首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homocysteine (Hcy) and its metabolites Hcy-thiolactone, N-Hcy-protein, and S-Hcy-protein are implicated in vascular and neurological diseases. However, quantification of these metabolites remains challenging. Here I describe streamlined assays for these metabolites based on their conversion to Hcy-thiolactone. Free Hcy-thiolactone is extracted from the urine with chloroform/methanol. Total Hcy is converted to Hcy-thiolactone in the presence of 1 N HCl. Major urinary protein (MUP)-bound S-linked Hcy is liberated from the protein by reduction with dithiothreitol and converted to Hcy-thiolactone. Acid hydrolysis of MUP with 6 N HCl liberates N-linked Hcy as Hcy-thiolactone, which is then extracted with chloroform/methanol. Ferritin is used as an N-Hcy-protein standard and an authentic Hcy-thiolactone is used to monitor the efficiency of extraction. Hcy-thiolactone (free, derived from total Hcy, or from MUP-bound N-linked or S-linked Hcy) is separated by a cation exchange high-performance liquid chromatography, post-column derivatized with o-phthaldialdehyde, and quantified by fluorescence. Using these assays with as little as 2–20 μL of urine I show that MUP carry N-linked and S-linked Hcy and that N-Hcy-MUP and S-Hcy-MUP and Hcy-thiolactone are severely elevated in cystathionine β-synthase-deficient mice. These assays will facilitate examination of the role of protein-related Hcy metabolites in health and disease.  相似文献   

2.
Trichoderma spp. are used for biocontrol of several plant pathogens. However, their efficient interaction with the host needs to be accompanied by production of secondary metabolites and cell wall-degrading enzymes. Three parameters were evaluated after interaction between four Trichoderma species and plant-pathogenic fungi: Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum. Trichoderma harzianum and T. asperellum were the most effective antagonists against the pathogens. Most of the Trichoderma species produced toxic volatile metabolites, having significant effects on growth and development of the plant pathogens. When these species were grown in liquid cultures with cell walls from these plant pathogens, they produced and secreted β-1,3-glucanase, NAGAse, chitinase, acid phosphatase, acid proteases and alginate lyase.  相似文献   

3.
A filamentous fungus, Cunninghamella blakesleeana AS 3.153, was used as a microbial model of mammalian metabolism to transform verapamil, a calcium channel antagonist. The metabolites of verapamil were separated and assayed by the liquid chromatography-ion trap mass spectrometry method. After 96 h of incubation, nearly 93% of the original drug was metabolized to 23 metabolites. Five major metabolites were isolated by semipreparative high-performance liquid chromatography and were identified by proton nuclear magnetic resonance and electrospray mass spectrometry. Other metabolites were characterized according to their chromatographic behavior and mass spectral data. The major metabolic pathways of verapamil transformation by the fungus were N dealkylation, O demethylation, and sulfate conjugation. The phase I metabolites of verapamil (introduction of a functional group) by C. blakesleeana paralleled those in mammals; therefore, C. blakesleeana could be a useful tool for generating the mammalian phase I metabolites of verapamil.  相似文献   

4.
Macromycetes have been part of the human culture for thousand years, and have been reported as food in the most important civilizations in history. Many nutraceutical properties of macromycetes have been described, such as anti-cancer, anti-tumour, cholesterol lowering, antiviral, antibacterial, or immunomodulatory, among others. Given that production of mushrooms by traditional cultivation and extraction of bioactive metabolites is very difficult in some cases, biotechnology is essential for the development of profitable and productive techniques for obtaining these metabolites. It is the development of this technology, and the ease in which it enables the use of its variables that has allowed mycelium to be cultivated in liquid medium of macrofungi, with a significant reduction in time and an increased production of metabolites. This increased production has led to the study of compounds that have medicinal, nutriceutical and quasi-farmaceutical potential, in the exhausted media and the mycelium. The aim of this review is to provide an overview of the use of liquid-state fermentation as a technological tool for obtaining edible fungi, and the study of these and their metabolites, by describing the different cultivation conditions used in recent years, as well as the results obtained. The relevance of Agaricus, Flammulina, Grifola, Pleurotus and Lentinula genera, will also be discussed, with emphasis on the last one, since Shiitake has been always considered as the ultimate medicinal mushroom.  相似文献   

