首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When a mixture of vinyl chloride/oxygen or vinyl bromide/air was passed through a mouse-liver microsomal system, volatile alkylating metabolites were trapped by reaction with excess 4-(4-nitrobenzyl)pyridine. The absorption spectra of the adducts, either from vinyl bromide or vinyl chloride, were identical with that obtained by reaction of chloroethylene oxide with 4-(4-nitrobenzyl) pyridine. Chloroethylene oxide decomposes in aqueous solution with a half-life of 1.6 minutes. After reaction of chloroethylene oxide and 2-chloroacetaldehyde with adenosine and Sephadex chromatography the binding products were compared with those formed in the presence of vinyl chloride, mouse-liver microsomes and adenosine. A common product of these reactions was tentatively characterized as 3-β-ribofuranosyl-imidazo-[2,1-i]purine.  相似文献   

2.
The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP‐binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full‐length ANPR expressed in CHO cells. ECD without chloride (ECD(?)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X‐ray structure of the bromide‐bound ECD is essentially identical to that of the chloride‐bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP‐bound structures, indicating exchangeable and reversible halide binding. Far‐UV CD and thermal unfolding data show that ECD(?) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(?) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride‐binding site in ANPR are highly conserved among receptor‐guanylate cyclases and metabotropic glutamate receptors. The chloride‐dependent ANP binding, reversible chloride binding, and the highly conserved chloride‐binding site motif suggest a regulatory role for the receptor bound chloride. Chloride‐dependent regulation of ANPR may operate in the kidney, modulating ANP‐induced natriuresis.  相似文献   

3.
Haloalkane dehalogenase (DhlA) converts haloalkanes to their corresponding alcohols and halide ions. The rate-limiting step in the reaction of DhlA is the release of the halide ion. The kinetics of halide release have been analyzed by measuring halide binding with stopped-flow fluorescence experiments. At high halide concentrations, halide import occurs predominantly via the rapid formation of a weak initial collision complex, followed by transport of the ion to the active site. To obtain more insight in this collision complex, we determined the X-ray structure of DhlA in the presence of bromide and investigated the kinetics of mutants that were constructed on the basis of this structure. The X-ray structure revealed one bromide ion firmly bound in the active site and two bromide ions weakly bound on the surface of the enzyme. One of the weakly bound ions is close to Thr197 and Phe294, near the entrance of the earlier proposed tunnel for substrate import. Kinetic analysis of bromide import by the Thr197Ala and Phe294Ala mutants of DhlA at high halide concentration showed that the rate constants for halide binding no longer displayed a wild-type-like parabolic increase with increasing bromide concentrations. This is in agreement with an elimination or a decrease in affinity of the surface-located halide-binding site. Likewise, chloride binding kinetics of the mutants indicated significant differences with wild-type enzyme. The results indicate that Thr197 and Phe294 are involved in the formation of an initial collision complex for halide import in DhlA and provide experimental evidence for the role of the tunnel in substrate and product transport.  相似文献   

4.
Inosine (I) when acetylated with acetic anhydride in the presence of acetyl chloride in acetic acid solution (the so called "acid acetylation"), affords an acetylated nucleoside III (75%) along with cleavage products of the nucleoside (hypoxanthine, 19%). The reaction of I with acetyl chloride (7 days) results in the formation of hypoxanthine (95%) and triacetylribofuranosyl chloride (IV) isolated in the form of tetraacetylribofuranose (47%). The acetylated purine nucleoside affords a similar result by reaction with acetyl chloride or acetyl bromide. 2'-Deoxyuridine gives a diacetyl derivative (80%) by reaction with acetyl bromide. On treatment with acetyl bromide, the nucleoside bond of purine nucleosides is quantitatively cleavaged (4 h, 20 degrees C) with the formation of tri-O-acetyl-D-ribofuranosyl bromide (X). The halogenose X affords pure beta-anomers, namely, 1,2,3,5-tetra-O-acetyl-beta-D-ribofuranose (75%), the triacetyl derivatives of 5-methyluridine (XVIIa; 75%, referred to guanosine), 6-azauridine (XVIII; 71%), and 5-fluorouridine (XIXa; 75%).  相似文献   

