首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple method for measuring PPi at concentrations down to 2 μm has been devised using the ability of inorganic pyrophosphatase to be inactivated by fluoride in the presence of PPi. Orthophosphate (20 mm) and a number of other compounds did not interfere with the assay. The applicability of the method for direct measurement of PPi in urine is demonstrated.  相似文献   

2.
A simple and rapid method is described for determining Pi by spectrophotometric measurement of a soluble complex of phosphomolybdic acid and Cirrasol ALN-WF, a non-ionic detergent formerly known as Lubrol W. The measured complex has a molar extinction coefficient of 4.59 · 103 at 390 nm and little interference is found with relatively high concentrations of chelating agents, salts, and other compounds which interfere with most other Pi assays. Linearity is observed in the range 0–1.2 μmoles Pi and developed assay samples are stable for 8 h at 20 °C or 24 h at 4 °C. The method is suitable for use in the presence of moderate concentrations of protein or ATP.After suitable modification the assay can be used at pH 4.0. Sensitivity is reduced at this pH (εM, 390nm = 2.79 · 103) but linearity is maintained up to 1 μmole Pi and the coloured complex is stable for 4 h at 20 °C. The pH-4 procedure is suitable for measurement of Pi in the presence of very labile phosphate esters such as creatine phosphate.The phosphomolybdic acid-Cirrasol complex can be reduced at ambient temperature in both the above systems. A blue complex results with εM, 820nm of 9.9 · 103 at pH 4.0, and 1.8 · 104 under more acidic conditions.  相似文献   

3.
A generally applicable, inexpensive, and sensitive method for the determination of inorganic pyrophosphate (PPi) was developed. PPi was quantitatively separable from solution even in nanomolar concentrations by filtration through a membrane filter in the presence of CaCl2 and KF. The separated PPi was dissolved by immersing the filter in 0.5 n H2SO4. Inorganic phosphate (Pi) was removed by precipitating it as a phosphomolybdate-triethylamine complex and the PPi was measured as a green pyrophosphomolybdate in the presence of 2-mercaptoethanol. Nucleotides and phosphate esters do not react. PPi can be accurately assayed even when there is a 104-fold excess of Pi. Trimetaphosphate, tripolyphosphate, and tetrapolyphosphate also give this green color, but the rate of the color formation is 50 times slower than that with PPi. Thus this interference of the polyphosphates can be eliminated or the polyphosphates can be assayed simultaneously with the PPi in the same sample.  相似文献   

4.
A recent publication from this laboratory (1) described an enzymatic assay for inorganic phosphate (Pi) which eliminates the need for standards and, through mild reaction conditions, avoids the hydrolysis of labile organic phosphates. Those features are advantageous, particularly for Pi measurements in biological samples. However, subsequent inquiries from other laboratories and our own experience indicated that the assay, as described (1), does not perform well. Specifically, it was found that the assay range was 10-fold narrower than that reported, completion times were 3- to 5-fold longer, and the reaction with Pi standards was only 90–95% complete.Because of these deficiencies we have systematically evaluated every aspect of the assay and have found that the difficulties are eliminated and the assay is improved and simplified by the following changes; (i) Triethanolamine is used in place of Tris as the assay buffer; (ii) triose phosphate isomerase is eliminated and the levels of other enzymes are adjusted to obtain optimum reaction conditions; (iii) ammonium sulfate is removed from the analytical enzymes. The modified procedure described below is more convenient, is linear up to Pi concentrations of 0.1 μmol/ml in the assay, gives complete reaction of Pi standards and quantitative recovery of Pi added to biological extracts, and comes to stable endpoints in 30 min or less (depending on the amount of Pi in the assay).  相似文献   

