首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A rapid method for the fractionation of anionic oligosaccharide and glycopeptide species on the basis of net carbohydrate content utilizing high-performance liquid chromatography has been developed. Amine-bearing bonded-phase columns are eluted with a mobile phase consisting of a water:acetonitrile gradient containing 3% acetic acid titrated to pH 5.5 with triethylamine. Phosphorylated and sialylated oligosaccharides within various charge classes differing in their hexose or hexosamine contents but bearing the same number of anionic species can be resolved without prior removal of the anionic moieties. Glycopeptides containing at least as many as six amino acids are also well fractionated on the basis of carbohydrate content. A variety of detection methods may be used and sensitivity in the subnanomole range is possible with fluorescent or radiolabeling techniques. This method offers a significant improvement in the rapidity and resolution attainable for the size fractionation of anionic complex carbohydrates.  相似文献   

2.
BackgroundPrevious glycophylogenetic comparisons of dipteran and lepidopteran species revealed variations in the anionic and zwitterionic modifications of their N-glycans; therefore, we wished to explore whether species- and order-specific glycomic variations would extend to the hymenoptera, which include the honeybee Apis mellifera, an agriculturally- and allergologically-significant social species.MethodsIn this study, we employed an off-line liquid chromatography/mass spectrometry approach, in combination with enzymatic and chemical treatments, to analyse the N-glycans of male honeybee larvae and honeybee venom in order to facilitate definition of isomeric structures.ResultsThe neutral larval N-glycome was dominated by oligomannosidic and paucimannosidic structures, while the neutral venom N-glycome displayed more processed hybrid and complex forms with antennal N-acetylgalactosamine, galactose and fucose residues including Lewis-like epitopes; the anionic pools from both larvae and venom contained a wide variety of glucuronylated, sulphated and phosphoethanolamine-modified N-glycans with up to three antennae. In comparison to honeybee royal jelly, there were more fucosylated and fewer Man4/5-based hybrid glycans in the larvae and venom samples as well as contrasting antennal lengths.ConclusionsCombining the current data on venom and larvae with that we previously published on royal jelly, a total honeybee N-glycomic repertoire of some 150 compositions can be proposed in addition to the 20 previously identified on specific venom glycoproteins.SignificanceOur data are indicative of tissue-specific modification of the core and antennal regions of N-glycans in Apis mellifera and reinforce the concept that insects are capable of extensive processing to result in rather complex anionic oligosaccharide structures.  相似文献   

3.
A strategic method with high speed and sensitivity is outlined for the analysis of mucin-type oligosaccharide from the jelly coat of Xenopus laevis. The method relies primarily on mass spectrometric techniques, in this case matrix-assisted laser desorption/ionization Fourier-transform mass spectrometry (MALDI-FTMS) and collision-induced dissociation (CID). Separation with isolation of the oligosaccharides was streamlined to couple well with mass spectrometry allowing the rapid determination of all detectable components from both neutral and anionic species. Partial structures of anionic components, composed primarily of sulfate esters, were obtained with CID. For neutral species, a method that allowed the complete structural determination using mass spectrometry was used. The method builds on the structure of small number of known compounds to determine unknown structures from the same biological source. In this example, a small number of oligosaccharides, elucidated previously by NMR, were used to develop a set of substructural motifs that were characterized by CID. The presence of the motifs in the CID spectra were then used to determine the structures of unknown compounds that were in abundances too small for NMR analysis.  相似文献   

4.
We modified and tuned a commercial model of a gas chromatography/mass spectrometry (GC/MS) instrument to develop a simple and rapid method for the simultaneous quantification of a variety of gas species. Using the developed method with the newly modified instrument, gas species such as H2, N2, O2, CO, NO, CH4, CO2, and N2O, which are common components of microbial metabolism, were accurately identified based on their retention times and/or mass-to-charge ratios (m/z) in less than 2.5 min. By examining the sensitivities and dynamic ranges for the detection of H2, N2, O2, CH4, CO2, and N2O, it was demonstrated that the method developed in this study was sufficient for accurately monitoring the production and the consumption of these gaseous species during microbial metabolism. The utility of the new method was demonstrated by a denitrification study with Pseudomonas aureofaciens ATCC 13985T. This method will be suitable for a variety of applications requiring the identification of gaseous metabolites in microorganisms, microbial communities, and natural ecosystems.  相似文献   