5.
35Cl nmr relaxation rate measurements have been used to study anion-binding sites in pig heart lactate dehydrogenase. These studies reveal two types of sites, one is intimately associated with the active site, the other is not. The nonactive site has been ascribed to a subunit site in analogy with crystallographic results from the dogfish M4 enzyme. The binding of either the reduced or the oxidized form of NAD results in an increase in the 35Cl nmr relaxation rate by a factor of 1.8–2. The enhanced nmr relaxation rate of the binary lactate dehydrogenase-NAD complex is reduced on binding of the substrate inhibitor molecules oxamate or oxalate to a value less than that exhibited by lactate dehydrogenase alone. The enhancement of the nmr relaxation rate is attributed to a decrease in the dissociation constant of Cl for the enzyme. The Kp values for Cl binding to the active center site of lactate dehydrogenase is 0.85 m and for lactate dehydrogenase-NADH is 0.25 m. The ratio of these constants, 3.4, agrees well with the measured enhancement value 3.7. The effect of coenzyme analogs on the 35Cl nmr relaxation rate has been examined. 3-Acetylpyridine NAD produces an enhancement of 4.3, thionicotinamide NAD of 2.3, whereas 3-pyridinealdehyde, adenosinediphosphoribose, and adenosine diphosphate do not affect the nmr relaxation state of Cl bound to lactate dehydrogenase.  相似文献   

6.
Singlet oxygen production in the chloroperoxidase-hydrogen peroxide-halide system was studied using 1268 nm chemiluminescence. With chloride or bromide ions, singlet oxygen is produced by the mechanism (formula; see text) (formula; see text) where X- is chloride or bromide ion. Under conditions where there is high enzyme activity and when Reaction B is fast relative to Reaction A, singlet oxygen is produced in near stoichiometric amounts. In contrast, when Reaction A is fast relative to Reaction B, oxidized halogen species (chlorine and hypochlorous acid for chloride ion; bromide, tribromide ion, and hypobromous acid for bromide ion) are the principle reaction products. With iodide ion, no 1268 nm chemiluminescence was detected. Past studies have shown that iodine and iodate ion are the major end products of this system.  相似文献   

7.
本文报道了以苯甲醛甘氨酸酯〔乙酯,(—)—簿荷醇酯〕西佛碱作为反应底物,烯丙基溴,溴苄,对硝基溴作为烷基化试剂,在以(—)—N—基氯化辛可宁丁,(+)-N基氯化辛可宁作为催化剂的固液相转移条件下的双不对称诱导烷基化反应,进而水解得到α—光学活性氨基酸。光学产率为2.57—22.4%,实验中观察到了双不对称诱导效应。  相似文献   

8.
Ethidium bromide: destruction and decontamination of solutions   总被引:9,自引:0,他引:9  
Ethidium bromide in water, TBE buffer, Mops buffer, and cesium chloride solution may be completely degraded by reaction with sodium nitrite and hypophosphorous acid. Only non-mutagenic reaction mixtures were produced. Destruction was greater than 99.8% in all cases; the limit of detection was 0.5 micrograms ethidium bromide per milliliter of solution. Ethidium bromide also may be removed completely from the above solutions by using Amberlite XAD-16 resin. The limit of detection was 0.05 micrograms ethidium bromide per milliliter of solution (0.27 micrograms/ml when cesium chloride solution was used).  相似文献   

9.
The nonexchangeable base and sugar proton nmr resonances and the 260 and 278-nm uv-absorbance bands of the nucleic acid were utilized to monitor the temperature-dependent duplex-to-strand transition of the alternating purine–pyrimidine deoxyribopolynucleotide poly(dA-dT) in the absence and presence of ethidium bromide (EB) at phosphate/drug = 50, 28, and 15 and propidium diiodide (PI) at P/D = 50, 25, 15, 10, and 5 in 0.1 M salt between 50° and 100°C. The nmr and optical methods monitor a biphasic duplex-to strand transition for the drug–poly(dA-dT) complexes. We have monitored the dissociation of the drug from the complex at the ethidium bromide phenanthridine ring and side-chain proton nmr resonances and the propidium diiodide 494 and 535-nm uv-absorbance bands and demonstrate that dissociation of the drug corresponds to the higher temperature transition in the biphasic nucleic acid melting curves. The lower temperature cooperative transition is assigned to the opening of drug-free AT base-pair regions in the drug–poly(dA-dT) complex and exhibits an increase in transition midpoint and a decrease in cooperativity with increasing drug concentration. The higher temperature cooperative transition is assigned to the opening of AT base-pair regions centered about the bound drug in the complex and exhibits an increase in the transition midpoint on raising the drug concentration. The large upfield shifts of the phenanthridine ring (but not side chain) protons of ethidium bromide on complex formation demonstrate intercalation of the drug between base pairs of the poly(dA-dT) duplex. The nucleic acid base and sugar resonances of poly(dA-dT) in 0.1 M phosphate undergo chemical shift changes between 0° and 50°C indicative of premelting conformational transition(s).  相似文献   