5.
A microprocedure for the colorimetric determination of inorganic pyrophosphate (PPi) in the presence or absence of orthophosphate (Pi) has been developed. PPi is estimated quantitatively as the amount of chromophore formed with molybdate reagent, 1-amino-2-naphthol-4-sulfonic acid in bisulfite and thiol reagent (monothioglycerol or 2-mercaptoethanol). The latter is obligatory for color formation. Pi is estimated without thiol reagent. The two chromophores differ in absorption spectra, the greatest difference being at 580 nm. For both, color develops fully by 10 min and is stable up to 1 hr. Just less than 0.4 μm PPi can be detemined. The extinction coefficients are 2.70 × 104 and 8.76 × 103 for PPi and Pi, respectively, both with thiol reagent present, and 2.77 × 103 for Pi with no thiol reagent.A ten-fold excess of Pi does not interfere with the determination of PPi and in fact can be estimated in the same mixture. A 15-fold excess, however, diminishes the accuracy of PPi estimations. Trichloroacetic acid and sodium fluoride inhibi color formation, but this inhibition is overcome by the addition of sodium acetate buffer, pH 4.0. Nucleoside triphosphates and adenosine 3′:5′-cyclic monophosphate are stable in the reaction mixture.The method was tested in assays of Escherichia coli DNA-dependent RNA polymerase (nucleoside triphosphate: RNA nucleotidyltransferase, EC 2.7.7.6). Progress curves measured by either the rate of PPi formation or the rate of synthesis of labeled RNA were very similar. Product PPi formed by as little as 0.6 unit of RNA polymerase in a 225-μl incubation medium could be measured.An automated version of the method was devised which allows accurate determination of PPi down to 1 μm (without range expander attachment) at a sampling rate of 20–40 tubes/hr.  相似文献   

6.
7.
8.
Certain open-chain polyols were shown to interfere with the determination of phosphorus of the Lowry-Lopez method by forming a complex with Mo7O246?. The ability to interfere with the assay increased with increasing chain length of the polyols: Ethylene glycol and glycerol did not react at all; i-erythritol reacted to a small extent, but hexitols and perseitol formed stronger complexes. Depending on the polyol, interference occurred even at 0.2 mm (hexitols) or 2 mm (xylitol) concentrations. At these concentrations the polyols interfered only to a small extent with the phosphorus assays based on the use of Triton X-100 and molybdate. The complex formation was exploited in the development of a colorimetric polyol assay.  相似文献   

9.
A new method for the rapid analysis of inorganic pyrophosphate (PPi) which utilizes the enzyme ATP sulfurylase is described. All components of the assay system are commercially available and inexpensive. The assay is linear over the range of 0.5–50.0 nmol of PPi and is not affected by inorganic phosphate. ATP and PPi can both be analyzed using this method.  相似文献   

10.
Monodentate Co(NH3)5PPi was determined not to be a substrate for yeast inorganic pyrophosphatase while P1,P2-bidentate Co(NH3)4PPi was turned over by the enzyme at a rate of 7.5 min?1. A kinetic analysis of the substrate activities of the P1,P2-bidentate complexes, Co(en)2PPi, Cr(NH3)4PPi, Cr(H2O)(NH3)3PPi, Cr(H2O)2(NH3)2PPi, and Cr(H2O)4PPi was carried out in order to access the potential role of the metal-water ligands in productive binding. While substitution of the H2O ligands with NH3 ligands had a minimal affect on the Km for Mg2+, the binding affinity of the complexes decreased with an increasing NH3H2O ligand ratio as did the turnover number of the corresponding central complexes. The Co(en)2PPi complex was hydrolyzed at a rate approximately 0.6% of that for the Co(NH3)4PPi complex. The substrate activities of β,γ-bidentate Co(NH3)4PPPi and α,β,γ-tridentate Co(NH3)3PPP with pyrophosphatase were also tested. While both complexes were shown to bind tightly to the Mg2+-activated enzyme neither was hydrolyzed. On the other hand, in the presence of the Zn2+-activated enzyme the tridentate complex was turned over at a rate of 0.17 min?1 while the bidentate complex remained inert to hydrolysis.  相似文献   

