首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collagen metabolism was studied in degenerative articular cartilage of dogs with spontaneous, early onset osteoarthritis. A fraction of collagen which represented about 1.5.% of the total was extracted from cartilage samples with dilute phosphate buffer (pH 7.4) containing 0.2% sodium dodecyl sulfate. Agarose gel filtration in the presence of sodium dodecul sulfate revealed that extracts of degenerative cartilage had about 24% procollagen whereas extracts of normal samples had only 3%. The isolated procollagen fraction was rechromatographed on agarose columns in the presence of mercaptoethanol. This resulted in the identification of a collagen species which migrated between marker β and α collagen chains. The molecular weight of this collagen was estimated to be 150000. Based on incorporation of [14C]proline, its ratio of hydroxy[14C]proline to total 14C was 0.32. Procollagen was not found after limited pepsin digestion (pH 3,4°C, 16 h) of degenerative cartilage samples.Since the total collagen content (μg hydroxyproline/mg cartilage), hydroxy[14C]proline/mg cartilage, specific radioactivity of hydroxy[14C]proline (cpm/μg), in the whole cartilage, and the specific radioactivity of hydroxyproline in the extractable collagen fraction were similar for normal and degenerative cartilage we propose that procollagen accumulated in the degenerative cartilage due to a partial defect in conversion of procollagen to collagen.  相似文献   

2.
There is evidence that lysosomal proteases mediate the intracellular degradation of structurally abnormal collagen. I-Cell disease (Mucolipidosis II) is characterized by marked deficiency of many lysosomal hydrolases, including the collagenolytic enzyme cathepsin B. The experiments reported here tested the hypothesis that degradation of abnormal collagen would be severely impaired in I-cells. Skin fibroblasts from 3 patients with I-cell disease were incubated with and without cis-hydroxyproline, a proline analog that causes structural abnormalities in collagen, and [14C]proline. The amount of [14C]hydroxyproline in a low molecular weight fraction relative to total [14C]hydroxyproline was used as a measure of intracellular collagen degradation. Levels of degradation were significantly higher in I-cells exposed to cis-hydroxyproline than in cells incubated without the analog. Similar data were obtained for normal human fetal lung fibroblasts incubated under the same conditions. Degradation of [125I]-epidermal growth factor was used to assess the functionality of the lysosomal pathway for protein degradation, and it was much lower in I-cells than in normal cells. It can be concluded that a completely functional complement of lysosomal enzymes is not necessary for structurally abnormal collagen to be degraded intracellularly; the data suggest that a nonlysosomal pathway exists.  相似文献   

3.
Quantitative study of tissue collagen metabolism   总被引:3,自引:0,他引:3  
A procedure for the quantification of various parameters of metabolism of collagen in fibrotic mouse liver has been developed. The method involves derivatization of hydroxyproline, a marker of collagen, with dansyl chloride, high-performance liquid chromatography of the derivative on an octadecyl C-18 column, and its detection by fluorescence. This assay improves upon existing procedures in several respects: It extends the analysis so that not only the collagen content of the tissue but also the metabolism of collagen is determined at levels found intracellularly. It is sensitive enough to quantify 0.1-10 nmol of hydroxyproline, and it includes three major amino acids (hydroxyproline, glycine, and proline) of collagen and two assay controls; it generates information on both the purity and quantity of collagen in each assay. The determination of specific activity of intracellular free [14C]proline, which is the precursor of protein-bound hydroxyproline, defines the specific activity of [14C]hydroxyproline of collagen converted from precursor residues of [14C]proline by the action of prolyl hydroxylase. The specific activity of [14C]hydroxyproline can be used for the evaluation of collagen synthesis and secretion and intracellular and extracellular degradation of the newly synthesized and secreted collagen in the tissue. The determination of specific activities of [14C]hydroxyproline and [14C]proline and of the ratio of [14C]hydroxyproline to [14C]proline of newly secreted collagen provides information concerning the extent of hydroxylation of [14C]proline residues of newly synthesized collagen.  相似文献   

