Jurkat cells stably transfected with the human P2Y1 receptor. In endothelial cells, BzATP was a competitive inhibitor of 2-methylthio ADP (2-MeSADP) and ADP induced [Ca2+]i responses (Ki = 4.7 microM) and reversed the inhibition by ADP of adenylyl cyclase (Ki = 13 microM). In human platelets, BzATP inhibited ADP-induced aggregation (Ki = 5 microM), mobilization of intracellular Ca2+ stores (Ki = 6.3 microM), and inhibition of adenylyl cyclase. In P2Y1-Jurkat cells, BzATP inhibited ADP and 2-MeSADP-induced [Ca2+]i responses (Ki = 2.5 microM). It was concluded that BzATP is an antagonist of rat and human P2Y1 receptors and of platelet aggregation. In contrast to other P2Y1 receptor antagonists (A2P5P and A3P5P) which inhibit only ADP-induced Ca2+ mobilization, BzATP inhibits both the Ca2+- and the cAMP-dependent intracellular signaling pathways of ADP. These results provide further evidence that P2Y1 receptors contribute to platelet ADP responses.  相似文献   

13.
GDP and GTP regulation of receptor-mediated stimulation of adenylyl cyclases in membranes of S49 murine lymphoma cells (S49), NS-20 murine neuroblastoma cells (NS-20), rabbit corpora lutea (CL), and turkey erythrocytes were studied under assay conditions which minimized conversion of added GTP to GDP and of added GDP to GTP. Hormonal stimulation in all systems required guanine nucleotide addition. In the presence of GTP, adenylyl cyclase activity in S49, NS-20, and CL was stimulated respectively by isoproterenol and prostaglandin E1 (PGE1), by PGE1 and the adenosine analog, phenylisopropyladenosine, and by PGE1 and isoproterenol, with the first of the listed stimulants eliciting higher activities than the second. Activity in turkey erythrocyte membranes was stimulated by isoproterenol. GDP was partially effective in promoting hormonal stimulation, being able to sustain stimulation by isoproterenol and PGE1 in S49 cell membranes and by PGE1 in CL membranes. In NS-20 membranes, both GDP and guanosine-5'-O-(2-thiodiphosphate) (GDP beta S) were inhibitory on basal activity, yet promoted limited but significant stimulation by PGE1. In turkey erythrocytes, stimulation by isoproterenol could not be elicited with GDP or GDP beta S. Thus, although less effective than GTP in promoting hormonal stimulation of several adenylyl cyclase systems, GDP was clearly not inactive. Concentration effect curves for active hormone in the presence of GDP had higher apparent Ka values than in the presence of GTP. In spite of differences between the effects of GTP and GDP on hormonal stimulation of adenylyl cyclase activities, GTP and GDP affected equally well isoproterenol binding, regardless of whether or not its receptor could be shown to stimulate adenylyl cyclase in the presence of GDP. Determination of transphosphorylation of GDP to GTP showed that at saturating concentrations, the proportion of GDP converted to GTP is negligible and unaffected by hormonal stimulation. Concentrations giving 50% inhibition were determined for GTP- and GDP-mediated inhibition of guanyl-5'-yl imidodiphosphate stimulation in the absence and presence of stimulatory hormones. In all four systems studied, GTP and GDP interacted with about equal potency and hormonal stimulation was not accompanied by a selective decrease in affinity for GDP. One way to explain all of the results obtained is to view hormonally sensitive adenylyl cyclase systems as two-state enzymes whose activities are regulated by GTP and GDP through an allosteric site related to the catalytic moiety, and receptors as entities that are inactive and hence unable to couple unless occupied by hormones and activated by any guanine nucleotide through a distinct receptor-related process.  相似文献   

14.
Mutant clones resistant to ACTH-induced desensitization of adenylyl cyclase (Y1DR) were previously isolated from the Y1 mouse adrenocortical tumor cell line. In this study, both parental Y1 cells (Y1DS) and a Y1DR mutant were transfected with a gene encoding the mouse beta 2-adrenergic receptor, and transfectants isolated from both Y1DS and Y1DR cells were shown to express beta 2-adrenergic receptors. These transfectants responded to the beta-adrenergic agonist isoproterenol with increases in adenylyl cyclase activity and steroidogenesis and changes in cell shape. The transfectants were analyzed to determine whether the Y1DR mutation was specific for ACTH-induced desensitization of adenylyl cyclase or also affected desensitization of adenylyl cyclase via the beta 2-adrenergic receptor. Treatment of intact Y1DS transfectants with isoproterenol caused a rapid desensitization of the adenylyl cyclase system to further stimulation by the beta-adrenergic agonist. Treatment of intact cells with isoproterenol did not affect ACTH-stimulated adenylyl cyclase activity, indicating that desensitization was agonist specific or homologous. Y1DR transfectants were resistant to the desensitizing effects of isoproterenol in intact cells as well as in cell homogenates. These results indicate that the mutation in Y1DR transfectants affects a component that is common to the pathways of isoproterenol-induced desensitization and ACTH-induced desensitization of adenylyl cyclase. As determined using the hydrophilic beta-receptor antagonist CGP-12177, isoproterenol caused a rapid sequestration of cell surface receptors in both Y1DS and Y1DR transfectants. From these results we infer that the DR phenotype does not arise from mutations affecting receptor sequestration and that receptor number does not limit the response to isoproterenol in these transfectants.  相似文献   