11.
1. Turnover of the photosynthetic carbon reduction cycle has been demon-strated in chlorophyll-free reaction mixtures containing chloroplast stromal extract, as evidenced by the fixation of CO2 following addition of small amounts of 3-phosphoglycerate.2. The activity of the photosynthetic carbon reduction cycle in this system is inhibited by inorganic phosphate (Pi), with activity reduced to 50% by about 6.5 mM Pi. Pi also increased the lag period which elapsed before a steady rate of CO2 fixation was obtained.3. The effect of Pi on the rate of 3-phosphoglycerate reduction following the addition of substrate amounts of some cycle intermediates was investigated. Substantial inhibition was observed with fructose 1,6-bisphosphate, sedoheptulose 1,7-bisphosphate and erythrose 4-phosphate as substrates. Pi also affected the activity of ribulose-bisphosphate carboxylase, with stimulation at Pi concentrations below 2.5 mM and inhibition at higher concentrations.4. The results showed that the sedoheptulose bisphosphatase reaction is inhibited more strongly by Pi than the fructose bisphosphatase reaction.5. It is concluded that the previously established inhibitory effects of Pi on photosynthesis by intact isolated chloroplasts may be partly due to these inhibitory effects of Pi on the reactions of the photosynthetic carbon reduction cycle.  相似文献   

12.
13.
In studying conditions for obtaining photosynthetically functional chloroplasts from mesophyll protoplasts of sunflower and wheat, a strong requirement for chelation was found. The concentration of chelator, either EDTA or pyrophosphate (PPi), required for maximum activation depended on the pH, the concentration of orthophosphate (Pi) in the assay, and the chelator used. Studies with EDTA indicate that including the chelator in the isolation, resuspension, and assay media, in the absence of divalent cations, was most effective. Increased concentration of EDTA from 1 to 10 mm broadened the pH response curve for photosynthesis, inasmuch as a higher concentration of chelator was required for activation of photosynthesis at lower pH.Either EDTA, PPi, or citrate could activate photosynthesis of sunflower chloroplasts isolated and assayed at pH 8.4. At pH 7.6, PPi and EDTA were equally effective at low Pi concentrations but PPi was particularly effective in shortening the induction period at high concentrations of Pi (2.5 mm) in the assay medium. Including 1 mm 3-phosphoglycerate in the assay medium with or without Pi could not replace the need for chelation. However, 3-phosphoglycerate + EDTA in the assay medium with 0.5 mm Pi, pH 7.6, gave a short induction period and rates of photosynthesis similar to those with 10 mm PPi. The results suggest that PPi can have a dual effect at the lower pH through chelation and inhibition of the phosphate transporter.Photosynthesis by sunflower chloroplasts isolated and assayed at pH 8.4 with 0.2 mm EDTA (+ 0.5 mm Pi in the assays) was severely inhibited by 2 mM CaCl2, MgCl2, or MnCl2. Wheat chloroplasts isolated and assayed at pH 8.4 without chelation, and assayed with 0.2 mm Pi, had low rates of photosynthesis (25 μmol O2 evolved mg?1 chlorophyll h?1) which were strongly inhibited by 2 to 4 mm MgCl2, MnCl2, or CaCl2. With inclusion of EDTA and Pi at optimum levels, isolated chloroplasts of sunflower and wheat have high rates of photosynthesis and PPi or divalent cations are not of benefit.  相似文献   

14.
The effect of the hydrolysis product Pi and the artificial substrate p-nitrophenyl phosphate (p-nitrophenyl-P) on ouabain binding to (Na+ + K+)-activated ATPase was investigated.The hypothesis that (Mg2+ + p-nitrophenyl-P)-supported ouabain binding might be due to Pi release and thus (Mg2+ + Pi)-supported could not be confirmed.The enzyme · ouabain complexes obtained with different substrates were characterized according to their dissociation rates after removal of the ligands facilitating binding. The character of the enzyme · ouabain complex is determined primarily by the monovalent ion present during ouabain binding, but, qualitatively at least, it is immaterial whether binding was obtained with p-nitrophenyl phosphate or Pi.The presence or absence of Na+ during binding has a special influence upon the character of the enzyme · ouabain complex. Without Na+ and in the presence of Tris ions the complex obtained with (Mg2+ + Pi) and that obtained with (Mg2+ + p-nitrophenyl-P) behaved in a nearly identical manner, both exhibiting a slow decay. High Na+ concentration diminished the level of Pi-supported ouabain binding, having almost no effect on p-nitrophenyl phosphate-supported binding. Both enzyme · ouabain complexes, however, now resembled the form obtained with (Na+ + ATP), as judged from their dissociation rates and the K+ sensitivity of their decay. The complexes obtained at a high Na+ concentration underwent a very fast decay which could be slowed considerably after adding a low concentration of K+ to the resuspension medium. The most stable enzyme · ouabain complex was obtained in the presence of Tris ions only, irrespective of whether p-nitrophenyl phosphate or Pi facilitated complex formation. The presence of K+ gave rise to a complex whose dissociation rate was intermediate between those of the complexes obtained in the presence of Tris and a high Na+ concentration.It is proposed that the different ouabain dissociation rates reflect different reactive state of the enzyme. The resemblance between the observations obtained in phosphorylation and ouabain binding experiments is pointed out.  相似文献   

