首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Betaine‐homocysteine S‐methyltransferase (BHMT) is a zinc‐dependent methyltransferase that uses betaine as the methyl donor for the remethylation of homocysteine to form methionine. This reaction supports S‐adenosylmethionine biosynthesis, which is required for hundreds of methylation reactions in humans. Herein we report that BHMT is activated by potassium ions with an apparent KM for K+ of about 100 µM. The presence of potassium ions lowers the apparent KM of the enzyme for homocysteine, but it does not affect the apparent KM for betaine or the apparent kcat for either substrate. We employed molecular dynamics (MD) simulations to theoretically predict and protein crystallography to experimentally localize the binding site(s) for potassium ion(s). Simulations predicted that K+ ion would interact with residues Asp26 and/or Glu159. Our crystal structure of BHMT bound to homocysteine confirms these sites of interaction and reveals further contacts between K+ ion and BHMT residues Gly27, Gln72, Gln247, and Gly298. The potassium binding residues in BHMT partially overlap with the previously identified DGG (Asp26‐Gly27‐Gly28) fingerprint in the Pfam 02574 group of methyltransferases. Subsequent biochemical characterization of several site‐specific BHMT mutants confirmed the results obtained by the MD simulations and crystallographic data. Together, the data herein indicate that the role of potassium ions in BHMT is structural and that potassium ion facilitates the specific binding of homocysteine to the active site of the enzyme. Proteins 2014; 82:2552–2564. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Methionine partitioning between protein turnover and a considerable pool of transmethylation precursors is a critical process in the neonate. Transmethylation yields homocysteine, which is either oxidized to cysteine (i.e., transsulfuration), or is remethylated to methionine by folate- or betaine- (from choline) mediated remethylation pathways. The present investigation quantifies the individual and synergistic importance of folate and betaine for methionine partitioning in neonates. To minimize whole body remethylation, 4–8-d-old piglets were orally fed an otherwise complete diet without remethylation precursors folate, betaine and choline (i.e. methyl-deplete, MD-) (n=18). Dietary methionine was reduced from 0.3 to 0.2 g/(kg∙d) on day-5 to limit methionine availability, and methionine kinetics were assessed during a gastric infusion of [13C1]methionine and [2H3-methyl]methionine. Methionine kinetics were reevaluated 2 d after pigs were rescued with either dietary folate (38 μg/(kg∙d)) (MD + F) (n=6), betaine (235 mg/(kg∙d)) (MD + B) (n=6) or folate and betaine (MD + FB) (n=6). Plasma choline, betaine, dimethylglycine (DMG), folate and cysteine were all diminished or undetectable after 7 d of methyl restriction (P<.05). Post-rescue, plasma betaine and folate concentrations responded to their provision, and homocysteine and glycine concentrations were lower (P<.05). Post-rescue, remethylation and transmethylation rates were~70–80% higher (P<.05), and protein breakdown was spared by 27% (P<.05). However, rescue did not affect transsulfuration (oxidation), plasma methionine, protein synthesis or protein deposition (P>.05). There were no differences among rescue treatments; thus betaine was as effective as folate at furnishing remethylation. Supplemental betaine or folate can furnish the transmethylation requirement during acute protein restriction in the neonate.  相似文献   

3.
A betaine:homocysteine methyltransferase activity was demonstrated in the cell-free extracts from the fungus Aspergillusnidulans. Among methionine-requiring mutants which do not grow on homocysteine one class responds to betaine indicating that this compound can serve as a methyl donor in methionine synthesis in vivo. Mutants of the second class which grow only on methionine were shown to have betaine: homocysteine — and methyltetrahydrofolate: homocysteine methyltransferases simultaneously impaired.  相似文献   

4.

