首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Ca2+ indicator, arsenazo III, binds to subcellular fractions of rabbit skeletal muscle with sufficient affinity that in living muscle containing 1–2 mM arsenazo III, the estimated free arsenazo III concentration is only 50–200 μM; 80–90% of the bound arsenazo III is associated with soluble proteins.The binding of arsenazo III to soluble proteins decreases the optical response of the dye to Ca2+; this is due to a decrease in the affinity of the protein-bound dye for Ca2+. Approximately half of the bound arsenazo III is released from the particulate fraction and soluble proteins upon addition of 5 mM Ca2+, suggesting that the Ca-arsenazo complex has lower affinity for the protein binding sites than the free dye.The Ca2+ binding to the soluble protein fraction of rabbit skeletal muscle is attributable largely to its parvalbumin content.  相似文献   

2.
The calcium-sensitive dye, arsenazo III, was found to interact with sarcoplasmic reticulum vesicles and to inhibit markedly the rate of calcium transport and ATP hydrolysis by these vesicles, thus perturbing the transport process it was meant to monitor. Caution should therefore be exercised when using this dye to monitor calcium movements.  相似文献   

3.
4.
A method for determining the stoichiometry of one-product reactions involving a metal ion and an organic ligand is presented and applied to the reactions of calcium and magnesium with the metallochromic dyes Antipyrylazo III and Arsenazo III. The method consists of fitting titration data, obtained in solutions buffered for the metal, with theoretical functions that include: (a) the dependence of product concentration on the concentration of both reactants, (b) the relationship between metal ion concentration and total amount added in the presence of the buffer, and (c) a correction for the amount of metal ion that binds to the organic ligand. It is shown that the products of the reactions of Antipyrylazo III with calcium and magnesium are CaD2 and MgD, respectively. The product formed between calcium and Arsenazo III at [Ca2+] over 20 microM is CaD2, other products accumulating at lower [Ca2+]. The kinetics of the Antipyrylazo III:Ca reaction are rapid under conditions in which this dye has been applied to measure calcium transients in skeletal muscle fibers. The present results provide a calibration for previous studies with Antipyrylazo III in muscle fibers.  相似文献   

5.
The particulate fraction from osmotically shocked synaptosomes ('synaptosomal membrances') sequesters Ca when incubated with ATP]containing solutions. This net accumulation of Ca can reduce the free [Ca2+] of the bathing medium to sub-micromolar levels (measured with arsenazo III). Two distinct types of Ca sequestration site are responsible for the Ca2+ buffering. One site, presumed to be smooth endoplasmic reticulum, operates at low [Ca2+] (less than 1 microM), and has a relatively small capacity. Ca sequestration at this site is prevented by the Ca2+ ionophore, A-23187, but not by mitochondrial poisons. The secone (mitochondrial) site, in contrast, is blocked by the mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone, and oligomycin. Since the intraterminal organelles can buffer [Ca2+] to about 0.3-0.5 microM, this may be an upper limit to the normal resting level of [Ca2+]i in nerve terminals. In the steady state, total cell Ca and [Ca2+]i will be governed principally be Ca transport mechanisms in the plasmalemma; the intracellular organelle transport systems then operate in equilibrium with this [Ca2+]. During activity, however, Ca rapidly enters the terminals and [Ca2+]i rises. The intracellular buffering mechanisms then come into play and help to return [Ca2+]i toward the resting level; the non-mitochondrial Ca sequestration mechanism probably plays the major role in this Ca buffering.  相似文献   

6.
The particulate fraction from osmotically shocked synaptosomes (‘synaptosomal membranes’) sequesters Ca when incubated with ATP-containing solutions. This net accumulation of Ca can reduce the free [Ca2+] of the bathing medium to sub-micromolar levels (measured with arsenazo III). Two distinct types of Ca sequestration site are responsible for the Ca2+ buffering. One site, presumed to be smooth endoplasmic reticulum, operates at low [Ca2+] (less than 1 μM), and has a relatively small capacity. Ca sequestration at this site is prevented by the Ca2+ ionophore, A-23187, but not by mitochondrial poisons. The second (mitochondrial) site, in contrast, is blocked by the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, and oligomycin. Since the intraterminal organelles can buffer [Ca2+] to about 0.3–0.5 μM, this may be an upper limit to the normal resting level of [Ca2+]i in nerve terminals. In the steady state, total cell Ca and [Ca2+]i will be governed principally by Ca transport mechanisms in the plasmalemma; the intracellular organelle transport systems then operate in equilibrium with this [Ca2+]. During activity, however, Ca rapidly enters the terminals and [Ca2+]i rises. The intracellular buffering mechanisms then come into play and help to return [Ca2+]i toward the resting level; the non-mitochondrial Ca sequestration mechanism probably plays the major role in this Ca buffering.  相似文献   

