首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plasma membrane disruptions occur in mechanically active tissues such as the epidermis and can lead to cell death if the damage remains unrepaired. Repair occurs through fusion of vesicle patches to the damaged membrane region. The enzyme phospholipase D (PLD) is involved in membrane traffickiing; therefore, the role of PLD in membrane repair was investigated. Generation of membrane disruptions by lifting epidermal keratinocytes from the substratum induced PLD activation, whereas removal of cells from the substratum via trypsinization had no effect. Pretreatment with 1,25-dihydroxyvitamin D3, previously shown to increase PLD1 expression and activity, had no effect on, and a PLD2-selective (but not a PLD1-selective) inhibitor decreased, cell lifting-induced PLD activation, suggesting PLD2 as the isoform activated. PLD2 interacts functionally with the glycerol channel aquaporin-3 (AQP3) to produce phosphatidylglycerol (PG); however, wounding resulted in decreased PG production, suggesting a potential PG deficiency in wounded cells. Cell lifting-induced PLD activation was transient, consistent with a possible role in membrane repair, and PLD inhibitors inhibited membrane resealing upon laser injury. In an in vivo full-thickness mouse skin wound model, PG accelerated wound healing. These results suggest that PLD and the PLD2/AQP3 signaling module may be involved in membrane repair and wound healing.  相似文献   

2.
Ca(2+) is an essential factor inducing keratinocyte differentiation due to the natural Ca(2+) gradient in the skin. However, the membrane mechanisms that mediate calcium entry and trigger keratinocyte differentiation had not previously been elucidated. In this study we demonstrate that Ca(2+)-induced differentiation up-regulates both mRNA and protein expression of a transient receptor potential highly Ca(2+)-selective channel, TRPV6. The latter mediates Ca(2+) uptake and accounts for the basal [Ca(2+)](i) in human keratinocytes. Our results show that TRPV6 is a prerequisite for keratinocyte entry into differentiation, because the silencing of TRPV6 in human primary keratinocytes led to the development of impaired differentiated phenotype triggered by Ca(2+). The expression of such differentiation markers as involucrin, transglutaminase-1, and cytokeratin-10 was significantly inhibited by small interfering RNA-TRPV6 as compared with differentiated control cells. TRPV6 silencing affected cell morphology and the development of intercellular contacts, as well as the ability of cells to stratify. 1,25-Dihydroxyvitamin D3, a cofactor of differentiation, dose-dependently increased TRPV6 mRNA and protein expression in human keratinocytes. This TRPV6 up-regulation led to a significant increase in Ca(2+) uptake in both undifferentiated and differentiated keratinocytes. We conclude that TRPV6 mediates, at least in part, the pro-differentiating effects of 1,25-dihydroxyvitamin D3 by increasing Ca(2+) entry, thereby promoting differentiation. Taken together, these data suggest that the TRPV6 channel is a key element in Ca(2+)/1,25-dihydroxyvitamin D3-induced differentiation of human keratinocytes.  相似文献   

3.
The steroid hormone 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] rapidly stimulates the uptake of phosphate in isolated chick intestinal cells, while the steroid 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] inhibits the rapid stimulation by 1,25(OH)2D3. Earlier work in this laboratory has indicated that a cellular binding protein for 24,25(OH)2D3 is the enzyme catalase. Since binding resulted in decreased catalase activity and increased H2O2 production, studies were undertaken to determine if pro-oxidant conditions mimicked the inhibitory actions of 24,25(OH)2D3, and anti-oxidant conditions prevented the inhibitory actions of 24,25(OH)2D3. An antibody against the 24,25(OH)2D3 binding protein was found to neutralize the inhibitory effect of the steroid on 1,25(OH)2D3-mediated 32P uptake. Incubation of cells in the presence of 50 nM catalase was also found to alleviate inhibition. In another series of experiments, isolated intestinal epithelial cells were incubated as controls or with 1,25(OH)2D3, each in the presence of the catalase inhibitor 3-amino-1,2,4-triazole, or with 1,25(OH)2D3 alone. Cells exposed to hormone alone again showed an increased accumulation of 32P, while cells treated with catalase inhibitor and hormone had uptake levels that were indistinguishable from controls. We tested whether inactivation of protein kinase C (PKC), the signaling pathway for 32P uptake, occurred. Incubation of cells with phorbol-13-myristate (PMA) increased 32P uptake, while cells pretreated with 50 microM H2O2 prior to PMA did not exhibit increased uptake. Likewise, PMA significantly increased PKC activity while cells exposed to H2O2 prior to PMA did not. It is concluded that catalase has a central role in mediating rapid responses to steroid hormones.  相似文献   