Background

The neurodegenerative disorder Alzheimer’s disease is caused by the accumulation of toxic aggregates of β-amyloid in the human brain. On the one hand, hyperhomocysteinemia has been shown to be a risk factor for cognitive decline in Alzheimer’s disease. On the other hand, betaine has been demonstrated to attenuate Alzheimer-like pathological changes induced by homocysteine. It is reasonable to conclude that this is due to triggering the remethylation pathway mediated by betaine-homocysteine-methyltransferase. In the present study, we used the transgenic Caenorhabditis elegans strain CL2006, to test whether betaine is able to reduce β-amyloid-induced paralysis in C. elegans. This model expresses human β-amyloid 1–42 under control of a muscle-specific promoter that leads to progressive, age-dependent paralysis in the nematodes.

Results

Betaine at a concentration of 100 μM was able to reduce homocysteine levels in the presence and absence of 1 mM homocysteine. Simultaneously, betaine both reduced normal paralysis rates in the absence of homocysteine and increased paralysis rates triggered by addition of homocysteine. Knockdown of cystathionine-β-synthase using RNA interference both increased homocysteine levels and paralysis. Additionally, it prevented the reducing effects of betaine on homocysteine levels and paralysis.

Conclusion

Our studies show that betaine is able to reduce homocysteine levels and β-amyloid-induced toxicity in a C. elegans model for Alzheimer’s disease. This effect is independent of the remethylation pathway but requires the transsulfuration pathway mediated by cystathionine-β-synthase.
  相似文献   

5.
Chenopods synthesize betaine in the chloroplast via a two-step oxidation of choline: choline → betaine aldehyde → betaine. Our previous experiments with intact chloroplasts, and in vivo18O2 labeling studies, led us to propose that the first step is mediated by a monooxygenase which uses photosynthetically generated reducing power (C Lerma, AD Hanson, D Rhodes [1988] Plant Physiol 88: 695-702). Here, we report the detection of such an activity in vitro. In the presence of O2 and reduced ferredoxin, the stromal fraction from spinach (Spinacia oleracea) chloroplasts converted choline to betaine aldehyde at rates similar to those in intact chloroplasts (20-50 nanomoles per hour per milligram protein). Incorporation of 18O from 18O2 by the in vitro reaction was demonstrated by fast atom bombardment mass spectrometry. Ferredoxin could be reduced either with thylakoids in the light, or with NADPH plus ferredoxin-NADP reductase in darkness; NADPH alone could not substitute for ferredoxin. No choline-oxidizing activity was detected in the stromal fraction of pea (Pisum sativum L.), a species that does not accumulate betaine. The spinach choline-oxidizing enzyme was stimulated by 10 millimolar Mg2+, had a pH optimum close to 8, and was insensitive to carbon monoxide. The specific activity was increased threefold in plants growing in 200 millimolar NaCl. Gel filtration experiments gave a molecular weight of 98 kilodaltons for the choline-oxidizing enzyme, and provided no evidence for other electron carriers which might mediate the reduction of the 98-kilodalton enzyme by ferredoxin.  相似文献   

6.
Chenopods synthesize betaine by a two-step oxidation of choline: choline → betaine aldehyde → betaine. The pathway is chloroplastic; the first step has been shown in isolated spinach (Spinacia oleracea L.) chloroplasts to be O2- and light-dependent, the role of light being to provide reducing power (P Weigel, EA Weretilnyk, AD Hanson 1988 Plant Physiol 86: 54-60). Here, we report use of in vivo18O- and 2H-labeling in conjunction with fast atom bombardment mass spectrometry to test for two hypothetical choline-oxidizing reactions that would explain the observed requirements for O2 and reductant: a desaturase or an oxygenase. Simple syntheses for 2H3-choline, 2H3, 18O-choline, and 2H3, 18O-betaine are given. A desaturase mechanism was sought by giving choline deuterated at the 2-carbon, or choline unlabeled at this position together with 2H2O and by analyzing newly synthesized betaine. About 15% of the 2H at C-2 was lost during oxidation of choline to betaine, and about 10% of the betaine made in the presence of 50% 2H2O was monodeuterated. These small effects are more consistent with chemical exchange than with a desaturase, because 10 to 15% losses of 2H from the C-2 position also occurred if choline was converted to betaine by a purified bacterial choline oxidase. To test for an oxygenase, the incorporation of 18O from 18O2 into newly synthesized betaine was compared with that from 18O-labeled choline, in light and darkness. Incorporation of 18O from 18O-choline was readily detectable and varied from about 15 to 50% of the theoretical maximum value; the 18O losses were attributable to exchange of the intermediate betaine aldehyde with water. In darkness, incorporation of 18O from 18O2 approached that from 18O-choline, but in the light was severalfold lower, presumably due to isotopic dilution by photosynthetic 16O2. These data indicate that the chloroplast choline-oxidizing enzyme is an oxygenase.  相似文献   