15.
Requirements for activation of inactive pyruvate, inorganic phosphate (Pi) dikinase extracted from darkened maize leaves were examined. Incubation with Pi plus dithiothreitol resulted in a rapid recovery of activity comparable to that in illuminated leaves. However, contrary to previous findings, most of this activity (60–95%) was recovered by adding Pi alone. There was no activation with dithiothreitol alone. Dependency on dithiothreitol, in addition to Pi was minimal at about pH 7.5 but was substantial at higher pH. Anaerobic conditions did not enhance Pi-dependent activation. Active enzyme, isolated from illuminated leaves, was inactivated by incubating with ADP and this occurred in the presence of dithiothreitol. ATP and AMP were not effective but ATP may be a corequirment for ADP-dependent inactivation. Enzyme inactivated by ADP required Pi for reactivation. We conclude that interconversion of dithiol and disulfide forms of the enzyme is not critical for the dark/light regulation of pyruvate, Pi dikinase. The primary mechanism apparently involves an ADP-induced transformation to an inactive form which undergoes a Pi-mediated reactivation.  相似文献   

16.
Although there is now some agreement with the view that the supply of photochemical energy may influence photosynthetic rate (P) at high CO2 pressures, it is less clear whether this limitation extends to P at low CO2. This was investigated by measuring P per area as a function of the intercellular CO2 concentration (Ci) at different levels of photochemical energy supply. Changes in the latter were obtained experimentally by varying the level of irradiance to normal (Fe-sufficient) leaves of Beta vulgaris L. cv F58-554H1, and by varying photosynthetic electron transport capacity using leaves from Fe-deficient and Fe-sufficient plants. P and Ci were determined for attached sugar beet leaves using open flow gas exchange. The results suggest that P/area was colimited by the supply of photochemical energy at very low as well as high values of Ci. Using the procedure developed by Perchorowicz et al. (Plant Physiol 1982 69:1165-1168), we investigated the effect of irradiance on ribulose bisphosphate carboxylase (RuBPCase) activation. The ratio of initial extractable activity to total inducible RuBPCase activity increased from 0.25 to 0.90 as leaf irradiance increased from 100 to 1500 microeinsteins photosynthetically active radiation per square meter per second. These data suggest that colimitation by photochemical energy supply at low Ci may be mediated via effects on RuBPCase activation.  相似文献   

17.
18.
During the polymerization of actin, hydrolysis of bound ATP occurs in two consecutive steps: chemical cleavage of the high-energy nucleotide and slow release of the γ-phosphate. In this study the effect of phalloidin and jasplakinolide on the kinetics of P i release was monitored during the formation of actin filaments. An enzyme-linked assay based spectrophotometric technique was used to follow the liberation of inorganic phosphate. It was verified that jasplakinolide reduced the P i release in the same way as phalloidin. It was not possible to demonstrate long-range allosteric effects of the toxins by release of P i from F-actin. The products of ATP hydrolysis were released by denaturation of the actin filaments. HPLC analysis of the samples revealed that the ATP in the toxin-bound region was completely hydrolysed into ADP and P i . The effect of both toxins can be sufficiently explained by local and mechanical blockade of P i dissociation.  相似文献   