15.
NG108-15 neuroblastoma x glioma hybrid cells and S49 lymphoma cells exhibit an enhancement in adenylyl cyclase activity after chronic treatment with receptor agonists that acutely inhibit the enzyme. Using agonists that activate five distinct inhibitory receptors in NG108-15 cells, we have found that there is a correlation between the extent of acute inhibition of prostaglandin E1 (PGE1)-stimulated cAMP accumulation and efficacy for induction of enhanced PGE1 stimulation of cAMP accumulation after chronic treatment and withdrawal. Chronic treatment with dideoxyadenosine, which acutely inhibits adenylyl cyclase activity by a mechanism independent or cell surface receptors or pertussis toxin-sensitive G proteins, did not induce enhanced PGE1 stimulation of cAMP accumulation in NG108-15 cells or forskolin stimulation of cAMP accumulation in S49 cells. While control basal cAMP concentrations were acutely decreased by carbachol in NG108-15 cells and by somatostatin in S49 cells, when the cAMP concentrations were maintained above the control basal values with a phosphodiesterase inhibitor, chronic treatment with these inhibitory drugs nonetheless resulted in enhanced cAMP responses in both NG108-15 and S49 cells. These results provide evidence that the initial decrement in cAMP concentrations caused by inhibitory drug is not the requisite signal for inducing the subsequent sensitization of adenylyl cyclase in NG108-15 and S49 cells but that activation of a pertussis toxin-sensitive G protein is involved in the development of this important adaptation.  相似文献   

16.
Platelet agonists initiate aggregation and secretion by activating receptors coupled to the G-protein G(q), thereby raising cytosolic Ca(2+), [Ca(2+)](i). The rise in [Ca(2+)](i) is facilitated via inhibition of cAMP formation by the inhibitory G-protein of adenylyl cyclase, G(i). Since insulin attenuates platelet activation, we investigated whether insulin interferes with cAMP regulation. Here we report that insulin (0.5-200 nmol/liter) interferes with agonist-induced increases in [Ca(2+)](i) (ADP, thrombin), cAMP suppression (thrombin), and aggregation (ADP). The effects of insulin are as follows: (i) independent of the P2Y(12) receptor, which mediates ADP-induced cAMP lowering; (ii) not observed during G(s)-mediated cAMP formation; (iii) unaffected by treatments that affect phosphodiesterases (3-isobutyl-1-methylxanthine); and (iv) not changed by interfering with NO-mediated regulation of cAMP degradation (N(G)-monomethyl-l-arginine). Hence, insulin might interfere with G(i). Indeed, insulin induces the following: (i) tyrosine phosphorylation of the insulin receptor, the insulin receptor substrate-1 (IRS-1) and G(i)alpha(2); (ii) co-precipitation of IRS-1 with G(i)alpha(2) but not with other G alpha subunits. Despite persistent receptor activation, the association of IRS-1 with G(i)alpha(2) is transient, being optimal at 5 min and 1 nmol/liter insulin, which is sufficient to suppress Ca(2+) signaling by ADP, and at 10 min and 100 nmol/liter insulin, which is required to suppress Ca(2+) signaling by thrombin. Epinephrine, a known platelet sensitizer and antagonist of insulin, abolishes the effect of insulin on [Ca(2+)](i), tyrosine phosphorylation of G(i)alpha(2), and aggregation by interfering with the phosphorylation of the insulin receptor beta subunit. We conclude that insulin attenuates platelet functions by interfering with cAMP suppression through IRS-1 and G(i).  相似文献   