10.
The leukocyte enzyme myeloperoxidase (MPO) is capable of catalyzing the oxidation of chloride and bromide ions, at physiological concentrations of these substrates, by hydrogen peroxide, generating hypochlorous acid (HOCl) and hypobromous acid (HOBr), respectively. Our previous results showed that the hypohalous acids formed react with double bonds in phosphatidylcholines (PCs) to produce chloro- and bromohydrins. Lysophosphatidylcholine (lyso-PC) is additionally formed in PCs with two or more double bonds. This study was conducted to determine the effect physiological chloride concentration (140 mM) has on the formation of bromohydrins and lyso-PC from unsaturated PC upon treatment with the myeloperoxidase/hydrogen peroxide/bromide (MPO/H2O2/Br-) system using physiological bromide concentrations (20-100 microM). The composition of reaction products was analyzed by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS). With monounsaturated PC, we demonstrated that the rate and extent of mono-bromohydrin formation were higher in the samples with 140 mM chloride compared to those with no added chloride. Moreover, mono-bromohydrin came to be the major product and no mono-chlorohydrin was observed already at 60 microM bromide. We attributed these effects to the involvement of HOBr arising from the reaction of MPO-derived HOCl with bromide rather than to the exchange of bromide with chlorine atoms of chlorohydrins or direct formation of HOBr by MPO. The presence of chloride shifted the pH optimum for mono-bromohydrin formation (pH 5.0) toward neutral values, and a significant yield of mono-bromohydrin was detected at physiological pH values (7.0-7.4). For polyunsaturated PC, chloride enhanced also lyso-PC production, the effect being pronounced at bromide concentrations below 40 microM. The results indicate that at physiological levels of chloride and bromide, chloride promotes MPO-mediated formation of bromohydrins and lyso-PC in unsaturated phospholipids.  相似文献   

11.
EPR spectra of the low-spin cyanide complex of myeloperoxidase have been measured in the absence and presence of halide substrates; chloride, bromide and iodide. Halide-dependent spectral changes are found at acidic pH. The electronic structure of the low-spin ferric iron in cyanide complex appears to be modulated by halide binding to a protonated amino acid in the distal heme cavity. These findings suggest halide substrates can interact with ferryl oxygen in compound I during enzyme catalysis to form hypohalous acid.  相似文献   

12.
Bromoperoxidases do not directly oxidize the chloride ion; nevertheless, in the presence of bromide ions, chloride ions and hydrogen peroxide, bromoperoxidases react with alkenes and alkynes to produce bromochloroderivatives. This same reaction is catalysed when seawater is the source of chloride and bromide ions. This suggests that bromonium ion-induced biosynthesis of chlorinated metabolites occurs in marine environments. The role of iodonium ions in the biosynthesis of chlorinated metabolites is also discussed.  相似文献   

13.
MPO (myeloperoxidase) catalyses the oxidation of chloride, bromide and thiocyanate to their respective hypohalous acids. We have investigated the generation of HOBr by human neutrophils in the presence of physiological concentrations of chloride and bromide. HOBr was trapped with taurine and detected by monitoring the bromination of 4-HPAA (4-hydroxyphenylacetic acid). With 100 microM bromide and 140 mM chloride, neutrophils generated HOBr and it accounted for approx. 13% of the hypohalous acids they produced. Addition of SOD (superoxide dismutase) doubled the amount of HOBr detected. Therefore we investigated the reaction of superoxide radicals with a range of bromamines and bromamides and found that superoxide radicals stimulated the decomposition of these species, with this occurring in a time- and dose-dependent manner. The protection afforded by SOD against such decay demonstrates that these processes are superoxide-radical-dependent. These data are consistent with neutrophils generating HOBr at sites of infection and inflammation. Both HOBr and bromamines/bromamides have the potential to react with superoxide radicals to form additional radicals that may contribute to inflammatory tissue damage.  相似文献   