5.
Human exposure to alkylating agents metabolized from tobacco- and food-borne carcinogens occurs regularly. Dietary inorganic compounds such as selenium and vanadium have been shown previously to provide chemoprotective benefits in rat and human trials. Here, we present biochemical data on the ability of inorganic compounds to protect DNA from alkylation damage. An enzyme cleavage assay is used to observe alkylated DNA. Simple salts (e.g., NaCl or NiCl2) did not prevent DNA alkylation, whereas anionic oxo species (e.g., Na2SeO4 or Na3VO4) did inhibit alkylation. We propose that these oxo species behave as nucleophilic targets for the electrophilic alkylating agents, thereby preventing DNA damage.  相似文献   

6.
We have developed methods for rapid fractionation of anionic oligosaccharides containing sulfate and/or sialic acid moieties by high-performance liquid chromatography (HPLC). Ion-exchange HPLC on amine-bearing columns (Micropak AX-10 and AX-5) at pH 4.0 is utilized to separate anionic oligosaccharides bearing zero, one, two, three, or four charges, independent of the identity of the amnionic moieties (sulfate and/or sialic acid). Ion-exchange HPLC at pH 1.7 allows separation of neutral, mono-, di-, and tetrasialylated, monosulfated, and disulfated oligosaccharides. Oligosaccharides containing three sialic acid residues and those bearing one each of sulfate and sialic acid, however, coelute at pH 1.7. Since the latter two oligosaccharide species separate at pH 4.0, analysis at pH 4.0 followed by analysis at pH 1.7 can be utilized to completely fractionate complex mixtures of sulfated and sialylated oligosaccharides. Ion-suppression amine adsorption HPLC has previously been shown to separate anionic oligosaccharides on the basis of net carbohydrate content (size). In this study we demonstrate the utility of ion-suppression amine adsorption HPLC for resolving sialylated oligosaccharide isomers which differ only in the linkages of sialic acid residues (alpha 2.3 vs alpha 2.6) and/or location of alpha 2,3- and alpha 2,6-linked sialic acid moieties on the peripheral branches of oligosaccharides. These two methods can be used in tandem to separate oligosaccharides, both analytically and preparatively, based on their number, types, and linkages of anionic moieties.  相似文献   

7.
Mannosyl trihaloacetimidate donors equipped with a 2-O-Fmoc group can be effectively activated by catalytic Bi(OTf)3 in glycosidations. Despite the expected participating effect of the Fmoc group, the reaction solvent was found to be decisive for obtaining highly selective α-mannosylations. The Fmoc 2-O-protecting group can be then simply removed from the obtained di-oligosaccharide in the same vessel where the glycosidation is conducted. The resulting oligosaccharide can thus be directly employed as a glycosyl acceptor for further elongation. The preparation of biologically important linear and branched oligomannoses incorporated into HIV gp120 demonstrates that iteration of this one-pot sequence leads to very straightforward oligosaccharide assembly. As an additional result, a rapid approach has been disclosed for accessing a 3,6-OH mannose building-block to be incorporated in branched structures. This relies on a double reductive opening of a di-O-benzylidene mannose intermediate whose regioselectivity appears to be independent of the configuration of the five-membered benzylidene.  相似文献   