4.
5.
Summary The repeated batch and continuous operations for transphosphatidylation reaction were carried out for phosphatidylglycerol (PG) synthesis from phosphatidylcholine (PC) with the help of immobilized cabbage phospholipase D (PLD) in the presence of glycerol. The biphasic reaction system was used which included the aqueous phase containing immobilized PLD along with high concentrations of glycerol (30%–50%) and buffer, whereas the main part of substrate (PC) and products (mainly PG) formed were in the organic phase (diethyl ether).Octyl-Sepharose CL-4B having a hydrophobic octyl group was chosen for the PLD immobilization. Both immobilization yield and activity yield of immobilized enzyme were 100%. The effects of solvents, temperature and glycerol concentrations on the immobilized PLD were examined. Repeated batch conversion of PC (15 g/l) to PG was examined with the immobilized PLD in 30% glycerol. In all five batch cycles examined, 100% selectivity was obtained and there was no significant decrease in the fractional conversion of PC to PG (98%–99%) in the first three batch cycles. In the cases of a packed-bed reactor (PBR) and a continuous stirred-tank reactor (CSTR) used for continuous synthesis of PG with the immobilized PLD, the operational stabilities of the immobilized enzyme were almost the same (half life=14 h at 30°C) when purified PC was used, while in the case of partially purified PC in CSTR the half life increased more than five times.Abbreviations used PC phosphatidylcholine - PG phosphatidylglycerol - PA phosphatidic acid - PLD phospholipase D - PBR packed bed reactor - CSTR continuous stirred tank reactor Studies on enzymatic conversion of phospholipids (III)  相似文献   

6.
The purpose of these experiments was to determine whether there are changes in intestinal Ca and P uptake with age and whether the regulation of Ca and P uptake changes with age. Experiments were performed in male Fischer 344 rats aged 2-3 months (young), 12-14 months (adult) and 22-24 months (old). Ca and P uptake were measured simultaneously by incubating everted intestinal sacs in a buffered salt solution containing radiolabeled 0.25 mM Ca and 1.0 mM P for 15 min. Ca uptake declined by over 50% with age in the duodenum, and P uptake showed a similar decline in both the duodenum and jejunum. The biggest decrease was seen between the young and adult age groups. These decreases in uptake were paralleled by decreases in serum 1,25-dihydroxyvitamin D with age. Administration of 1,25-dihydroxyvitamin D-3 increased Ca uptake by 50-65% in the duodenum and increased P uptake by 85-120% in the duodenum and jejunum of both young and adult rats. Although 1,25-dihydroxyvitamin D-3 increased uptake by about the same percentage in each age group, the maximal uptake was much greater in the young than in the adult. Feeding a low-Ca diet increased duodenal Ca uptake by 68% and increased serum 1,25-dihydroxyvitamin D over 2-fold in young rats. There was no significant increase in either parameter in adult rats fed a low-Ca diet. However, duodenal P uptake was stimulated by a low-Ca diet by 87% in young rats and by 51% in adult rats. These results demonstrate that there is an age-related decline in Ca and P uptake by the intestinal mucosa. In addition, there is decreased capacity of 1,25-dihydroxyvitamin D-3 and a low-Ca diet to stimulate intestinal uptake in the adult.  相似文献   