5.
Metabolite Profiles of Lactic Acid Bacteria in Grass Silage   总被引:1,自引:0,他引:1       下载免费PDF全文
The metabolite production of lactic acid bacteria (LAB) on silage was investigated. The aim was to compare the production of antifungal metabolites in silage with the production in liquid cultures previously studied in our laboratory. The following metabolites were found to be present at elevated concentrations in silos inoculated with LAB strains: 3-hydroxydecanoic acid, 2-hydroxy-4-methylpentanoic acid, benzoic acid, catechol, hydrocinnamic acid, salicylic acid, 3-phenyllactic acid, 4-hydroxybenzoic acid, (trans, trans)-3,4-dihydroxycyclohexane-1-carboxylic acid, p-hydrocoumaric acid, vanillic acid, azelaic acid, hydroferulic acid, p-coumaric acid, hydrocaffeic acid, ferulic acid, and caffeic acid. Among these metabolites, the antifungal compounds 3-phenyllactic acid and 3-hydroxydecanoic acid were previously isolated in our laboratory from liquid cultures of the same LAB strains by bioassay-guided fractionation. It was concluded that other metabolites, e.g., p-hydrocoumaric acid, hydroferulic acid, and p-coumaric acid, were released from the grass by the added LAB strains. The antifungal activities of the identified metabolites in 100 mM lactic acid were investigated. The MICs against Pichia anomala, Penicillium roqueforti, and Aspergillus fumigatus were determined, and 3-hydroxydecanoic acid showed the lowest MIC (0.1 mg ml−1 for two of the three test organisms).  相似文献   

6.
The determination of quinine, (3S)-3-hydroxyquinine, 2′-quininone and (10R)- and (10S)-10,11-dihydroxydihydroquinine in plasma and urine samples is described. This is the first time the R and S configurations have been correctly assigned to the two metabolites of 10,11-dihydroxyquinine. One hundred microliter-plasma samples were protein precipitated with 200 μl cold methanol. Urine samples were 10–100× diluted and then directly injected into the HPLC. A reversed-phase liquid chromatography system with fluorescence detection and a Zorbax Eclipse XDB phenyl column and gradient elution was used. The within and between assay coefficients of variation of the method for quinine and its metabolites in plasma and urine was less than 13%. The lower limit of quantitation was in the range of 0.024–0.081 μM.  相似文献   

7.
The filamentous fungus, Cunninghamella elegans, was found to metabolize the potent carcinogen, 3-methylcholanthrene (3-MC) to 1-hydroxy-3-MC, 2-hydroxy-3-MC, 1-keto-3-MC, 2-keto-3-MC and trans-9,10-dihydrodiols of 1-hydroxy-3-MC. In addition several unidentified derivatives of 3-MC were found. The metabolites formed were separated by high pressure liquid chromatography (HPLC) and identified by comparison of retention times, absorbance, fluorescence and mass spectra with those of synthetic standards. Incubation of (±)-1-hydroxy-3-MC and (±)-2-hydroxy-3-MC with cells of C. elegans indicated that 1-hydroxy-3-MC is metabolized to form diasteromerically related trans-9,10-dihydrodiols of 1-hydroxy-3-MC. Experiments with 3-[14C]MC showed that over a 48-h period, 8.7% of the hydrocarbon was oxidized to organic solvent-soluble metabolic products. Most of the metabolites were polar products, some of which co-chromatographed with trans-9,10-dihydrodiols of 1-hydroxy-3-MC. The results show that C. elegans has the ability to oxidize 3-MC to metabolites that have been implicated as proximate carcinogenic forms of 3-MC in higher organisms.  相似文献   

8.
9.
Two high-performance liquid chromatographic assays coupled with fluorometric detection have been developed for the determination of mivacurium isomers (trans-trans, cis-trans and cis-cis) and their monoester and alcohol metabolites in human plasma. A novel solid-phase extraction procedure allowed good recovery of the mivacurium isomers (mean 98%) and their monoester metabolites (mean 83%), whereas the alcohol metabolites were analyzed after direct precipitation of plasma proteins. For all analytes, these assays proved to be sensitive (LOQ 3.9–15.6 ng/ml), reproducible (C.V. < 15%) and accurate (>94%) over the therapeutic range of concentrations of mivacurium and its metabolites. These two methods were applied successfully to a pharmacokinetic study of mivacurium after a bolus dose of 0.15 mg/kg in anesthetized patients.  相似文献   