4.
Hydrolyzates of tissues that had been labeled with [14C]proline often contain significant amounts of cis-4-hydroxy[14C]proline. Since animal cells do not contain an enzyme which can effect formation of cis-4-hydroxyproline, there are only two possible explanations for its presence. Either it is formed during acid hydrolysis of trans-4-hydroxyproline (which is synthesized by cells and is a common constituent of connective tissues), or it is produced by a nonenzymatic mechanism such as attack by oxygen radicals. It is important to resolve this issue because if a nonenzymatic mechanism is active in connective tissues, then it will be necessary to reevaluate currently accepted ideas about production of hydroxyproline. This communication describes a method for distinguishing between the two alternate explanations. Tissues or cells are labeled with [14C]proline, and then a known amount of trans-4-hydroxy[3H]proline is added to each sample before hydrolysis; the relative amounts of [14C]- and [3H]-cis-4-hydroxyproline are compared after hydrolysis. It is known from a separate series of measurements with mixtures of [14C]- and [3H]-trans-4-hydroxyproline standards that there is a very high correlation (r = 0.998) between acid-induced formation of the [14C]- and [3H]-cis epimers. One can thus compare the amount of cis-4-hydroxy[14C]proline in a hydrolyzate from a biological system with the amount that would be expected if it were all formed during acid hydrolysis. This method was used to show that fibroblasts cultured under conditions commonly used to study collagen metabolism do not produce cis-4-hydroxyproline. This result strongly suggests that nonenzymatic hydroxylation does not normally occur in cell culture systems.  相似文献   

5.
Embryonic lung fibroblasts and rabbit vascular smooth muscle cells have the ability to degrade newly synthesized collagen. Analysis of 24-h pulse media from cultures given [14C]proline demonstrates that greater than 90% of the degraded collagen is represented by free hydroxyproline rather than the peptide-bound imino acid. The addition of cycloheximide or α-α-dipyridyl to the culture medium during the pulse period severely diminished the formation of the free hydroxyproline demonstrating its enzymatic and protein (collagen) origin. It is proposed that assessment of free hydroxyproline formation may allow us to distinguish between intracellular and extracellular collagen degradation.  相似文献   

6.
A specific and sensitive method is described for the isolation and quantitation of [14C]proline and [14C]hydroxyproline from uterine collagen of the immature rat. Selectivity is achieved in this isolation by using a protease-free bacterial collagenase. There is complete release of hydroxyproline from uterine protein if the latter is suspended by sonication prior to treatment with collagenase. There is a consistent recovery of [14C]proline and [14C]hydroxyproline when they are added to protein hydrolysates of uterus and then subjected to the procedures required for their isolation and quantitation. It is possible using this method to determine the incorporation of [14C]proline into collagen of the rat uterus and to quantitate its conversion to [14C]hydroxyproline. Coupled with the colorimetric methods for proline and hydroxyproline, it is also possible to determine their specific activity.  相似文献   

7.
Cultured normal human skin fibroblasts were incubated with [14C]proline in the presence and absence of 1.0 mM p-nitrophenyl-β-D-xylose. Formation of non-dialyzable hydroxyproline was used as a measure of collagen synthesis. Although total [14C]proline incorporation was similar in the two cultures, [14C]hydroxyproline formation was significantly decreased in the β-xyloside-treated cultures. Increasing the period of incubation increased the radioactivity of the insoluble collagen fraction in untreated fibroblasts, however, in β-xyloside-treated cultures no such increase was observed. In contrast to the decreased production of collagen, growth of cells in the presence of the β-xyloside induced the synthesis of high levels of soluble glycosaminoglycans as measured by 35SO4 incorporation into isolated polysaccharide.  相似文献   

8.
9.
Experiments were carried out to determine whether bone cells isolated from rat calvaria degrade newly synthesized collagen intracellularly prior to secretion and to assess the effect of dichloromethylenebisphosphonate, a compound shown to stimulate collagen synthesis during this event. The findings indicate that isolated bone cells grown in culture degraded a proportion (average 16%) of newly synthesizes collagen prior to secretion. This process was markedly reduced by exposure to dichloromethylenebisphosphonate in a dose-related manner. Concomitantly with the observed decrease of degradation, an increase of collagen synthesis was detected as determined by the incorporation of [3H]proline into collagenase-digestible proteins or by the conversion of [3H]proline into [3H]hydroxyproline. No similar enhancement on total non-collagenous protein synthesis was evident. Dichloromethylenebisphosphonate did not influence the extracellular degradation of collagen. Although the reduction in intracellular degradation accounted only for part of the bisphosphonate mediated increase in net collagen synthesis, it is conceivable that the rate of collagen synthesis is regulated, at least in part, by mechanisms that modulate the level of intracellular degradation.  相似文献   