7.
Liposomes which have entrapped the metallochromic dye, arsenazo III, constitute a sensitive assay system for ionophoresis of divalent cations. By this means we have compared known calcium ionophores (A23187, ionomycin) with membrane phospholipids, fatty acids, prostanoids, and retinoids. Added at micromolar concentrations to preformed multilamellar liposomes (phosphatidylcholine 7:dicetyl phosphate 2: cholesterol 1) both A23187 and ionomycin, as well as phosphatidic acid and products derived from linoleic acid, linolenic acid, and two eicosatrienoic acids provoked Ca influx (e.g. phosphatidic acid: 0.13 mol of Ca2+/mol of membrane lipid/5 min). A variety of other phospholipids (e.g. phosphatidylinositol), fatty acids (e.g. arachidonic acid), prostanoids (e.g. PGE1) retinoids (e.g. retinoic acid), and glyceryl ether phosphorylcholines ("platelet-activating factors") were without effect. Phosphatidic acid and oxidized fatty acids translocated divalent cations selectively, demonstrating the same rank order as A23187 or ionomycin: Mn greater than Ca greater than Sr much greater than Mg. Membrane lysis did not contribute to the perceived translocation; the liposomes remained impermeable to EDTA, EGTA, arsenazo III, or Mg. Liposomes with phosphatidic acid or oxidized trienoic acids preincorporated at 1-5 mole % of total lipids also permitted translocation of Ca but not Mg. Reduction of ionophoretic fatty acids or ionomycin with stannous chloride abolished their ionophoretic activity. Release of Ca from liposomes which had entrapped arsenazo III-Ca complexes into a medium rich in EGTA permitted calculation of efflux induced by ionophores, whether these were added to the outside of liposomes or preincorporated. Data suggest that phosphatidic acid and oxidized di- and trienoic fatty acids, which act as calcium ionophores in model bilayers, could serve as "endogenous ionophores" in cells.  相似文献   

8.
As a metallochromic indicator for ionized calcium, arsenazo III is approximately 50 times more sensitive than murexide. However, because of the high binding constant for calcium, the following problems may occur: (a) a considerable amount of calcium is bound to arsenazo III, thereby causing an error in estimating the concentration of ionized calcium; (b) the amount of bound calcium varies with the concentrations of calcium, arsenazo III, magnesium ion and monovalent cations; (c) the amount also varies with pH, (d) the relationship between the absorbance change and the concentration of ionized calcium is nonlinear; and (e) the binding constant of arsenazo III for calcium cannot be determined by the conventional double reciprocal plot. A new experimental and theoretical method is presented which copes with these problems.  相似文献   

9.
N1E-115 mouse neuroblastoma cells were injected with the calcium indicator dye arsenazo III. Optical absorbance changes during voltage-clamp depolarization were used to examine the properties of the two calcium currents present in these cells. The rapidly inactivating calcium current (Moolenar and Spector, 1979b, Journal of Physiology, 292:307-323) inactivates by a voltage-dependent mechanism. The slowly inactivating calcium current is dominant in raising intracellular calcium during depolarizations to greater than -20 mV. Lowering the extracellular calcium concentration affects the two calcium currents unequally, with the slowly inactivating current being reduced more. Intracellular calcium falls very slowly (tau greater than 1 min) after a depolarization. The rapidly inactivating calcium current is responsible for a calcium action potential under physiological conditions. In contrast, it is unlikely that the slowly inactivating calcium current has an important electrical role. Rather, its function may be to add a further increment of calcium influx over and above the calcium influx through the rapidly inactivating calcium channels.  相似文献   

10.
11.
As a metallochromic indicator for ionized calcium, arsenazo III is approximately 50 times more sensitive than murexide. However, because of the high binding constant for calcium, the following problems may occur: (a) a considerable amount of calcium is bound to arsenazo III, thereby causing an error in estimating the concentration of ionized calcium; (b) the amount of bound calcium varies with the concentrations of calcium;, arsenazo III, magnesium ion and monovalent cations; (c) the amount also varies with pH, (d) the relationship between the absorbance change and the concentration of ionized calcium is nonlinear; and (e) the binding constant of arsenazo III for calcium cannot be determined by the conventional double reciprocal plot. A new experimental and theoretical method is presented which copes with these problems.  相似文献   