7.
The involvement of calcium-mediated signaling pathways in the mechanism of action of 1α,25-dihydroxyvitamin D(3) (1,25D) is currently demonstrated. In this study we found that 1,25D induces nongenomic effects mediated by membrane vitamin D receptor (VDRm) by modulating intermediate filament (IF) phosphorylation and calcium uptake through L-type voltage-dependent calcium channels (L-VDCC) in cerebral cortex of 10 day-old rats. Results showed that the mechanism of action of 1,25D involves intra- and extracellular calcium levels, as well as the modulation of chloride and potassium channels. The effects of L-VDCCs on membrane voltage occur over a broad potential range and could involve depolarizing or hyperpolarizing coupling modes, supporting a cross-talk among Ca(2+) uptake and potassium and chloride channels. Also, the Na(+)/K(+)-ATPase inactivation by ouabain mimicked the 1,25D action on (45)Ca(2+) uptake. The Na(+)/K(+)-ATPase inhibition observed herein might lead to intracellular Na(+) accumulation with subsequent L-VDCC opening and consequently increased (45)Ca(2+) (calcium, isotope of mass 45) uptake. Moreover, the 1,25D effect is dependent on the activation of the following protein kinases: cAMP-dependent protein kinase (PKA), Ca(2+)/calmodulin-dependent protein kinase (PKCaMII), phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase p38 (p38(MAPK)). The modulation of calcium entry into neural cells by the 1,25D we are highlighting, might take a role in the regulation of a plethora of intracellular processes. Considering that vitamin D deficiency can lead to brain illness, 1,25D may be a possible candidate to be used, at least as an adjuvant, in the pharmacological therapy of neuropathological conditions.  相似文献   

8.
Neonatal human foreskin keratinocytes produce 1,25-dihydroxyvitamin D3   总被引:3,自引:0,他引:3  
Primary cultures of neonatal human foreskin keratinocytes converted 25-hydroxyvitamin D in high yield to a metabolite with the chromatographic behavior of 1,25-dihydroxyvitamin D3. The identity of this metabolite as 1,25-dihydroxyvitamin D3 was confirmed both by its potency in displacing 1,25-dihydroxyvitamin D3 in the chick cytosol receptor assay and by mass spectral analysis. These results suggest that 1,25-dihydroxyvitamin D3 may be formed in the epidermis to regulate vitamin D production by the epidermis and to provide an alternative to 1,25-dihydroxyvitamin D3 production by the kidneys.  相似文献   

9.
In previous works we have found a mitochondrial alkaline phosphatase (AP) activity in LLC-PK1. The aim of this work has been to study the possible involvement of mitochondrial AP activity in the synthesis of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) from the substrate 25(OH)D3. Renal phenotype LLC-PK1 cells were incubated with 25(OH)D3 as substrate and treated with or without 1,25(OH)2D3, forskolin, 12-myristate-13-acetate (PMA) and 1,25(OH)2D3 in conjunction with PMA. Incubation of LLC-PK1 cells with forskolin (adenylate cyclase activator) not only stimulated the 1-hydroxylase and inhibited the 24-hydroxylase activities but also increased the mitochondrial AP activity. The addition of 1,25(OH)2D3, the main activator of 24-hydroxylase, produced a decrease of mitochondrial AP activity, a decrease of 1,25(OH)2D3 synthesis and an increase of the 24,25(OH)2D3 synthesis. Incubation with PMA, a potent activator of protein kinase C, did not produce any changes in mitochondrial AP activity, but an inhibition of 1,25(OH)2D3 and an activation of 24,25(OH)2D3 synthesis were found. Moreover, incubation of LLC-PK1 cells with PMA in conjunction with 1,25(OH)2D3 produced an additive effect in the decrease of 1,25(OH)2D3 and an increase of 24,25(OH)2D3 synthesis remaining mitochondrial AP activity as cells treated only with 1,25(OH)2D3. Our results suggest that mitochondrial AP activity could be involved as an intracellular signal in the regulation of 25(OH)D3 metabolism to the synthesis of 1,25(OH)2D3 and 24,25(OH)2D3 in renal phenotype LLC-PK1 cells through cAMP protein kinase system.  相似文献   