10.
The objective of this work was to determine the time dependence of the basal component of intracellular degradation of newly synthesized collagen. Chick embryo tendon fibroblasts were incubated with [14C]proline, and degradation was quantified by measuring hydroxy[14C]proline in a low molecular weight fraction. When cultures were pulse labeled for 15 min and then incubated under chase conditions for 105 min, the amount of degraded collagen attained a value equal to approximately 20% of the amount synthesized during the labeling period; the data were fit with a simple exponential function that had a 40-min rise time and a 12-min lag time. In continuously labeled cultures, the rates of collagen synthesis and secretion reached constant values within 15 and 45 min, respectively. Degradation products were first detected 6-9 min after collagen synthesis began and were transported out of the cells more rapidly than intact collagenous molecules; however, percent degradation increased slowly and did not reach a constant value even after 240 min of incubation. Since collagen degradation lags collagen synthesis, it follows that degradation is a posttranslational, rather than a cotranslational, process, and since degradation and secretion are kinetically distinguishable, it follows that they occur in parallel pathways. A simple nonlinear model for posttranslational processing of collagen is proposed.  相似文献   

11.
Collagen metabolism was studied in degenerative articular cartilage of dogs with spontaneous, early onset osteoarthritis. A fraction of collagen which represented about 1.5% of the total was extracted from cartilage samples with dilute phosphate buffer (pH 7.4) containing 0.2% sodium dodecyl sulfate. Agarose gel filtration in the presence of sodium dodecyl sulfate revealed that extracts of degenerative cartilage had about 24% procollagen whereas extracts of normal samples had only 3%. The isolated procollagen fraction was rechromatographed on agarose columns in the presence of mercaptoethanol. This resulted in the identification of a collagen species which migrated between marker beta and alpha collagen chains. The molecular weight of this collagen was estimated to be 150,000. Based on incorporation of [14C]proline, its ratio of hydroxy[14C]proline to total 14C was 0.32. Procollagen was not found after limited pepsin digestion (pH 3, 4 degrees C, 16 h) of degenerative cartilage samples. Since the total collagen content (microgram hydroxyproline/mg cartilage), hydroxy-[14C]proline/mg cartilage, specific radioactivity of hydroxyproline in the extractable collagen fraction were similar for normal and degenerative cartilage we propose that procollagen accumulated in the degenerative cartilage due to a partial defect in conversion of procollagen to collagen.  相似文献   

12.
We previously have shown [Takahashi & Kobayashi (1982) Hepatology 2, 249-254] that the administration of concanavalin A to mice with schistosomiasis caused liver collagen content to be reduced by 50%. Here we report the effects of concanavalin A and aggregated mouse myeloma IgG on liver lysyl oxidase activity and present further evidence concerning the possible mechanism by which the liver collagen content was decreased in infected-treated mice. The lysyl oxidase activity at 8 weeks after infection in both treated mice and untreated infected controls was about 28-fold greater than in the age-matched uninfected controls. The specific radioactivity of intracellular free [14C]proline, the rate of collagen synthesis, the ratio of collagenase-sensitive, protein-bound, hydroxyproline to proline of collagen and the intracellular degradation of newly synthesized collagen were similar in treated animals and in untreated infected controls. In contrast, the extracellular degradation of newly secreted collagen and the specific radioactivity of protein-bound [14C]hydroxyproline in the agent-treated groups were about 2-fold greater than those in the untreated infected controls. These results suggest that the observed 50% decrease in content of liver collagen of mice treated with the agents apparently was due to the increased extracellular degradation of newly secreted collagen.  相似文献   