14.
The peptidase activity of leukotriene A4 hydrolase purified from human leukocytes has been characterized, utilizing synthetic amides as substrates. The enzyme was stimulated by several monovalent anions. Thiocyanate ions were most effective followed by chloride and bromide ions. In phosphate buffer alone the peptidase activity towards alanine-4-nitroanilide was barely detectable and addition of 100 mM NaCl increased the specific activity more than 20-fold. Increasing the concentration of NaCl (or NaSCN) did not significantly affect the apparent Km for the substrate alanine-4-nitroanilide, but resulted in a dose dependent increase of Vmax. The stimulatory effect of these anions on the reaction velocities appeared to obey saturation kinetics and thus indicated the presence of an anion binding site. Apparent affinity constants for chloride and thiocyanate ions were calculated to 100 and 50 mM, respectively. In contrast to the effect on the peptidase activity, no chloride-stimulation could be detected of the epoxide hydrolase activity of this enzyme, i.e., the conversion of leukotriene A4 into leukotriene B4. In conclusion, the results indicate that under physiological conditions, chloride ions may selectively stimulate the peptidase activity of LTA4 hydrolase. Also, the differences in chloride concentrations between cellular compartments suggest that a possible proteolytic function of the enzyme may be limited to the extracellular space.  相似文献   

15.
The purpose of this work was to study the chemical reactivity of monofunctional cis-platinum-nucleic acid adducts as a function of nucleic acid sequence. The first part of the paper deals with the formation of these adducts. It is shown that the ternary nucleic acid-cis-platinum-ethidium bromide complexes in which ethidium bromide and nucleotide residues are cross-linked by cis-platinum, are relatively unstable at 37 degrees C. In the presence of acridine, ethidium bromide (but not cis-platinum) is slowly released which leads to the formation of monofunctional cis-platinum-nucleic acid adducts. After removal of acridine, the monofunctional adducts react further to become bifunctional. The second part of the paper deals with the kinetics of disappearance of the monofunctional adducts in several polynucleotides but not in poly(dG).poly(dC). When the adducts possess a chloride ligand, the limiting step in the cross-linking is the rate of aquation reaction of the chloride ligand. The rate constants are an order of magnitude larger when the monofunctional adducts do not possess a chloride ligand. In both the cases, the rate constants are apparently independent of the nucleic acid sequence.  相似文献   

16.
The quenching of tryptophanyl fluorescence of native and denatured D-amino acid oxidase from hog kidney was measured. About 60% of the tryptophanyl fluorescence of the native apoenzyme was quenched by iodide at pH 8.3, and 25 degrees C. All of the tryptophanyl fluorescence of the apoenzyme in 6 M guanidine hydrochloride was quenched. The tryptophanyl fluorescence quenching of the holoenzyme by 1-methyl nicotinamide chloride was low in comparison with that of the apoenzyme. These results of the quenching experiments are discussed based on the intermolecular collision quenching mechanism. By measuring the fluorescence intensities of the tryptophanyl residues and FAD of the holoenzyme solution, and the fluorescence polarization of the holoenzyme solution containing halide anions such as iodide, bromide, chloride, or fluoride, we found that FAD dissociates from the holoenzyme in the presence of iodide, bromide, or chloride, and the ability to dissociate FAD from the holoenzyme decreases in order iodide, bromide, and chloride. However, fluoride seems to enhance the association reaction of FAD with the apoenzyme. These results were consistent with the visible absorption spectra and derivative spectra of free FAD and the holoenzyme in the presence and absence of halide anions.  相似文献   

17.
DNase I cleavage rates and nmr chemical shifts are shown to change for DNA sequences distal to an intercalated actinomycin D molecule in a duplex hexadecamer upon drug binding. Both sets of observations suggest that the source of these changes is a DNA-mediated structural response. The nmr results imply the response is transmitted preferentially in a 5'-to-3' direction from the drug binding site. An inequivalent response of the two strands to a ligand-induced conformational change immediately suggests a mechanism for distinguishing the sense and antisense strands of DNA.  相似文献   