10.
We have recently shown the presence of receptors for 1,25-dihydroxyvitamin D3 and that 1,25-dihydroxyvitamin D3 stimulates Ca-ATPase in vascular smooth muscle cells presumably via receptor mediated mechanism. These data suggest that the sterol may directly be involved in the regulation of cellular calcium homeostasis. To further define action of vitamin D in smooth muscle cells, we studied effect of the sterol on cellular uptake of calcium. 1,25-dihydroxyvitamin D3 stimulated 45Ca2+ uptake by cultured cells, A7r5, derived from fetal rat aorta, when the cells were incubated with the sterol for 18 hr. The effect was dose-dependent at 10(-10) to 10(-9) M, and three orders of magnitude higher concentration of 25-hydroxyvitamin D3 or 24,25-dihydroxyvitamin D3 was needed to obtain similar effects. Furthermore, the effect of 1,25-dihydroxyvitamin D3 was abolished by cycloheximide (10(-5) M), a protein synthesis inhibitor. These data clearly suggest that 1,25-dihydroxyvitamin D3 may directly regulate cellular calcium homeostasis in vascular smooth muscle cells presumably via receptor mediated mechanism.  相似文献   

11.
20S-hydroxyvitamin D3 (20S-(OH)D3), an in vitro product of vitamin D3 metabolism by the cytochrome P450scc, was recently isolated, identified and shown to possess antiproliferative activity without inducing hypercalcemia. The enzymatic production of 20S-(OH)D3 is tedious, expensive, and cannot meet the requirements for extensive chemical and biological studies. Here we report for the first time the chemical synthesis of 20S-(OH)D3 which exhibited biological properties characteristic of the P450scc-generated compound. Specifically, it was hydroxylated to 20,23-dihydroxyvitamin D3 and 17,20-dihydroxyvitamin D3 by P450scc and was converted to 1α,20-dihydroxyvitamin D3 by CYP27B1. It inhibited proliferation of human epidermal keratinocytes with lower potency than 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) in normal epidermal human keratinocytes, but with equal potency in immortalized HaCaT keratinocytes. It also stimulated VDR gene expression with similar potency to 1,25(OH)2D3, and stimulated involucrin (a marker of differentiation) and CYP24 gene expression, showing a lower potency for the latter gene than 1,25(OH)2D3. Testing performed with hamster melanoma cells demonstrated a dose-dependent inhibition of cell proliferation and colony forming capabilities similar or more pronounced than those of 1,25(OH)2D3. Thus, we have developed a chemical method for the synthesis of 20S-(OH)D3, which will allow the preparation of a series of 20S-(OH)D3 analogs to study structure-activity relationships to further optimize this class of compound for therapeutic use.  相似文献   

12.
A new, highly sensitive radioreceptor assay, which does not require high-performance liquid chromatography, has been developed for the determination of 1,25-dihydroxyvitamin D3 (1,25-(OH2)D3) in serum. The assay involves rapid extraction of serum, Sep Pak silica purification, and addition of 1,25-dihydroxyvitamin D3 receptor, radiolabeled 1,25-dihydroxyvitamin D3, bovine serum albumin, and monoclonal antibody to specifically precipitate the receptor. This method is sensitive to 0.3-0.6 pg/tube, with B50 occurring at 5.8 pg/tube. This sensitivity combined with overall recovery of 1,25-dihydroxyvitamin D3 (81.5 +/- 5.2%, n = 50, mean +/- SD) allows the measurement of serum 1,25-(OH)2D3 in duplicates with only 0.5 ml of serum. Intra- and interassay coefficient of variation were 9.5 and 14.6%, respectively. Dilution analysis, analytical recovery of added 1,25-dihydroxyvitamin D3, and comparison with a standard method using HPLC have been used to validate the assay. Serum 1,25-dihydroxyvitamin D3 level was for normal adults, 36.6 +/- 10.5 pg/ml (n = 14); in primary hyperparathyroidism, 98.9 +/- 19.9 pg/ml (n = 16); in chronic renal failure, 17.8 +/- 5.1 pg/ml (n = 12). This method allows large numbers of samples to be processed at once. Further, the method is rapid and provides an accurate assay using small amounts of serum.  相似文献   

13.
R Ray  M F Holick 《Steroids》1988,51(5-6):623-630
The synthesis of 1 alpha,25-dihydroxyvitamin D3-3 beta-[N-(4-azido-2-nitro-[2,6-3H] phenyl)]glycinate, a radiolabeled photoaffinity analog of 1,25-dihydroxyvitamin D3, is described.  相似文献   