12.
None of the methods already reported for elimination of pectins from rRNA extracts allowed the complete removal of methylated polysaccharides from methyl-labeled cytoplasmic 17 and 26 S rRNA preparations of sycamore (Acer pseudoplatanus L.) cells. An improved procedure for purifying large amounts of higher plant cytoplasmic rRNA labeled on the methyl groups was investigated. Bulk cellular RNA from sycamore cells incubated for 24 to 36 h with methyl-labeled methionine was extracted at 4°C by the phenol-extraction procedure. Most of the pectic compounds (that accounted for about 30% of the total label of RNA extracts) was selectively precipitated, before the 66% ethanol precipitation of nucleic acid, by bringing the deproteinized aqueous layer to 10% ethanol ?0.15 m sodium acetate. Cytoplasmic rRNA, 17 and 26 S, were isolated by repeated sucrose gradient sedimentations and further chromatographed on a methylated albumin kieselgurh (MAK) column. The old-fashioned MAK chromatography proved to be very useful for elimination of residual pectins, since these compounds eluted in the void volume of the column. This purification procedure gave in a reproducible way cytoplasmic 17 and 26 rRNA virtually free of any labeled DNA, mRNA, plastid rRNA, and pectic compounds.  相似文献   

13.
If arsenazo III is present during homogenization of brain this metallochromic indicator is entrapped within subsequently isolated synaptosomes. A large proportion of the entrapped indicator is released upon addition of digitonin to disrupt the synaptosomal plasma membrane. A similar proportion of [3H]sucrose is also trapped within synaptosomes if present in the homogenization medium, suggesting that homogenization causes a transient opening of the nerve ending as it is chopped off from the axon. Addition of the ionophore A23187 or depolarization of the plasma membrane by adding veratridine, gramicidin or increasing external K+ changes the absorbance of the entrapped dye, with peaks of absorbance around 600 and 650 nm, typical of the arsenazo III-Ca2+ complex. The response to veratridine is inhibited by the Ca2+-channel antagonist, verapamil, while that of A23187 is unaffected. The present method provides a sensitive technique for measurements of changes in cytosolic calcium ion concentrations within nerve endings.  相似文献   

14.
At a concentration much lower than that usually employed for measuring cytosolic ionized Ca2+ concentrations, arsenazo III underwent a one-electron reduction by rat liver cytosolic fraction or a hypoxanthinexanthine oxidase system to produce an azo anion radical metabolite. NADH, NADPH, N1-methylnicotinamide, hypoxanthine, and xanthine, in that order, could serve as a source of reducing equivalents for the production of this free radical by the cytosolic fraction. The steady-state concentration of the azo anion radical and the arsenazo III-stimulated O2 consumption were enhanced by calcium and magnesium. Antipyrylazo III was ineffective in increasing O2 consumption by rat liver cytosolic fraction and gave a much weaker ESR signal of an azo anion radical with both the liver cytosolic fraction, in the presence of NADH, and the hypoxanthine-xanthine oxidase system.  相似文献   

15.
The interaction of cations with the dye arsenazo III.   总被引:2,自引:1,他引:1       下载免费PDF全文
1. The dye arsenazo III combines with a selection of cations to give an altered absorption spectrum. 2. Large metal cations such as Ca2+, La3+ and quadrivalent cations give a 1:1 complex with two new absorption peaks at about 610 nm and 655 nm and a KD of about 10(-6) M. 3. Aliphatic polyamines and complex cobalt ions give a 1:1 complex, with one absorption peak at about 610 nm and a KD from 10(-6) to 10(-3) M. 4. Small metal cations finally form a 2:1 complex and also have one absorption peak at about 610 nm, but with a KD of 10(-5)-10(-4) M. 5. The absorption peak at 610 nm is similar to that formed at high pH in the absence of bivalent cations and is due to ionization of phenolic groups with the dye molecule in an extended form. 6. The peak at 655 nm with 1:1 complex can be explained as a change in orientation of the diazo bonds caused by a conformational change of the molecule when it wraps around the single atom of Ca2+ or other large cation.  相似文献   

16.
Transport of Ca2+ in microsomal membrane vesicles of the Tetrahymena has been investigated using arsenazo III as a Ca2+ indicator. The microsomes previously shown to carry a Mg2+-dependent, Ca2+-stimulated ATPase (Muto, Y. and Nozawa, Y. (1984) Biochim. Biophys. Acta 777, 67-74) accumulated calcium upon addition of ATP and Ca2+ sequestered into microsomal vesicles was rapidly discharged by the Ca2+ ionophore A23187. Kinetic studies indicated that the apparent Km for free Ca2+ and ATP are 0.4 and 59 microM, respectively. The Vmax was about 40 nmol/mg protein per min at 37 degrees C. The calcium accumulated during ATP-dependent uptake was released after depletion of ATP in the incubation medium. Furthermore, addition of trifluoperazine which inhibited both (Ca2+ + Mg2+)-ATPase and ATP-dependent Ca2+ uptake rapidly released the calcium accumulated in the microsomal vesicles. These observations suggest that Tetrahymena microsome contains both abilities to take up and to release calcium and may act as a Ca2+-regulating site in this organism.  相似文献   