7.
Oxidative stress is a hypothesis for the association of reactive oxygen species with cerebrovascular and neurodegenerative diseases. Thus, we examined whether oral betaine can act as a preventive agent in ethanol-induced oxidative stress on the cerebellum of rats. Thirty-two adult male Sprague–Dawley rats were divided into four equal groups (control, ethanol, betaine, and betaine plus ethanol) with different dietary regimens and were followed up for 1 month. Total homocysteine (tHcy) of plasma and cerebellum homogenate was determined by an Axis® homocysteine EIA kit, and antioxidant enzyme (glutathione peroxidase (GPx), SOD, and CAT) activities of cerebellum homogenate were measured chemically by a spectrophotometer. Lipid peroxidation of cerebellum was shown by the measurement of thiobarbituric reactive substances (TBARS) via a spectrophotometer. Ethanol-induced hyperhomocysteinemia was manifested by an increase in the concentrations of tHcy in the plasma and cerebellum homogenates of the ethanol group, while ethanol-induced oxidative stress was indicated via an increase in lipid peroxidation marker (TBARS) in cerebellum homogenates of ethanol-treated rats. In contrast, betaine prevented hyperhomocysteinemia and oxidative stress in the betaine plus ethanol group as well as the betaine group. The results of the present investigation indicated that the protective effect of betaine is probably related to its ability to strengthen the cerebellum membrane cells by enhancement of antioxidant enzyme activity principally GPx, while the methyl donor effect of betaine to reduce hyperhomocysteinemia has been explained previously and confirmed in the present study.  相似文献   

8.
Production of the compatible solute glycine betaine from its precursors choline or glycine betaine aldehyde confers a considerable level of tolerance against high osmolarity stress to the soil bacterium Bacillus subtilis. The glycine betaine aldehyde dehydrogenase GbsA is an integral part of the osmoregulatory glycine betaine synthesis pathway. We strongly overproduced this enzyme in an Escherichia coli strain that expressed a plasmid-encoded gbsA gene under T7φ10 control. The recombinant GbsA protein was purified 23-fold to apparent homogeneity by fractionated ammonium sulfate precipitation, ion-exchange chromatography on Q-Sepharose, and subsequent hydrophobic interaction chromatography on phenyl-Sepharose. Molecular sieving through Superose 12 and sedimentation centrifugation through a glycerol gradient suggested that the native enzyme is a homodimer with 53.7-kDa subunits. The enzyme was specific for glycine betaine aldehyde and could use both NAD+ and NADP+ as cofactors, but NAD+ was strongly preferred. A kinetic analysis of the GbsA-mediated oxidation of glycine betaine aldehyde to glycine betaine revealed K m values of 125 μM and 143 μM for its substrates glycine betaine aldehyde and NAD+, respectively. Low concentrations of salts stimulated the GbsA activity, and the enzyme was highly tolerant of high ionic conditions. Even in the presence of 2.4 M KCl, 88% of the initial enzymatic activity was maintained. B. subtilis synthesizes high levels of proline when grown at high osmolarity, and the presence of this amino acid strongly stimulated the GbsA activity in vitro. The enzyme was stimulated by moderate concentrations of glycine betaine, and its activity was highly tolerant against molar concentrations of this osmolyte. The high salt tolerance and its resistance to its own reaction product are essential features of the GbsA enzyme and ensure that B. subtilis can produce high levels of the compatible solute glycine betaine under conditions of high osmolarity stress. Received: 2 May 1997 / Accepted: 2 July 1997  相似文献   

9.