10.
We have examined the metabolites produced by in vitro incubation of benzo(a)pyrene with 3-methylcholanthrene-induced mice liver microsomes. Our objective was to observe directly a possible difference in microsomal enzyme systems of animal models having different susceptibility to chemical carcinogens. The metabolites produced by the two animal models,C57BL6J and DBA2 mice, were analyzed by a highly sensitive, “three-dimensional” fluorescence plotting technique. The fluorescence spectra of the total ethyl acetate-soluble metabolites clearly indicate that the metabolites produced by DBA2 enzymes were predominantly monohydroxylated benzo(a)pyrene while those produced by the liver microsomes of C57BL6J were highly enriched with the 7,8-dihydrodihydroxybenzo(a)pyrene type.  相似文献   

11.
A method has been developed for the stereoselective determination of zopiclone and its main metabolites in urine. After the addition of the internal standard zolpidem the urine samples were extracted at pH 8 with chloroform-isopropanol (9:1). Analyses were carried out using capillary electrophoresis (CE) with β-cyclodextrin as the chiral selector. The analytes were detected using UV laser-induced fluorescence detection with a He-Cd laser operated at 325 nm. Urine samples of two volunteers after oral administration of 7.5 mg zopiclone were investigated. The S-(+)-enantiomers of zopiclone and its metabolites were always excreted in higher amounts than the R-(−)-enantiomers. With the same method the zopiclone enantiomers were quantified in saliva. Compared to high-performance liquid chromatography, the CE method is very fast and simple.  相似文献   

12.
An in vitro cell suspension culture of Echium italicum was established and assayed for the production of shikonin and alkannin derivatives. Callus tissues were induced from cotyledon explants of the plant incubated onto the solidified B5 medium. A two-liquid-phase system suspension culture was then established to elicit pigments of shikonin and alkannin derivatives using liquid paraffin. The presence of liquid paraffin efficiently induced production of pigments in cultured cells. The production and/or accumulation of these compounds in the E. italicum cells was examined using fluorescence microscopy as the naphthoquinone molecules display autofluorescent properties. Phytochemical analysis of the n-hexane extract of the medium was also carried out using preparative HPLC. The chemical structure of shikonin and alkannin derivatives were characterized by UV, 1H-NMR, and 13C-NMR techniques. Based on our findings, this bioprocess engineering approach resulted in induction of shikonin and alkannin derivatives, whereupon it may be recruited for production of these important secondary metabolites.  相似文献   

13.
The effects of drought stress and high irradiance and their combination were studied under laboratory conditions using young plants of a very drought-resistant variety, ICMH 451, of pearl millet (Pennisetum glaucum) and three varieties of sorghum (Sorghum bicolor)—one drought-resistant from India, one drought-tolerant from Texas, and one drought-sensitive variety from France. CO2 assimilation rates and photosystem II fluorescence in leaves were analyzed in parallel with photosynthetic electron transport, photosystem II fluorescence, and chlorophyll-protein composition in chloroplasts isolated from these leaves. High irradiance slightly increased CO2 assimilation rates and electron transport activities of irrigated plants but not fluorescence. Drought stress (less than −1 megapascal) decreased CO2 assimilation rates, fluorescence, and electron transport. Under the combined effects of drought stress and high irradiance, CO2 assimilation rates and fluorescence were severely inhibited in leaves, as were the photosynthetic electron transport activities and fluorescence in chloroplasts (but not photosystem I activity). The synergistic or distinctive effect of drought and high irradiance is discussed. The experiments with pearl millet and three varieties of sorghum showed that different responses of plants to drought and light stresses can be monitored by plant physiological and biochemical techniques. Some of these techniques may have a potential for selection of stress-resistant varieties using seedlings.  相似文献   