18.
We have prepared cytochrome-c oxidase from bovine heart (using a modification of the method of Kuboyama et al. (1972) J. Biol. Chem. 247, 6375-6383) which binds cyanide rapidly, shows no kinetic distinction between the two haems on reduction by dithionite, has a Soret absorption maximum above 424 nm, and has a negligible 'g' = 12' EPR signal. On incubation at pH 6.5 this 'fast' oxidase reverts to the 'slow' ('resting') form characterised by slow cyanide binding, slow reduction of haem a3 by dithionite, a blue-shifted Soret maximum and a large 'g' = 12' signal. Incubation of 'fast' oxidase with formate produces a form of the enzyme with properties almost identical to those of 'slow' oxidase. The kinetics of formate binding to 'fast' oxidase are found to be biphasic, revealing the presence of at least two 'fast' subpopulations in our preparations. Evidence is presented that there is an equilibrium mixture of high-spin and low-spin forms of haem a3 in both 'fast' subpopulations at room temperature. Incubation of 'fast' oxidase with chloride or bromide at pH 6.5 produces forms of oxidase with much lower rates of cyanide binding. Our working hypothesis is that formate mimics a binuclear centre ligand which is present in the 'slow' form of cytochrome oxidase. Although we show that chloride and bromide can also be ligands of the binuclear centre, possibly onto CuB, we can rule out either of these being the ligand present in the 'slow' enzyme. We will argue that the 'fast' and 'slow' forms of oxidase are equivalent to the 'pulsed' and 'resting' forms of oxidase, respectively.  相似文献   

19.
J M Moore 《Biopolymers》1999,51(3):221-243
Over the last ten years, nmr spectroscopy has evolved into an important discipline in drug discovery. Initially, nmr was most useful as a technique to provide structural information regarding protein drug targets and target-ligand interactions. More recently, it has been shown that nmr may be used as an alternative method for identification of small molecule ligands that bind to protein drug targets. High throughput implementation of these experiments to screen small molecule libraries may lead to identification of potent and novel lead compounds. In this review, we will use examples from our own research to illustrate how nmr experiments to characterize ligand binding may be used to both screen for novel compounds during the process of lead generation, as well as provide structural information useful for lead optimization during the latter stages of a discovery program.  相似文献   

20.
T P Begley  A E Walts  C T Walsh 《Biochemistry》1986,25(22):7192-7200
Mechanistic studies of the protonolytic carbon-mercury bond cleavage by organomercurial lyase from Escherichia coli (R831) suggest that the reaction proceeds via an SE2 pathway. Studies with stereochemically defined substrates cis-2-butenyl-2-mercuric chloride (1) and endo-norbornyl-2-mercuric bromide (2) reveal that a high degree of configurational retention occurs during the bond cleavage, while studies with exo-3-acetoxynortricyclyl-5-mercuric bromide (3) and cis-exo-2-acetoxy-bicyclo[2.2.1]hept-5-enyl-3-mercuric bromide (4) show that the protonolysis proceeds without accompanying skeletal rearrangement. Kinetic data for the enzymatic reactions of cis-2-butenyl-2-mercuric chloride (1) and trans-1-propenyl-1-mercuric chloride (6) indicate that these substrates show enhanced reaction rates of ca. 10-200-fold over alkylvinylmercurials and unsubstituted vinylmercurials, suggesting that the olefinic methyl substituent may stabilize an intermediate bearing some positive charge. Enzymatic reaction of 2-butenyl-1-mercuric bromide (5) yields a 72/23/5 mixture of 1-butene/trans-2-butene/cis-2-butene, indicative of intervening SE2' cleavage. The observation of significant solvent deuterium isotope effects at pH 7.4 of Vmax (H2O)/Vmax(D2O) = 2.1 for cis-2-butenyl-2-mercuric chloride (1) turnover and Vmax(H2O)/Vmax(D2O) = 4.9 for ethylmercuric chloride turnover provides additional support for a kinetically important proton delivery. Finally, the stoichiometric formation of butene and Hg(II) from 1 and methane and Hg(II) from methylmercuric chloride eliminates the possibility of an SN1 solvolytic mechanism. As the first well-characterized enzymatic reaction of an organometallic substrate and the first example of an enzyme-mediated SE2 reaction the organomercurial lyase catalyzed carbon-mercury bond cleavage provides an arena for investigating novel enzyme structure-function relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号