17.
An adapted version of the Ca2+-influx assay of Weissmann et al. (Weissmann, G., Anderson, P., Serhan, C., Samuelson, E. and Goodman, E. (1980) Proc. Natl. Acad. Sci. USA 77, 1506-1510) is presented for studies on the possible ionophoretic properties of acidic phospholipids. This method is based on the use of the metallochromic dye arsenazo III enclosed in liposomal vesicles, to indicate the Ca2+ influx. An essential control is introduced to discriminate between Ca2+-arsenazo III complex formation inside the vesicles, as a consequence of Ca2+ influx, and outside the vesicles, as a consequence of arsenazo III leakage from the vesicles. Furthermore, some minor improvements are added, like the use of large unilamellar vesicles instead of multilamellar vesicles, and the use of dual wavelength spectrophotometry. Using this method, it was found that dioleoylphosphatidylcholine vesicles, containing 20 mol% dioleoylphosphatidylglycerol, were impermeable to Ca2+. In this system a selective Ca2+ permeability could be induced by the addition of the fungal Ca2+ ionophore A23187. In contrast, dioleoylphosphatidylcholine vesicles, containing 20 mol% dioleoylphosphatidic acid, incubated in the presence of Ca2+ were permeable to both Ca2+ and arsenazo III.  相似文献   

18.
The absorption spectrum of arsenazo III in media containing K+, Mg2+ and Ca2+ is sharply influenced by pH in the range of 7.5–5.0. The effect of pH is particularly pronounced in the wavelength range 532–602 nm due to the large pH dependence of the dissociation constant of Mg-arsenazo III complex. Therefore absorption changes at these wavelengths during muscle contraction cannot be used as reliable indicators of free ionized Ca2+ concentration in the cell. The effect of pH is less pronounced, but still noticeable at the wavelength pairs 575–650 or 660–685 nm.Multiple layers of muscle cells grown on polystyrene coils permit measurement of absorption changes of arsenazo III, introduced into the cells, by equilibration with 0.5 nM arsenazo III under routine culture conditions. The absorbance changes recorded at 660–685 nm are probably related to changes in intracellular free Ca2+ concentration.  相似文献   

19.
The Ca indicator arsenazo III was introduced into cut frog twitch fibers by diffusion from end-pool segments rendered permeable by saponin. After 2-3 h, the arsenazo III concentration at the optical recording site in the center of a fiber reached two to three times that in the end-pool solutions. Thus, arsenazo III was bound to or taken up by intracellular constituents. The time course of indicator appearance was fitted by equations for diffusion plus linear reversible binding; on average, 0.73 of the indicator was bound and the free diffusion constant was 0.86 x 10(-6) cm2/s at 18 degrees C. When the indicator was removed from the end pools, it failed to diffuse away from the optical site as rapidly as it had diffused in. The wavelength dependence of resting arsenazo III absorbance was the same in cut fibers and injected intact fibers. After action potential stimulation, the active Ca and dichroic signals were similar in the two preparations, which indicates that arsenazo III undergoes the same changes in absorbance and orientation in both cut and intact fibers. Ca transients in freshly prepared cut fibers appeared to be similar to those in intact fibers. As a cut fiber experiment progressed, however, the Ca signal changed. With action potential stimulation, the half-width of the signal gradually increased, regardless of whether the indicator concentration was increasing or decreasing. This increase was usually not accompanied by any change in the amplitude of the Ca signal at a given indicator concentration or by any obvious deterioration in the electrical condition of the fiber. In voltage-clamp experiments near threshold, the relation between peak [Ca] and voltage usually became less steep with time and shifted to more negative potentials. All these changes were also observed in cut fibers containing antipyrylazo III (Maylie, J., M. Irving, N. L. Sizto, and W. K. Chandler. 1987. Journal of General Physiology. 89:83-143). They are considered to represent a progressive change in the physiological state of a cut fiber during the time course of an experiment.  相似文献   

20.
The absorption spectrum of arsenazo III in media containing K+, Mg2+ and Ca2+ is sharply influenced by pH in the range of 7.5--5.0. The effect of pH is particularly pronounced in the wavelength range 532--602 nm due to the large pH dependence of the dissociation constant of Mg-arsenazo III complex. Therefore absorption changes at these wavelengths during muscle contraction cannot be used as reliable indicators of free ionized Ca2+ concentration in the cell. The effect of pH is less pronounced, but still noticeable at the wavelength pairs 575--650 or 660--685 nm. Multiple layers of muscle cells grown on polystyrene coils permit measurement of absorption changes of arsenazo III, introduced into the cells, by equilibration with 0.5 mM arsenazo III under routine culture conditions. The absorbance changes recorded at 660--685 nm are probably related to changes in intracellular free Ca2+ concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号