8.
Summary N-acetylchitooligosaccharides, fragments of the backbone of fungal cell wall, trigger rapid membrane responses such as transient depolarization, and elicit defense reactions including phytoalexin production in suspension-cultured rice cells. The generation of reactive oxygen species triggered by the oligosaccharide signal was analyzed with EPR spectroscopy using a spin trapping system, 4-pyridyl 1-oxideN-tert-butyl nitrone (4-POBN) and ethanol. OH generation was detected as the -hydroxyethyl adduct of 4-POBN after elicitation. Superoxide dismutase, catalase or diethylenetriamine pentaacetic acid, a metal chelator, inhibited generation, proposing the following reaction sequence: generation of in response to the oligosaccharide elicitor, followed by dismutation to H2O2, then generation of by the reaction of H2O2 with Fe2+ that is generated by the reduction of Fe3+ by . Generation of the same reactive oxygen species was also triggered by calyculin A, a protein phosphatase inhibitor, alone, suggesting the involvement of protein phosphorylation in its regulation during the oligosaccharide signal transduction.Abbreviations DMPO 5,5-dimethyl-1-pyrroline N-oxide - DTPA diethylenetriamine pentaacetic acid - 4-POBN 4-pyridyl 1-oxideN-tert-butylnitrone - SOD Superoxide dismutase - 4-hydroxy-TEMPO 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl  相似文献   

9.
Proteins that bind carbohydrates can be used to isolate specific sugar sequences from complex mixtures. Free sialyloligosaccharides or sialyloligosaccharides released from gangliosides by ozonolysis and alkaline fragmentation are labeled at their reducing ends by reduction with NaB[3H]4. After partial separation by column chromatography, oligosaccharide fractions are tested for binding to anti-sialyloligosaccharide antibodies [Smith, D. F., and Ginsburg, V. (1980) J. Biol. Chem.255, 55–59] and cholera toxin by a nitrocellulose filter assay. Oligosaccharides bound by the proteins can be eluted from the filters and further characterized. The method can be used to isolate and identify carbohydrate ligands of cell surfaces.  相似文献   

10.
This report describes a novel method for overexpression of 13C-labeled oligosaccharides using genetically engineered Saccharomyces cerevisiae cells, in which a homogeneous high-mannose-type oligosaccharide accumulates because of deletions of genes encoding three enzymes involved in the processing pathway of asparagine-linked oligosaccharides in the Golgi complex. Using uniformly 13C-labeled glucose as the sole carbon source in the culture medium of these engineered yeast cells, high yields of the isotopically labeled Man8GlcNAc2 oligosaccharide could be successfully harvested from glycoprotein extracts of the cells. Furthermore, 13C labeling at selected positions of the sugar residues in the oligosaccharide could be achieved using a site-specific 13C-enriched glucose as the metabolic precursor, facilitating NMR spectral assignments. The 13C-labeling method presented provides the technical basis for NMR analyses of structures, dynamics, and interactions of larger, branched oligosaccharides.  相似文献   

11.
The reaction of indoles with the Salkowski reagent has been examined. It was found that the concentration of acid as well as the concentration and anionic component of the iron salt employed are critical factors in the choice of a reagent that will fail to react—or will react maximally with a given indole. Tryptamine can be reproducibly assayed with a reagent containing 0.01 M Fe(NO3)3 in 7.0 M HCIO4. Two ml of this reagent are added to two ml of the sample. The absorbancy is read at 450 nm after 90 minutes under uniform light conditions. Versions of this reagent can also be used for the quantitative colorimetric determination of tryptophan or indoleacetic acid.  相似文献   

12.
Oligosaccharides serve as markers of the cell surface and have been used as certain kinds of tumor markers. In the present study, we established a simple method for isolating hepatic progenitor cells using a lectin, which recognizes a characteristic oligosaccharide structure. Rat liver epithelial (RLE) cells, which have been established as a hepatic stem-like cell, were used to identify characteristic oligosaccharide structures on hepatic stem cells. As a result from lectin micro array, several types of lectin including E4-PHA were identified to bind RLE cells specifically. Furthermore, lectin blot and lectin flow cytometry analyses showed that binding to E4-PHA lectin was significantly increased in RLE cells, compared to hepatocytes, and hepatoma cells. The induction of differentiation into a hepatocyte lineage of RLE cells by treatment with Oncostatin M and dexamethasone resulted in a decrease in E4-PHA binding. Using an E4-PHA column, we succeeded in isolating hepatic stem cells from LEC (Long-Evans with cinnamon coat color) rat livers with fluminant hepatitis. The characteristics of the established cells were similar to RLE cells and had a potential of proliferating in rat liver. These results suggest that oligosaccharides can serve as a novel marker for the isolation of the hepatic progenitor cells.  相似文献   

13.