13.
The capacity of lung explant cultures to synthesize collagen can be estimated by determining the content of [3H]hydroxyproline in protein following incubation with [3H]proline. The technique requires acid hydrolysis followed by quantitative separation of hydroxyproline from proline for scintillation counting and is often restricted to methods that can accommodate large samples because of relatively low specific radioactivity. A method which is useful for such samples, providing rapid separation of nonderivatized amino acids by ion-exchange HPLC, is described here. The HPLC system employs an HPX-87C cation-exchange column in 10 mm calcium acetate, pH 5.5, at 85°C. Under isocratic conditions hydroxyproline is completely resolved from proline with quantitative recovery of the 3H cpm applied to the column. Large amounts of material, equivalent to at least 150 mg wet wt of lung, can be applied without affecting resolution or recovery, and samples can be injected at intervals as short as 40 min. This method was used to study collagen biosynthesis in a model of pulmonary fibrosis induced in rabbits by the tumor-promoting agent, phorbol myristate acetate (PMA), and provides information concerning total protein synthesis as well as production of collagen. The data show a doubling in the rate of collagen production in lung explants prepared from animals treated with PMA compared with explants from control animals.  相似文献   

14.
Two improved and simplified procedures are presented for determination of [14C]hydroxyproline. Simplification is achieved by boiling samples without previous toluene extractions and, after boiling, passing the toluene extracts through a silicic acid column.Procedure I avoids incomplete toluene extraction of [14C]proline derivatives and uses instead a specific adsorption to a silicic acid column.Procedure IIA introduces inter alia the silicic acid column to reduce the interference of incompletely extracted [14C]proline.Procedure IIB simplifies procedure IIA by replacing extraction of [14C]proline derivatives with a silicic acid column.The new procedures are simple, handy, specific and reproducible methods for determination of [14C]hydroxyproline and are preferable to any other method known today. Procedure IIB is specially recommended for routine use.  相似文献   

15.
The synthesis of procollagen hydroxyproline and hydroxylysine was examined in matrix-free cells which were isolated from embryonic tendon by controlled enzymic digestion and then incubated in suspension. After the cells were labeled with [14C]proline for 2 min, or about one-third the synthesis time for a Pro-α chain, [14C]hydroxyproline was found in short peptides considerably smaller than the Pro-α chains of procollagen. The results, therefore, confirmed previous reports indicating that the hydroxylation of proline can begin on nascent chains. In similar experiments in which the cells were labeled with [14C]lysine, [14C]hydroxylysine was found in short, newly synthesized peptides, providing the first evidence that the hydroxylation of lysine can also begin on nascent peptides. However, further experiments demonstrated that the synthesis of hydroxyproline and hydroxylysine continues until some time after assembly of the polypeptide chains is completed.  相似文献   

16.
Cells were isolated from the aortae of 17-day old chick embryos by digestion of the vessels with a combination of trypsin and collagenase. When these cells were incubated in suspension culture in Krebs-Ringer media containing pancreatic trypsin inhibitor and radioactive amino acids, they synthesized and secreted labeled proteins into the media. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate of the secreted proteins labeled with [14C]proline revealed two major components. The larger component with an approximate molecular weight of 125,000 had a [14C]hydroxyproline content consistent with a form of procollagen. The molecular weight of 70,000 and [14C]hydroxyproline content of the second component was consistent with that previously reported for tropoelastin extracted from chick aortae. By following the kinetics and secretion of tropoelastin labeled with [3H]valine, we have estimated that 17 minutes are required to synthesize and secrete the molecule under these experimental conditions.  相似文献   