17.
Micromolar concentrations of extracellular beta-NAD+ (NAD(e)+) activate human granulocytes (superoxide and NO generation and chemotaxis) by triggering: (i) overproduction of cAMP, (ii) activation of protein kinase A, (iii) stimulation of ADP-ribosyl cyclase and overproduction of cyclic ADP-ribose (cADPR), a universal Ca2+ mobilizer, and (iv) influx of extracellular Ca2+. Here we demonstrate that exposure of granulocytes to millimolar rather than to micromolar NAD(e)+ generates both inositol 1,4,5-trisphosphate (IP3) and cAMP, with a two-step elevation of intracellular calcium levels ([Ca2+]i): a rapid, IP3-mediated Ca2+ release, followed by a sustained influx of extracellular Ca2+ mediated by cADPR. Suramin, an inhibitor of P2Y receptors, abrogated NAD(e)+-induced intracellular increases of IP3, cAMP, cADPR, and [Ca2+]i, suggesting a role for a P2Y receptor coupled to both phospholipase C and adenylyl cyclase. The P2Y(11) receptor is the only known member of the P2Y receptor subfamily coupled to both phospholipase C and adenylyl cyclase. Therefore, we performed experiments on hP2Y(11)-transfected 1321N1 astrocytoma cells: micromolar NAD(e)+ promoted a two-step elevation of the [Ca2+]i due to the enhanced intracellular production of IP3, cAMP, and cADPR in 1321N1-hP2Y(11) but not in untransfected 1321N1 cells. In human granulocytes NF157, a selective and potent inhibitor of P2Y(11), and the down-regulation of P2Y(11) expression by short interference RNA prevented NAD(e)+-induced intracellular increases of [Ca2+]i and chemotaxis. These results demonstrate that beta-NAD(e)+ is an agonist of the P2Y(11) purinoceptor and that P2Y(11) is the endogenous receptor in granulocytes mediating the sustained [Ca2+]i increase responsible for their functional activation.  相似文献   

18.
We studied the modulation by protein kinase C (PKC) of the cyclic AMP (cAMP) accumulation induced by prostaglandin (PG) E2 in rat neonatal microglial cultures. Short pretreatment of microglia with phorbol 12-myristate 13-acetate (PMA) or 4beta-phorbol 12,13-didecanoate, which activate PKC, but not with the inactive 4alpha-phorbol 12,13-didecanoate, substantially reduced cAMP accumulation induced by 1 microM PGE2. The action of PMA was dose and time dependent, and the maximal inhibition (approximately 85%) was obtained after 10-min preincubation with 100 nM PMA. The inhibitory effect of PMA was mimicked by diacylglycerol and was prevented by the PKC inhibitor calphostin C. As PMA did not affect isoproterenol- or forskolin-stimulated cAMP accumulation, we investigated whether activation of PKC decreased cAMP production by acting directly at PGE2 EP receptors. Neither sulprostone (10(-9)-10(-5) M), a potent agonist at EP3 receptors (coupled to adenylyl cyclase inhibition), nor 17-phenyl-PGE2 (10(-6)-10(-5) M), an agonist of EP1 receptors, modified cAMP accumulation induced by forskolin. On the contrary, 11-deoxy-16,16-dimethyl PGE2, which does not discriminate between EP2 and EP4 receptors, both coupled to the activation of adenylyl cyclase, and butaprost, a selective EP2 agonist, induced a dose-dependent elevation of cAMP that was largely reduced by PMA pretreatment, as in the case of PGE2. These results indicated EP2 receptors as a possible target of PKC and suggest that PKC-activating agents present in the pathological brain may prevent the cAMP-mediated microglia-deactivating function of PGE2.  相似文献   

19.
Screening the Mycobacterium tuberculosis H37Rv genomic library for complementation of catabolic defect for cAMP-dependent expression of maltose operon produced the adenylyl cyclase gene (Mtb cya, (1997)) annotated later as Rv1625c (Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., III, et al. (1998) Nature 393, 537-544). The deduced amino acid (aa) sequence (443 aa) encoded by Mtb cya contains a single hydrophobic domain of six transmembrane helices (152 aa) in the amino-terminal half of the protein. Flanking this domain are an arginine-rich (17%) amino-terminal cytoplasmic tail (46 aa) and a carboxyl-terminal cytoplasmic domain (245 aa) with extensive homology to the catalytic core of eukaryotic adenylyl cyclases. Site-directed mutagenesis of Arg(43) and Arg(44) to alanine/glycine showed a loss of adenylyl cyclase activity, whereas mutagenesis to lysine restored the activity. Hence it is proposed that the formation of the catalytic site in Mtb adenylyl cyclase requires an interaction between Arg(43) and Arg(44) residues in the distal cytoplasmic tail and the carboxyl-terminal cytoplasmic domain. Mtb adenylyl cyclase activity at the physiological concentration of ATP (1 mm) was 475 nmol of cAMP/min/mg of membrane protein in the presence of Mn(2+) but only 10 nmol of cAMP/min/mg of membrane protein in the presence of Mg(2+). The physiological significance of the activation of Mtb adenylyl cyclase by Mn(2+) is discussed in view of the presence of manganese transporter protein in mycobacteria and macrophages wherein mycobacteria reside.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号