Background

Urinary betaine excretion positively correlated with plasma homocysteine in outpatients attending a lipid disorders clinic (lipid clinic study). We aimed to confirm this in subjects with established vascular disease.

Methods

The correlation between betaine excretion and homocysteine was compared in samples collected from subjects 4 months after hospitalization for an acute coronary episode (ACS study, 415 urine samples) and from 158 sequential patients visiting a lipid disorders clinic.

Principal findings

In contrast to the lipid clinic study, betaine excretion and plasma homocysteine did not correlate in the total ACS cohort. Differences between the patient groups included age, non-HDL cholesterol and medication. In ACS subjects with below median betaine excretion, excretion correlated (using log transformed data) negatively with plasma homocysteine (r = −0.17, p = 0.019, n = 199), with no correlation in the corresponding subset of the lipid clinic subjects. In ACS subjects with above median betaine excretion a positive trend (r = +0.10) between betaine excretion and homocysteine was not significant; the corresponding correlation in lipid clinic subjects was r = +0.42 (p = 0.0001). In ACS subjects, correlations were stronger when plasma non-HDL cholesterol and betaine excretion were above the median, r = +0.20 (p = 0.045); in subjects above median non-HDL cholesterol and below median betaine excretion, r = −0.26 (p = 0.012). ACS subjects taking diuretics or proton pump inhibitors had stronger correlations, negative with lower betaine excretion and positive with higher betaine excretion.

Conclusions

Betaine excretion correlates with homocysteine in subjects with elevated blood lipids.  相似文献   

10.
Homocysteine plays a key role in several pathophysiological conditions. To assess the methionine–homocysteine kinetics by stable isotope methodology, we developed a simultaneous quantification method of [2H7]methionine, [2H4]methionine, methionine, [2H4]homocysteine and homocysteine in rat plasma by gas chromatography–mass spectrometry (GC–MS). [13C]Methionine and [13C]homocysteine were used as analytical internal standards to account for losses associated with the extraction, derivatization and chromatography. For labeled and non-labeled homocysteine measurements, disulfide bonds between homocysteine and other thiols or proteins were reduced by dithiothreitol. The reduced homocysteine and methionine species were purified by cation-exchange chromatography and derivatized with isobutyl chlorocarbonate in water–ethanol–pyridine. Quantification was carried out by selected ion monitoring of the molecular-related ions of N(O,S)-isobutyloxycarbonyl ethyl ester derivatives on the chemical ionization mode. The intra- and inter-day precision of the assay was less than 6% for all labeled and non-labeled methionine and homocysteine species. The method is sensitive enough to determine pharmacokinetics of labeled methionine and homocysteine.  相似文献   

11.
Proline betaine is an osmoprotectant that is at least as effective as glycine betaine, and more effective than L-proline, for various strains of Staphylococcus aureus, and Staphylococcus epidermidis and Staphylococcus saprophyticus. 13C NMR studies revealed that proline betaine accumulated to high levels in osmotically stressed S. aureus, but was also detected in organisms grown in its presence in the absence of osmotic stress. Competition experiments indicated that proline betaine was taken up by the proline transport systems of S. aureus, but not by the high affinity glycine betaine transport system.Abbreviations PYK Peptode - Yeast extract K2HPO4  相似文献   