14.
Intracellular pH (pHi) was measured in HL60 and U937 cells before and after differentiation into monocyte-macrophage like cells. 12-O-Tetradecanoyl phorbol-13-acetate (PMA), butyrate, interferon, retinoic acid and 1,25-dihydroxyvitamin D3 all increased pHi. The increases elicited were rapid with PMA, much slower with retinoic acid and interferon and still slower with 1,25-dihydroxyvitamin D3. Increases in pHi are due to an activation of the Na+/H+ exchange system. High pHi values are unlikely to serve as an early intracellular signal for initiating monocytic differentiation.  相似文献   

15.
1alpha,25-Dihydroxyvitamin D(3)-3-bromoacetate (1, 25(OH)(2)D(3)-3-BE), an affinity labeling analog of 1alpha, 25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), displayed stronger antiproliferative activities than 1,25(OH)(2)D(3) at 10(-10)-10(-6) M dose levels in cultured human keratinocytes (CHK). Additionally, preincubation of the cells with 10(-6) M 1,25(OH)(2)D(3), followed by treatment with various doses of 1,25(OH)(2)D(3)-3-BE, resulted in a significantly stronger antiproliferative activity by the mixture than individual reagents at every dose level. To search for a mechanism of this observation, we determined that [(14)C]1, 25(OH)(2)D(3)-3-BE covalently labeled human recombinant 1alpha, 25-dihydroxyvitamin D(3) receptor (reVDR) swiftly (<1 min) with a 1:1 stoichiometry and induced conformational changes (in VDR) that are different from 1,25(OH)(2)D(3), by limited tryptic digestion. Furthermore, a protein band, corresponding to reVDR, was specifically labeled by [(14)C]1,25(OH)(2)D(3)-3-BE in CHK extract, indicating that VDR is the main target of [(14)C]1, 25(OH)(2)D(3)-3-BE. The above-mentioned observations suggest that a rapid covalent labeling of VDR in CHK might alter the interaction between the holo-VDR and 1,25(OH)(2)D(3)-controlled genes. Furthermore, we observed that 1,25(OH)(2)D(3)-3-BE significantly decreased the binding of VDR to human osteocalcin vitamin D responsive element (hOCVDRE), as well as the dissociation rate of VDR from hOCVDRE, compared with 1,25(OH)(2)D(3) in COS-1 cells, transiently transfected with a VDR construct. Additionally, 1, 25(OH)(2)D(3)-3-BE was found to be more potent in inducing 1alpha, 25-dihydroxyvitamin D(3)-24-hydroxylase (24-OHase) promoter activity and mRNA expression in keratinocytes. The accumulation of 24-OHase message was also prolonged by the analog. Collectively these results indicated that rapid covalent labeling of VDR in keratinocytes (by 1, 25(OH)(2)D(3)-3-BE) might result in the conversion of apo-VDR to a holo-form, with a conformation that is different from that of the 1, 25(OH)(2)D(3)-VDR complex. This resulted in an enhanced stability of the 1,25(OH)(2)D(3)-3-BE/VDR-VDRE complex and contributed to the amplified antiproliferative effect of 1,25(OH)(2)D(3)-3-BE in keratinocytes.  相似文献   

16.
The effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on the growth of normal human keratinocytes cultured in serum-free medium was investigated. 1,25(OH)2D3 inhibited the cell growth at 10(-7) M by 75.3% and at 10(-6) M almost completely. The growth inhibition was accompanied by changes related to proliferation: (1) remarkable inhibition of DNA synthesis, (2) the decrease in the number of high-affinity receptors for epidermal growth factor, with almost no change in total receptor number, (3) the rapid decrease in c-myc mRNA level. The inhibition of DNA synthesis and the decrease of c-myc mRNA expression occurred at 3 h after the addition of 1,25(OH)2D3. These results suggest that decrease of c-myc mRNA expression is one of the primary effects of 1,25(OH)2D3 in the growth inhibition of human keratinocytes.  相似文献   

