首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrospray ionization mass spectrometry, a leading method for the quantification of biomolecules, is useful for the analysis of posttranslational modifications of proteins. Here we describe a mass spectrometric approach for determining levels of acetylation at individual lysine residues within the amino-terminal tail of histone H4. Because of the high density of acetylatable lysine residues within this short span of amino acids, collision-induced dissociation tandem mass spectrometry was required. In addition, it was necessary to develop an algorithm to determine the fraction of acetylation at specific lysine residues from fragment ions containing more than one lysine residue. This is the first report of direct measurement of endogeneous levels of acetylation at individual lysine residues within the amino-terminal tail of yeast histone H4 and is the first use of tandem mass spectrometry for quantification of peptides containing multiple sites of modification.  相似文献   

2.
Histone deacetylases, transcriptional control, and cancer   总被引:1,自引:0,他引:1  
  相似文献   

3.
Kobayashi N  Ohtoyo M  Wada E  Kato Y  Mano N  Goto J 《Steroids》2005,70(4):285-294
A subset of lipophillic bile acids, including deoxycholic acid (DCA) and lithocholic acid (LCA), are thought to be biologically transformed into reactive intermediates forming covalently modified, "tissue-bound" bile acids that can exert several toxic effects. We have generated a single-chain Fv fragment (scFv) as a probe to monitor DCA residues anchored on proteins. DNA fragments encoding the variable heavy (V(H)) and light (V(L)) domains of a mouse antibody raised against a DCA hapten (Ab #88) were cloned by rapid amplification of cDNA 5'-ends. These sequences were combined via a common linker sequence coding (Gly(4)Ser)(3) to construct a single scFv gene with the gene segments in the following order: 5'-V(H)-linker-V(L)-3'. This construct was subcloned into an antibody-expression vector, pEXmide 5; soluble scFv protein was then expressed in the bacterial periplasm of the XLOLR Escherichia coli strain. In a competitive enzyme-linked immunosorbent assay using DCA-coated microtiter plates, the scFv provided a dose-response curve for free DCA ranging between 2 and 5000 pg/assay. The scFv reacts similarly with the l-lysine adduct of DCA (cross-reactivity, 72%), while bile acids having a modified DCA steroid skeleton were well-discriminated (cross-reactivity, <1%). This scFv could also monitor trace amounts of DCA residues anchored on a protein through DCA acyl adenylate reactions, the likely reactive intermediate. The present scFv may be a useful tool for trace characterization of tissue-bound bile acids; this usefulness may be significantly enhanced by fusion with signal-generating proteins, such as alkaline phosphatase or green fluorescent protein.  相似文献   

4.
While specific posttranslational modification patterns within the H3 and H4 tail domains are associated with the S-phase, their actual functions in replication-dependent chromatin assembly have not yet been defined. Here we used incorporation of trace amounts of recombinant proteins into naturally synchronous macroplasmodia of Physarum polycephalum to examine the function of H3 and H4 tail domains in replication-coupled chromatin assembly. We found that the H3/H4 complex lacking the H4 tail domain was not efficiently recovered in nuclei, whereas depletion of the H3 tail domain did not impede nuclear import but chromatin assembly failed. Furthermore, our results revealed that the proper pattern of acetylation on the H4 tail domain is required for nuclear import and chromatin assembly. This is most likely due to binding of Hat1, as coimmunoprecipitation experiments showed Hat1 associated with predeposition histones in the cytoplasm and with replicating chromatin. These results suggest that the type B histone acetyltransferase assists in shuttling the H3/H4 complex from cytoplasm to the replication forks.  相似文献   

5.
6.
Centromeres are specialized chromosome domain that serve as the site for kinetochore assembly and microtubule attachment during cell division, to ensure proper segregation of chromosomes. In higher eukaryotes, the identity of active centromeres is marked by the presence of CENP-A (centromeric protein-A), a histone H3 variant. CENP-A forms a centromere-specific nucleosome that acts as a foundation for centromere assembly and function. The posttranslational modification (PTM) of histone proteins is a major mechanism regulating the function of chromatin. While a few CENP-A site-specific modifications are shared with histone H3, the majority are specific to CENP-A-containing nucleosomes, indicating that modification of these residues contribute to centromere-specific function. CENP-A undergoes posttranslational modifications including phosphorylation, acetylation, methylation, and ubiquitylation. Work from many laboratories have uncovered the importance of these CENP-A modifications in its deposition at centromeres, protein stability, and recruitment of the CCAN (constitutive centromere-associated network). Here, we discuss the PTMs of CENP-A and their biological relevance.  相似文献   