Background

Heparan sulfate (HS) is an important regulator of the assembly and activity of various angiogenic signalling complexes. However, the significance of precisely defined HS structures in regulating cytokine-dependent angiogenic cellular functions and signalling through receptors regulating angiogenic responses remains unclear. Understanding such structure-activity relationships is important for the rational design of HS fragments that inhibit HS-dependent angiogenic signalling complexes.

Methodology/Principal Findings

We synthesized a series of HS oligosaccharides ranging from 7 to 12 saccharide residues that contained a repeating disaccharide unit consisting of iduronate 2-O-sulfate linked to glucosamine with or without N-sulfate. The ability of oligosaccharides to compete with HS for FGF2 and VEGF165 binding significantly increased with oligosaccharide length and sulfation. Correspondingly, the inhibitory potential of oligosaccharides against FGF2- and VEGF165-induced endothelial cell responses was greater in longer oligosaccharide species that were comprised of disaccharides bearing both 2-O- and N-sulfation (2SNS). FGF2- and VEGF165-induced endothelial cell migration were inhibited by longer 2SNS oligosaccharide species with 2SNS dodecasaccharide activity being comparable to that of receptor tyrosine kinase inhibitors targeting FGFR or VEGFR-2. Moreover, the 2SNS dodecasaccharide ablated FGF2- or VEGF165-induced phosphorylation of FAK and assembly of F-actin in peripheral lamellipodia-like structures. In contrast, FGF2-induced endothelial cell proliferation was only moderately inhibited by longer 2SNS oligosaccharides. Inhibition of FGF2- and VEGF165-dependent endothelial tube formation strongly correlated with oligosaccharide length and sulfation with 10-mer and 12-mer 2SNS oligosaccharides being the most potent species. FGF2- and VEGF165-induced activation of MAPK pathway was inhibited by biologically active oligosaccharides correlating with the specific phosphorylation events in FRS2 and VEGFR-2, respectively.

Conclusion/Significance

These results demonstrate structure-function relationships for synthetic HS saccharides that suppress endothelial cell migration, tube formation and signalling induced by key angiogenic cytokines.  相似文献   

14.
Proteins entering the secretory pathway may be glycosylated upon transfer of an oligosaccharide (Glc3Man9GlcNAc2) from a dolichol-P-P derivative to nascent polypeptide chains in the lumen of the endoplasmic reticulum (ER). Oligosaccharides are then deglucosylated by glucosidases I and II (GII). Also in the ER, glycoproteins acquire their final tertiary structures, and species that fail to fold properly are retained and eventually degraded in the proteasome. It has been proposed that in mammalian cells the monoglucosylated oligosaccharides generated either by partial deglucosylation of the transferred compound or by reglucosylation of glucose-free oligosaccharides by the UDP-Glc:glycoprotein glucosyltransferase (GT) are recognized by ER resident lectins (calnexin and/or calreticulin). GT is a sensor of glycoprotein conformation as it only glucosylates misfolded species. The lectin-monoglucosylated oligosaccharide interaction would retain glycoproteins in the ER until correctly folded, and also facilitate their acquisition of proper tertiary structures by preventing aggregation. GII would liberate glycoproteins from the calnexin/calreticulin anchor, but species not properly folded would be reglucosylated by GT, and so continue to be retained by the lectins. Only when the protein becomes properly folded would it cease to be retained by the lectins. This review presents evidence suggesting that a similar quality control mechanism of glycoprotein folding is operative in Schizosaccharomyces pombe and that the mechanism in Saccharomyces cerevisiae probably differs substantially from that occurring in mammalian and Sch. pombe cells.  相似文献   