19.
Mitochondria undergo a permeability transition (PT), i.e., become nonselectively permeable to small solutes, in response to a wide range of conditions/compounds. In general, opening of the permeability transition pore (PTP) is Ca2+- and Pi-dependent and is blocked by cyclosporin A (CsA), trifluoperazine (TFP), ADP, and butylated hydroxytoluene (BHT). Gudz and coworkers have reported [7th European Bioenergetics Conference, EBEC Short Reports (1992)7, 125], however, that, under some conditions, BHT increases mitochondrial permeability via a process that may not share all of these characteristics. Specifically, they determined that the BHT-induced permeability transition was independent of Ca2+ and was insensitive to CsA. We have used mitochondrial swelling to compare in greater detail the changes in permeability induced by BHT and by Ca2+ plus Pi with the following results. (1) The dependence of permeability on BHT concentration is triphasic: there is a threshold BHT concentration (ca. 60 nmol BHT/ mg mitochondrial protein) below which no increase occurs; BHT enhances permeability in an intermediate concentration range; and at high BHT concentrations (> 120 nmol/mg) permeability is again reduced. (2) The effects of BHT depend on the ratio of BHT to mitochondrial protein. (3) Concentrations of BHT too low to induce swelling block the PT induced by Ca2+ and Pi. (4) The dependence of the Ca2+-triggered PT on Pi concentration is biphasic. Below a threshold of 50–100 M, no swelling occurs. Above this threshold swelling increases rapidly. (5) Pi levels too low to support the Ca2+-induced PT inhibit BHT-induced swelling. (6) Swelling induced by BHT can bestimulated by agents and treatments that block the PT induced by Ca2+ plus Pi. These data suggest that BHT and Ca2+ plus Pi, increase mitochondrial permeability via two mutually exclusive mechanisms.  相似文献   

20.
1. The distribution of Pi between mitochondria and suspending medium during uncoupler-stimulated hydrolysis of ATP by rat liver mitochondria [Tyler (1969) Biochem. J. 111, 665–678] has been reinvestigated, by using either mersalyl or N-ethylmaleimide as inhibitors of Pi transport and either buffered sucrose/EDTA or LiCl/EGTA solutions as suspending medium. More than 75% of the total Pi liberated was retained in mitochondria treated with either inhibitor at all ATP concentrations tested (0.2–2.5mm). With low ATP concentrations and mersalyl-treated mitochondria incubated in sucrose/EDTA, virtually all the Pi liberated was retained in the mitochondria. 2. Larger amounts of Pi appeared in the suspending medium during ATPase activity, despite the presence of N-ethylmaleimide, when LiCl/EGTA was used as suspending medium compared with sucrose/EDTA. Two sources of this Pi were identified: (a) a slow efflux of Pi from mitochondria to suspending medium despite the presence of N-ethylmaleimide; (b) a slow ATPase activity insensitive to carboxyatractyloside, which was stimulated by added Mg2+, partially inhibited by oligomycin or efrapeptin and strongly inhibited by EDTA. 3. It is concluded that liver mitochondria preparations contain two distinct forms of ATPase activity. The major activity is associated with coupled mitochondria of controlled permeability to adenine nucleotides and Pi and is stimulated strongly by uncoupling agents. The minor activity is associated with mitochondria freely permeable to adenine nucleotides and Pi, is unaffected by uncoupling agents and is activated by endogenous or added Mg2+. 4. When mitochondria treated with mersalyl were incubated in buffered sucrose solution, almost all the Pi liberated was recovered in the suspending medium, unless inhibitors of Pi-induced large-amplitude swelling such as EDTA, EGTA, antimycin, rotenone, nupercaine or Mg2+ were added. Thus the loss of the specific permeability properties of the mitochondrial inner membrane associated with large-amplitude swelling also influences the extent of Pi retention during ATPase activity. 5. The results confirm the previous conclusion (Tyler, 1969) that the Pi transporter provides the sole pathway for Pi efflux during uncoupler-stimulated ATP hydrolysis by mitochondria. It is concluded that more recent hypotheses concerning the influence of Mg2+ on mersalyl inhibition of the Pi transporter [Siliprandi, Toninello, Zoccaroto & Bindoli (1975) FEBS Lett. 51, 15–17] and a postulated role of the adenine nucleotide exchange carrier in Pi efflux [Reynafarje & Lehninger (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 4788–4792] are erroneous and should be discarded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号