7.
8.
Positive selection has been shown to be pervasive in sex-related proteins of many metazoan taxa. However, we are only beginning to understand molecular evolutionary processes on the lineage to humans. To elucidate the evolution of proteins involved in human reproduction, we studied the sequence evolution of MAM domains of the sperm-ligand zonadhesin in respect to single amino acid sites, solvent accessibility, and posttranslational modification. GenBank-data were supplemented by new cDNA-sequences of a representative non-human primate panel. Solvent accessibility predictions identified a probably exposed fragment of 30 amino acids belonging to MAM domain 2 (i.e., MAM domain 3 in mouse). The fragment is characterized by significantly increased rate of positively selected amino acid sites and exhibits high variability in predicted posttranslational modification, and, thus, might represent a binding region in the mature protein. At the same time, there is a significant coincidence of positively selected amino acid sites and non-conserved posttranslational motifs. We conclude that the binding specificity of zonadhesin MAM domains, especially of the presumed epitope, is achieved by positive selection at the level of single amino acid sites and posttranslational modifications, respectively.  相似文献   

9.
Covalent linkage of ADP-ribose polymers to proteins is generally considered essential for the posttranslational modification of protein function by poly(ADP-ribosyl)ation. Here we demonstrate an alternative way by which ADP-ribose polymers may modify protein function. Using a highly stringent binding assay in combination with DNA sequencing gels, we found that ADP-ribose polymers bind noncovalently to a specific group of chromatin proteins, i.e., histones H1, H2A, H2B, H3, and H4 and protamine. This binding resisted strong acids, chaotropes, detergents, and high salt concentrations but was readily reversible by DNA. When the interactions of variously sized linear and branched polymer molecules with individual histone species were tested, the hierarchies of binding were branched polymers greater than long, linear polymers greater than short, linear polymers and H1 greater than H2A greater than H2B = H3 greater than H4. For histone H1, the target of polymer binding was the carboxy-terminal domain, which is also the domain most effective in inducing higher order structure of chromatin. Thus, noncovalent interactions may be involved in the modification of histone functions in chromatin.  相似文献   

10.
The activity of recombinant murine G9a toward lysine 9 of histone H3 was investigated. GST fusion proteins containing various lengths of the histone H3 amino-terminal tail were used as substrates in the presence of recombinant G9a enzyme and AdoMet cosubstrate. The minimal substrate methylated by G9a contained seven amino acids (TARKSTG) of the histone H3 tail. Furthermore, mutational analysis of the minimal substrate was performed to identify the amino acids essential for G9a-mediated methylation. All amino acids except Thr-11 were indispensable for the methylation reaction. Steady-state kinetic analysis of the wild-type and histone H3 point mutants, lysine 4 changed to alanine (K4A) or lysine 27 changed to alanine (K27A), with purified G9a revealed similar catalytic efficiency but a reduction in turnover number (k(cat)) from 78 to 58 h(-)(1). G9a methylated synthetic peptide substrates containing the first 13 amino acids of histone H3 efficiently, although methylation, acetylation, or mutation of proximal Lys-4 amino acids reduced Lys-9 methylation. The k(cat) for wild-type peptide substrate vs Lys-4 acetyl- or trimethyl-modified peptide were 88 and 32 h(-)(1), respectively, and the K(m) for the peptides varied from 0.6 to 2.2 muM, resulting in a large difference (15-91) in catalytic efficiency. Ser-10 or Thr-11 phosphorylation resulted in poor methylation by G9a. Immunoprecipitation of unmodified and Ser-10 and Thr-11 phosphorylated histone H3 displayed mostly Lys-4 dimethylation. Dimethylated Lys-9 was reduced in Ser-10 and Thr-11 immunoprecipitated phosphorylated histones as compared to nonphosphorylated H3. In an immunocytochemical assay, GFP fusion SUV39H1 or G9a did not colocalize with phosphorylated histone H3. Thus, Ser-10/Thr-11 phosphorylation impairs Lys-9 methylation. These data suggest that the sequence context of the modified residue affects G9a activity and the modification in the proximal amino acids influences methylation.  相似文献   