15.
Electrochemical and nanogravimetric DNA-hybridization biosensors have been developed for sensing single mismatches in the probe-target ssDNA sequences. The voltammetric transduction was achieved by coupling ferrocene moiety to streptavidin linked to biotinylated tDNA. The mass-related frequency transduction was implemented by immobilizing the sensory pDNA on a gold-coated quartz crystal piezoresonators oscillating in the 10 MHz band. The high sensitivity of these sensors enabled us to study DNA damage caused by representative toxicants and environmental pollutants, including Cr(VI) species, common pesticides and herbicides. We have found that the sensor responds rapidly to any damage caused by Cr(VI) species, with more severe DNA damage observed for Cr2O72− and for CrO42− in the presence of H2O2 as compared to CrO42− alone. All herbicides and pesticides examined caused DNA damage or structural alterations leading to the double-helix unwinding. Among these compounds, paraoxon-ethyl and atrazine caused the fastest and most severe damage to DNA. The physico-chemical mechanism of damaging interactions between toxicants and DNA has been proposed. The methodology of testing voltammetric and nanogravimetric DNA-hybridization biosensors developed in this work can be employed as a simple protocol to obtain rapid comparative data concerning DNA damage caused by herbicide, pesticides and other toxic pollutants. The DNA-hybridization biosensor can, therefore, be utilized as a rapid screening device for classifying environmental pollutants and to evaluate DNA damage induced by these compounds.  相似文献   

16.
As part of their posttranslational maturation process, newly synthesized glycoproteins that contain N-linked oligosaccharide side chains pass through the Golgi apparatus, where some of their oligosaccharides become modified by carbohydrate processing reactions. In this paper, we report the presence of Golgi-localized enzymes in plant cells (Phaseolus vulgaris cotyledons) that transfer GlcNAc, fucosyl, and xylosyl residues to the oligosaccharide side chains of glycoproteins. All three enzyme activities are involved in the transformation of high mannose side chains into complex glycans. As judged by acceptor specificity studies, at least two GlcNAc residues can be added to the nonreducing side of high mannose oligosaccharides, which have been trimmed by α-mannosidase(s). A Man5(GlcNAc)2-peptide serves as the acceptor for the first GlcNAc added. The second GlcNAc can be added only after the prior removal of two additional mannose residues, ultimately yielding (GlcNAc)2Man3(GlcNAc)2-peptide. Fucosyltransferase can transfer fucose to GlcNAcMan5(GlcNAc)2Asn, GlcNAcMan3(GlcNAc)2Asn, and (GlcNAc)2Man3(GlcNAc)2Asn; xylosyltransferase exhibits significant activity toward the latter two substrates only. These results suggest an overlapping sequence of oligosaccharide modification in the Golgi apparatus that, in regard to GlcNAc and fucose additions, is analogous to pathways of oligosaccharide processing reported for animal cells. To our knowledge, this is the first report characterizing a xylosyltransferase involved in N-linked oligosaccharide modification, an activity that is apparently absent in most animal cells.  相似文献   