17.
The relative rate of collagen synthesis in the free-living nematode Panagrellus silusiae during postembryonic development was found to be discontinuous by measuring either the incorporation of tritium into material extracted as collagen or the amount of collagen-bound tritiated proline and hydroxyproline after 2-hr incubations of whole worms with [3H]proline. A peak of collagen production preceded each of the three molts that were examined. Moreover, protocollagen prolyl hydroxylase activity during each intermolt period paralleled the pattern of collagen synthesis. On the other hand, a triphasic pattern was not observed when noncollagenous proteins were labeled with either [3H]tryptophan or [3H]leucine. In addition, the level of soluble radioactive proline that accumulates in whole organisms after 2-hr incubation periods did not fluctuate appreciably during postembryonic development. The mean ratio of hydroxy-proline to proline in a number of collagen samples extracted at various times during the maturation phase was 0.113 ± 0.040. Pulse and chase experiments with [3H]proline indicated that most of the collagen synthesized during a peak period is lost after the second ecdysis following the labeling interval. In contrast, a considerable proportion of the collagen synthesized during nonpeak periods is retained throughout the postembryonic period. It is postulated that the modulated pattern of collagen biosynthesis in Panagrellus reflects, for the most part, a quantitative regulation of the production of cuticular collagen during postembryonic development.  相似文献   

18.
Experiments were conducted to determine the extent and variability of collagen degradation in human fetal lung fibroblasts. Cells were incubated with [14C]proline, and degradation was measured by determining the hydroxy[14C]proline in a low molecular weight fraction relative to total hydroxy[14C]proline. Average (basal) degradation in stationary phase HFL-1 cells incubated for 8 h was 16 +/- 3%, and substantial alterations in the composition of the labeling medium, e.g., omitting serum and varying pH between 6.8 and 7.8, had no effect. Organic buffers slightly lowered degradation in a manner that was independent of pH. Collagen degradation in two other lung cell lines, Wl-38 and lMR-90, did not differ from the level in HFL-1. Degradation was significantly higher (23 +/- 5%) in HFL-1 cultures labeled for 24 h rather than 8 h, and pulse-washout experiments showed that the rate of degradation was not uniform: after an 8-h pulse, 11% of the hydroxy [14C]proline in the medium was in the low molecular weight fraction, but 31% was in this fraction after a 16-h washout. The lack of effect of either serum deprivation or elevated pH suggests that lysosomal proteases have no direct role in basal degradation; however, NH4Cl decreased the enhanced degradation observed in ascorbate deficiency to basal level, indicating that abnormal molecules synthesized under those conditions are degraded by lysosomal proteases. The appearance of small hydroxy[14C]proline-containing molecules was inhibited by alpha alpha'dipyridyl and cycloheximide in a dose-dependent and reversible manner, demonstrating that their production depends on enzymatic hydroxylation of proline and protein synthesis.  相似文献   

19.
In a previous study where rat skin collagen was labeled with 18O in the hydroxyl group of the collagen hydroxyproline we noticed that the decay rate of this label was much faster than had been observed when the skin collagen hydroxyproline was labeled with 3H in the prolyl ring. In this study a rat was labeled concurrently with [18O2] and [3H] proline and the rate of decline of both labels was determined in rat skin collagen hydroxyproline. After correction for growth dilution of the skin collagen the [18O] hydroxyproline was found to have a half-life of 27 days while the [3H] hydroxyproline had a half-life of 53 days. The decay rate of the [18O] hydroxyproline represents the true turnover rate of collagen since there is no possibility of recycling this label. Hence, the difference between this and the [3H] hydroxyproline decay rate is due to recycling of l-[3H] proline into new collagen. The efficiency of recycling of proline from catabolized collagen into new collagen was about 93%.  相似文献   

20.
Proline [U-14C] was fed to shoots of intact Tagetes patula grown normally, on horizontal clinostats, or on vertical clinostats rotating at 15 rev/hr. After various periods the incorporation of 14C into salt-extractable material from the cell walls of stems, petioles, leaves and flowers was determined. The cell walls of the gravity-compensated plants (grown on horizontal clinostats) has the highest amount of salt-extractable radioactivity. A 2- to 9-fold increase was observed in comparison to either the normal or vertical clinostat plant controls. Some physico-chemical properties of the salt-extractable fraction suggest that it consists of highly charged, low MW entities, possibly short chain peptides. On acid hydrolysis this material yields radioactive aspartic acid, glutamic acid and proline. The presence of labelled hydroxyproline is suggested. After acid hydrolysis of the cell walls of leaves, it was found that ca 4 times the amount of 14C was incorporated in the hypogravity-grown plant compared to the controls. It appears likely that extensibility changes in tissues under simulated hypogravity required additional cell wall protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号