14.
The mutagenic compound derived from the pyrolysis of tryptophan, 3-amino-1-methyl-5H-pyrido-[4,3b]indole (Trp-P-2) was metabolized by rat liver microsomes to more than four metabolites, separable by high performance liquid chromatography. Among these metabolites, two metabolites, M-3 and M-4 were directly active in increasing the frequency of mutation in Salmonella typhimurium TA98. Treatments of rats with polychlorinated biphenyl (PCB) or 3-methylcholanthrene dramatically induced the activity of liver microsomes to form these active metabolites, while treatment with phenobarbital was without effect. A major active metabolite (M-3) formed the pentacyano-ammine ferroate, which is known to be formed by reaction of sodium pentacyano-ammine ferroate with some hydroxylamines. Further this metabolite was oxidized to the minor active metabolite (M-4) with potassium ferricyanide or γ-manganese dioxide, and was reduced back to Trp-P-2 with titanium trichloride. These results indicated that the major active metabolite of Trp-P-2, which is formed by cytochrome P-450, is the 3-hydroxyamino derivative.  相似文献   

15.
20(R)-25-methoxyl-dammarane-3β,12β,20-triol (AD-1, CN Patent: 201010107476.7) is a novel derivative of dammarane-type ginsenoside. AD-1 has been shown to inhibit cancer cell proliferation without significant host toxicity in vivo, and has excellent development potential as a new anti-cancer agent. This study was designed systematically to explore the metabolic pathway of ginseng sapogenins. The metabolism of drugs in the body is a complex biotransformation process where drugs are structurally modified to different molecules (metabolites) through various metabolizing enzymes. The compounds responsible for the effects of orally administered ginseng are believed to be metabolites produced in the gastrointestinal tract, so understanding the metabolism of the drug candidate can help to optimize its pharmacokinetics. In this study, faeces samples were collected and extracted after oral administration of AD-1. The 16 metabolites of AD-1 were isolated and identified for the first time with various chromatographic techniques, including semi-preparative high performance liquid chromatography, nuclear magnetic resonance spectroscopy, and mass spectrometry; of these 16 metabolites, 10 were novel compounds. We first discovered the biotransformation of dammarane-type sapogenins into oleanane-type sapogenins in rats and found a series of metabolites that changed, mainly at C-25 and C-29. This study provides new ideas for the metabolic pathway of ginseng sapogenins. The isolated compounds were screened for their effect on the viability and proliferation against cancer cell lines (Human A549, MCF-7, HELA, HO-8901 and U87). The discovery of novel active metabolites 3β,12β,21α,22β-Hydroxy-24-norolean-12-ene (M6) may lead to a new or improved drug candidate. For one, M6 could inhibit the growth of all the tested cancer cells. Among the tested cell lines, M6 exhibited the most remarkable inhibitory effect on ovarian cancer HO-8901 cells, with IC50 value of 2.086 μM. On this basis, we studied the anticancer mechanisms of M6. The results indicated that the pro-apoptotic feature of M6 acts via a mitochondrial pathway. Our results indicated that M6 exhibited a higher inhibitory effect on cancer-cell proliferation than AD-1 by inducing cell apoptosis. Our work provides data for future investigations on the metabolic mechanism of AD-1 in vivo and the potential for future research on developing a new drug.  相似文献   

16.
A liquid chromatography-mass spectrometry (LC-MS) based metabolomics platform was previously established to identify and profile extracellular metabolites in culture media of mammalian cells. This presented an opportunity to isolate novel apoptosis-inducing metabolites accumulating in the media of antibody-producing Chinese hamster ovary (CHO mAb) fed-batch bioreactor cultures. Media from triplicate cultures were collected daily for the metabolomics analysis. Concurrently, cell pellets were obtained for determination of intracellular caspase activity. Metabolite profiles from the LC-MS data were subsequently examined for their degree of correlation with the caspase activity. A panel of extracellular metabolites, the majority of which were nucleotides/nucleosides and amino acid derivatives, exhibited good (R2 > 0.8) and reproducible correlation. Some of these metabolites, such as oxidized glutathione, AMP and GMP, were later shown to induce apoptosis when introduced to fresh CHO mAb cultures. Finally, metabolic engineering targets were proposed to potentially counter the harmful effects of these metabolites.  相似文献   