17.
BassiriRad  Hormoz  Prior  Stephen A.  Norby  Rich J.  Rogers  Hugo H. 《Plant and Soil》1999,217(1-2):195-204
Models describing plant and ecosystem N cycles require an accurate assessment of root physiological uptake capacity for NH 4 + and NO 3 - under field conditions. Traditionally, rates of ion uptake in field-grown plants are determined by using excised root segments incubated for a short period in an assay solution containing N either as a radioactive or stable isotope tracer (e.g., 36ClO3 as a NH 4 + analogue, 14CH3NH3 as an NO 3 - analogue or 15NH 4 + and 15NO 3 - ). Although reliable, this method has several drawbacks. For example, in addition to radioactive safety issues, purchase and analysis of radioactive and stable isotopes is relatively expensive and can be a major limitation. More importantly, because excision effectively interrupts exchange of compounds between root and shoot (e.g., carbohydrate supply to root and N transport to shoot), the assay must be conducted quickly to avoid such complications. Here we present a novel field method for simultaneous measurements of NH 4 + and NO 3 - uptake kinetics in intact root systems. The application of this method is demonstrated using two tree species; red maple (Acer rubrum) and sugar maple (Acer saccharum) and two crop species soybean (Glycine max) and sorghum (Sorghum bicolor). Plants were grown in open-top chambers at either ambient or elevated levels of atmospheric CO2 at two separate US national sites involved in CO2 research. Absolute values of net uptake rates and the kinetic parameters determined by our method were found to be in agreement with the literature reports. Roots of the crop species exhibited a greater uptake capacity for both N forms relative to tree species. Elevated CO2 did not significantly affect kinetics of N uptake in species tested except in red maple where it increased root uptake capacity, V, for NH 4 + . The application, reliability, advantages and disadvantages of the method are discussed in detail. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Aflatoxin B1 (AFB1) is classified as a Group I hepatocarcinogen in humans by the International Agency for Research on Cancer (IARC). The alkaline Comet assay is a simple and rapid method by which DNA damage can be demonstrated as a function of tail moment. The present work is the first to evaluate the genotoxicity of AFB1 in fish using the Comet assay. Two different species of fish were selected as models due to previously established sensitivity to AFB1: rainbow trout (sensitive) and channel catfish (resistant). Fish were i.p. injected with 0.5 mg AFB1/1 ml DMSO/1 kg body weight. The Comet assay was performed after 4 and 24 h on whole blood, liver, and kidney cells of both species. Trout blood and kidney tissue tested displayed significant (p<0.05) and extensive DNA damage (shown by increased tail moment) after 4 h which then decreased by 24 h. In liver cells, damage progressively increased over time. Conversely, similarly treated catfish showed no elevation in DNA damage over controls at the same doses. These results suggest that the Comet assay is a useful tool for monitoring the genotoxicity of mycotoxins such as AFB1 and for evaluating organ specific effects of these agents in different species.  相似文献   

19.
A high‐yield chemiluminescence (CL) system based on the alkaline permanganate–Rhodamine B reaction was developed for the sensitive determination of fluvoxamine maleate (Flu). Rhodamine B is oxidized by alkaline KMnO4 and a weak CL emission is produced. It was demonstrated that gold nanoparticles greatly enhance this CL emission due to their interaction with Rhodamine B molecules. It is also observed that sodium dodecyl sulfate, an anionic surfactant, can strongly increase this enhancement. In addition, it was demonstrated that a notable decrease in the CL intensity is observed in the presence of Flu. This may be related to Flu oxidation with KMnO4. There is a linear relationship between the decrease in CL intensity and the Flu concentration over a range of 2–300 µg/L. A new simple, rapid and sensitive CL method was developed for the determination of Flu with a detection limit (3s) of 1.35 µg/L. The proposed method was used for the determination of Flu in pharmaceutical and urine samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A xyloglucan oligosaccharide was isolated from cell walls of Daucus carota L. suspension-cultured cells. From analytical data (gel-permeation chromatography, thin-layer chromatography, monosaccharide analysis, methylation analysis) it can be concluded that this oligosaccharide preparation consists mainly of a nonasaccharide known as XG9 (Glc4Xyl3GalFuc). This nonasaccharide showed excellent “anti-auxin” properties in the pea-stem bioassay, with 80% inhibition of 2,4-dichlorophenoxyacetic acid (2,4-D)-induced longitudinal growth of etiolated pea stem segments at concentrations of 1-0.1 nM. Applied in nanomolar concentrations to protoplasts regenerating in a medium containing 4.52 μM 2,4-D, the nonasaccharide influenced the viability of the protoplasts and the activities of glycan synthases in vitro. The effects were similar to those achieved by the omission of 2,4-D from the regeneration medium. The composition of the regenerated cell wall was not changed significantly by the use of 2,4-D-depleted medium or the addition of XG9 to 2,4-D-containing medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号