11.
The SAS3-dependent NuA3 histone acetyltransferase complex was originally identified on the basis of its ability to acetylate histone H3 in vitro. Whether NuA3 is capable of acetylating histones in vivo, or how the complex is targeted to the nucleosomes that it modifies, was unknown. To address this question, we asked whether NuA3 is associated with chromatin in vivo and how this association is regulated. With a chromatin pulldown assay, we found that NuA3 interacts with the histone H3 amino-terminal tail, and loss of the H3 tail recapitulates phenotypes associated with loss of SAS3. Moreover, mutation of histone H3 lysine 14, the preferred site of acetylation by NuA3 in vitro, phenocopies a unique sas3Delta phenotype, suggesting that modification of this residue is important for NuA3 function. The interaction of NuA3 with chromatin is dependent on the Set1p and Set2p histone methyltransferases, as well as their substrates, histone H3 lysines 4 and 36, respectively. These results confirm that NuA3 is functioning as a histone acetyltransferase in vivo and that histone H3 methylation provides a mark for the recruitment of NuA3 to nucleosomes.  相似文献   

12.
Lewis JD  McParland R  Ausió J 《Biochemistry》2004,43(24):7766-7775
The major chromosomal protein of the mature sperm of the surf clam, Spisula solidissima, is a histone H1-related protamine-like (PL-I) protein of low electrophoretic mobility. We report here the complete sequence of two isoforms of its encoding genes. These genes encode a protein of 453 and 454 amino acids, respectively. The predicted mass of the larger isoforms (51,437 Da) was confirmed using electrospray ionization mass spectrometry. The amino-terminal tail of the S. solidissima PL-I is greatly elongated because of the presence of 39 tandem hexapeptide repeats of the motif (K/R)KRSAS with a few semiconservative amino acid substitutions. These repeats are very closely mirrored by their encoding DNA sequence, which indicates that an expansion because of sequence duplication most likely occurred. The C-terminal domain consists of a histone H1-related core with a predicted winged-helix tertiary structure, which is followed by an unstructured lysine-rich tail. This information provides additional molecular support for the classification and underlying evolution of sperm nuclear basic proteins in bivalve molluscs.  相似文献   

13.
14.
Precise elimination of the N-terminal domain of histone H1.   总被引:1,自引:0,他引:1       下载免费PDF全文
The proteinase from mouse submaxillary gland was used to cleave total calf thymus histone H1 between residues 32 and 33. The C-terminal peptide, comprising residues 33 to the C-terminus, was purified and identified by amino acids analysis and Edman degradation. Spectroscopic characterization by n.m.r. for tertiary structure and by c.d. for secondary structure shows the globular domain of the parent histone H1 to be preserved intact in the peptide. It has therefore lost only the N-terminal domain and is a fragment of histone H1 comprising the globular plus C-terminal domains only. Precise elimination of only the N-terminal domain makes the fragment suitable for testing domain function in histone H1.  相似文献   

15.
Using peptide arrays and binding to native histone proteins, we show that the ADD domain of Dnmt3a specifically interacts with the H3 histone 1–19 tail. Binding is disrupted by di- and trimethylation of K4, phosphorylation of T3, S10 or T11 and acetylation of K4. We did not observe binding to the H4 1–19 tail. The ADD domain of Dnmt3b shows the same binding specificity, suggesting that the distinct biological functions of both enzymes are not related to their ADD domains. To establish a functional role of the ADD domain binding to unmodified H3 tails, we analyzed the DNA methylation of in vitro reconstituted chromatin with Dnmt3a2, the Dnmt3a2/Dnmt3L complex, and the catalytic domain of Dnmt3a. All Dnmt3a complexes preferentially methylated linker DNA regions. Chromatin substrates with unmodified H3 tail or with H3K9me3 modification were methylated more efficiently by full-length Dnmt3a and full-length Dnmt3a/3L complexes than chromatin trimethylated at H3K4. In contrast, the catalytic domain of Dnmt3a was not affected by the H3K4me3 modification. These results demonstrate that the binding of the ADD domain to H3 tails unmethylated at K4 leads to the preferential methylation of DNA bound to chromatin with this modification state. Our in vitro results recapitulate DNA methylation patterns observed in genome-wide DNA methylation studies.  相似文献   