17.
A rapid method for the separation of tryptamine, 5-hydroxytryptamine, and their N-methylated derivatives is described. The method involves liquid chromatography using a cation exchange column with the eluant monitored either by ultraviolet or fluorescence spectroscopy. The latter technique permits the detection of picogram quantities of indoleamines. Using normal-phase liquid chromatography a complete separation of tryptamine, its N-methylated derivatives, and their β-carboline analogs was also achieved. A radioisotopic assay with the potential to detect indoleamine N-methyltransferase activity in milligram quantities of rabbit lung tissue was developed. The radioisotopically labeled products formed from a number of substrates in such assays were characterized by liquid chromatography.  相似文献   

18.
A sensitive and selective reversed-phase high-performance liquid chromatography method has been developed for the direct determination of three glucuronides of the centrally acting analgesic tramadol (1). Separation of these glucuronides into their diastereomers was achieved by HPLC using ion pair chromatography with nonanesulfonic acid sodium salt and LiChrospher 100 RP 18 as stationary phase. Quantification of O-demethyltramadol glucuronide and N,O-didemethyltramadol glucuronide in human urine was performed by fluorescence detection. The urine samples were purified by a two-step solid-phase extraction. The glucuronides were found to be highly enriched in the 1S,2S-diastereomers. The results of a study with three healthy volunteers are presented.  相似文献   

19.
Fungi are some of the most important organisms in the production of bioactive secondary metabolites. This success is related to the advances in biotechnology and also to the possibility of working with techniques such as the “OSMAC” (one strain-many compounds) to achieve different fungal secondary metabolites profiles upon modifying the culturing conditions. Using this approach, the fungal species Paecilomyces lilacinus was cultivated in potato dextrose broth under 14 different fermentative conditions by adding the bacterium Salmonella typhimurium to the growing medium in order to provide biotic stress. S. typhimurium was added alive or after inactivation by autoclave or microwave irradiation in different stages of fungal growth. Extracts were prepared by liquid–liquid extraction using ethyl acetate, a medium polarity solvent in order to avoid extracting culturing media components. Production of fatty acids of relevance for the pharmaceutical and food industries was enhanced by the modified fermentative conditions and they were identified and quantified. The extracts were evaluated for acetylcholinesterase inhibition and the more active extract (91 ± 2.91% inhibition) was prepared in large scale. From this active P. lilacinus extract, a novel pyridone alkaloid, named Paecilomide, was isolated and its structure was elucidated by modern nuclear magnetic resonance techniques and mass spectrometric analyses. Paecilomide (1) was also evaluated for acetylcholinesterase inhibition, presenting 57.5 ± 5.50% of acetylcholinesterase inhibition.  相似文献   

20.
The use of “nutritional supplements” containing unapproved substances has become a regular practice in amateur and professional athletes. This represents a dangerous habit for their health once no data about toxicological or pharmacological effects of these supplements are available. Most of them are freely commercialized online and any person can buy them without medical surveillance. Usually, the steroids intentionally added to the “nutritional supplements” are testosterone analogues with some structural modifications.In this study, the analyzed product was bought online and a new anabolic steroid known as methylstenbolone (2,17α-dimethyl-17β-hydroxy-5α-androst-1-en-3-one) was detected, as described on label. Generally, anabolic steroids are extensively metabolized, thus in-depth knowledge of their metabolism is mandatory for doping control purposes. For this reason, a human excretion study was carried out with four volunteers after a single oral dose to determine the urinary metabolites of the steroid. Urine samples were submitted to enzymatic hydrolysis of glucuconjugated metabolites followed by liquid–liquid extraction and analysis of the trimethylsilyl derivatives by gas chromatography coupled to tandem mass spectrometry. Mass spectrometric data allowed the proposal of two plausible metabolites: 2,17α-dimethyl-16ξ,17β-dihydroxy-5α-androst-1-en-3-one (S1), 2,17α-dimethyl-3α,16ξ,17β-trihydroxy-5α-androst-1-ene (S2). Their electron impact mass spectra are compatible with 16-hydroxylated steroids O-TMS derivatives presenting diagnostic ions such as m/z 231 and m/z 218. These metabolites were detectable after one week post administration while unchanged methylstenbolone was only detectable in a brief period of 45 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号