17.
Interleukin (IL)-2 knockout (KO) mice, which spontaneously develop symptoms of inflammatory bowel disease similar to ulcerative colitis in humans, were made vitamin D deficient (D-) or vitamin D sufficient (D+) or were supplemented with 1,25-dihydroxyvitamin D(3) (1,25D3). 1,25-Dihydroxyvitamin D3 supplementation, but not vitamin D supplementation, reduced the early mortality of IL-2 KO mice. However, colitis severity was not different in D-, D+, or 1,25D3 IL-2 KO mice. Cells from D- IL-2 KO mice produced more interferon (IFN)-gamma than cells from all other mice. Con A-induced proliferation was upregulated in IL-2 KO mice and downregulated in wildtype (WT) mice fed 1,25D3. All other measured immune responses in cells from IL-2 KO mice were unchanged by vitamin D status. In vitro addition of 1,25-dihydroxyvitamin D3 significantly reduced the production of IL-10 and IFN-gamma in cells from D- and D+ WT mice. Conversely, IFN-gamma and IL-10 production in cells from IL-2 KO mice were refractory to in vitro 1,25-dihydroxyvitamin D3 treatments. In the absence of IL-2, vitamin D was ineffective for suppressing colitis and ineffective for the in vitro downregulation of IL-10 or IFN-gamma production. One target of 1,25-dihydroxyvitamin D3 in the immune system is the IL-2 gene.  相似文献   

18.
We previously reported that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] protects primary human keratinocytes against ultraviolet (UV)B-induced apoptosis. Here, we confirmed the anti-apoptotic effect of 1,25(OH)2D3 in keratinocytes, using cisplatin and doxorubicin as apoptotic triggers. We further showed that 1,25(OH)2D3 activates two survival pathways in keratinocytes: the MEK/extracellular signal regulated kinase (ERK) and the phosphatidylinositol 3-kinase (PI-3K)/Akt pathway. Activation of ERK and Akt by 1,25(OH)2D3 was transient, required a minimal dose of 10(-9) M and could be blocked by actinomycin D and cycloheximide. Moreover, inhibition of Akt or ERK activity with respectively a PI-3K inhibitor (LY294002) or MEK inhibitors (PD98059, UO126), partially or totally suppressed the anti-apoptotic capacity of 1,25(OH)2D3. Finally, 1,25(OH)2D3 changed the expression of different apoptosis regulators belonging to the Bcl-2 family. Indeed, 1,25(OH)2D3 treatment increased levels of the anti-apoptotic protein Bcl-2 and decreased levels of the pro-apoptotic proteins Bax and Bad in a time- and dose-dependent way. Induction of Bcl-2 by 1,25(OH)2D3 was further shown to be mediated by ERK and, to a lesser extent, by Akt. In conclusion, 1,25(OH)2D3 clearly protects keratinocytes against apoptosis (1) by activating the MEK/ERK and the PI-3K/Akt survival pathways and (2) by increasing the Bcl-2 to Bax and Bad ratio.  相似文献   

19.
20.
We investigated the capacity of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] to protect human keratinocytes against the hazardous effects of ultraviolet B (UVB)-irradiation, recognized as the most important etiological factor in the development of skin cancer. Cytoprotective effects of 1,25(OH)(2)D(3) on UVB-irradiated keratinocytes were seen morphologically and quantified using a colorimetric survival assay. Moreover, 1,25(OH)(2)D(3) suppressed UVB-induced apoptotic cell death. An ELISA, detecting DNA-fragmentation, demonstrated that pretreatment of keratinocytes with 1,25(OH)(2)D(3) 1 microM for 24 h reduced UVB-stimulated apoptosis by 55-70%. This suppression required pharmacological concentrations 1,25(OH)(2)D(3) and a preincubation period of several hours. In addition, 1,25(OH)(2)D(3) also inhibited mitochondrial cytochrome c release (90%), a hallmark event of UVB-induced apoptosis. Furthermore, we demonstrated that 1,25(OH)(2)D(3) reduced two important mediators of the UV-response, namely, c-Jun-NH(2)-terminal kinase (JNK) activation and interleukin-6 (IL-6) production. As shown by Western blotting, pretreatment of keratinocytes with 1,25(OH)(2)D(3) 1 microM diminished UVB-stimulated JNK activation with more than 30%. 1,25(OH)(2)D(3) treatment (1 microM) reduced UVB-induced IL-6 mRNA expression and secretion with 75-90%. Taken together, these findings suggest the existence of a photoprotective effect of active vitamin D(3) and create new perspectives for the pharmacological use of active vitamin D compounds in the prevention of UVB-induced skin damage and carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号