16.
17.
DNA topoisomerase IIα (Topo IIα) is the target of an important class of anticancer drugs, but tumor cells can become resistant by reducing the association of the enzyme with chromosomes. Here we describe a critical mechanism of chromatin recruitment and exchange that relies on a novel chromatin tether (ChT) domain and mediates interaction with histone H3 and DNA. We show that the ChT domain controls the residence time of Topo IIα on chromatin in mitosis and is necessary for the formation of mitotic chromosomes. Our data suggest that the dynamics of Topo IIα on chromosomes are important for successful mitosis and implicate histone tail posttranslational modifications in regulating Topo IIα.  相似文献   

18.
D J Welsch  G L Nelsestuen 《Biochemistry》1988,27(13):4939-4945
Two acetylation sites on prothrombin fragment 1 (amino-terminal 156 amino acid residues of bovine prothrombin) are essential for the tight calcium and membrane binding functions of the protein; calcium protects both of these sites from acetylation [Welsch, D. J., Pletcher, C. H., & Nelsestuen, G. L. (1988) Biochemistry (first of three papers in this issue)]. The epsilon-amino groups of the lysine residues (positions 3, 11, 44, 57, and 97) were not critical to protein function and were acetylated in the calcium-protected protein. The most reactive of the two essential acetylation sites was identified as amino-terminal alanine. To identify this site, fragment 1 was first acetylated in the presence of calcium to derivatize the nonessential sites. Removal of calcium and partial acetylation with radioactive reagent produced a single major radioactive peptide. Isolation and characterization of this peptide showed that the radioactivity was associated with amino-terminal alanine. In addition, sequence analysis of calcium-protected protein showed the presence of underivatized amino-terminal alanine. Surprisingly, covalent modification with a trinitrophenyl group did not alter membrane binding activity. Thus, the positive charge on the amino terminus did not appear critical to its function. Acetylation of amino-terminal alanine without acetylation of the second essential site produced a fragment 1 derivative which had a high requirement for calcium and which had lost most membrane binding function. However, this protein had only slightly altered affinity for magnesium ion. In agreement with this metal ion selectivity, protection of amino-terminal alanine was calcium specific, and magnesium ion did not protect this site from acetylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The chromatin organizer modifier domain (chromodomain) is present in proteins that contribute to chromatin organization and mediates their binding to methylated histone H3. Despite a high level of sequence conservation, individual chromodomains manifest substantial differences in binding preference for methylated forms of histone H3, suggesting that posttranslational modification of the chromodomain might be an important determinant of binding specificity. We now show that mouse Cbx2 (also known as M33), a homolog of Drosophila Polycomb protein, is highly phosphorylated in some cell lines. A low-mobility band of Cbx2 observed on SDS-polyacrylamide gel electrophoresis was thus converted to a higher-mobility band by treatment with alkaline phosphatase. Mass spectrometric analysis revealed serine-42, a conserved amino acid in the chromodomain, as a phosphorylation site of Cbx2. Phosphorylation of the chromodomain of Cbx2 on this residue in vitro resulted in a reduced level of binding to an H3 peptide containing trimethylated lysine-9 as well as an increase in the extent of binding to an H3 peptide containing trimethylated lysine-27, suggesting that such phosphorylation changes the binding specificity of Cbx2 for modified histone H3. Phosphorylation of the chromodomain of Cbx2 may therefore serve as a molecular switch that affects the reading of the histone modification code and thereby controls epigenetic cellular memory.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号