12.
Aphanothece halophytica is a halotolerant alkaliphilic cyanobacterium which can grow in media of up to 3.0 M NaCl and pH 11. This cyanobacterium can synthesize betaine from glycine by three-step methylation using S-adenosylmethionine as a methyl donor. To unveil the mechanism of betaine uptake and efflux in this alkaliphile, we isolated and characterized a betaine transporter. A gene encoding a protein (BetTA. halophytica) that belongs to the betaine-choline-carnitine transporter (BCCT) family was isolated. Although the predicted isoelectric pH of a typical BCCT family transporter, OpuD of Bacillus subtilis, is basic, 9.54, that of BetTA. halophytica is acidic, 4.58. BetTA. halophytica specifically catalyzed the transport of betaine. Choline, γ-aminobutyric acid, betaine aldehyde, sarcosine, dimethylglycine, and amino acids such as proline did not compete for the uptake of betaine by BetTA. halophytica. Sodium markedly enhanced betaine uptake rates, whereas potassium and other cations showed no effect, suggesting that BetTA. halophytica is a Na+-betaine symporter. Betaine uptake activities of BetTA. halophytica were high at alkaline pH values, with the optimum pH around 9.0. Freshwater Synechococcus cells overexpressing BetTA. halophytica showed NaCl-activated betaine uptake activities with enhanced salt tolerance, allowing growth in seawater supplemented with betaine. Kinetic properties of betaine uptake in Synechococcus cells overexpressing BetTA. halophytica were similar to those in A. halophytica cells. These findings indicate that A. halophytica contains a Na+-betaine symporter that contributes to the salt stress tolerance at alkaline pH. BetTA. halophytica is the first identified transporter for compatible solutes in cyanobacteria.  相似文献   

13.
Betaine aldehyde oxidation by spinach chloroplasts   总被引:23,自引:7,他引:23       下载免费PDF全文
Chenopods synthesize betaine by a two-step oxidation of choline: choline → betaine aldehyde → betaine. Both oxidation reactions are carried out by isolated spinach (Spinacia oleracea L.) chloroplasts in darkness and are promoted by light. The mechanism of betaine aldehyde oxidation was investigated with subcellular fractions from spinach leaf protoplasts. The chloroplast stromal fraction contained a specific pyridine nucleotide-dependent betaine aldehyde dehydrogenase (about 150 to 250 nanomoles per milligram chlorophyll per hour) which migrated as one isozyme on native polyacrylamide gels stained for enzyme activity. The cytosol fraction contained a minor isozyme of betaine aldehyde dehydrogenase. Leaves of pea (Pisum sativum L.), a species that lacks betaine, had no betaine aldehyde dehydrogenase isozymes. The specific activity of betaine aldehyde dehydrogenase rose three-fold in spinach plants grown at 300 millimolar NaCl; both isozymes contributed to the increase. Stimulation of betaine aldehyde oxidation in illuminated spinach chloroplasts was due to a thylakoid activity which was sensitive to catalase; this activity occurred in pea as well as spinach, and so appears to be artifactual. We conclude that in vivo, betaine aldehyde is oxidized in both darkness and light by the dehydrogenase isozymes, although some flux via a light-dependent, H2O2-mediated reaction cannot be ruled out.  相似文献   

14.
The moderate halophile Vibrio costicola, growing on a chemically-defined medium, transformed choline into glycine betaine (betaine) by the membrane-bound enzyme choline dehydrogenase and the cytoplasmic enzyme betainal (betaine aldehyde) dehydrogenase. Choline dehydrogenase was strongly induced and betainal dehydrogenase less strongly induced by choline. The formation of these enzymes was also regulated by the NaCl concentration of the growth medium, increasing with increasing NaCl concentrations. Intracellular betaine concentrations also increased with increasing choline and NaCl concentrations in the medium. This increase was almost completely blocked by chloramphenicol, which does not block the increase in salt-tolerant active transport on transfer from a low to a high salt concentration.Choline dehydrogenase was inhibited by chloride salts of Na+, K+, and NH inf4 su+ , the inhibition being due to the Cl- ions. Betainal dehydrogenase was stimulated by 0.5 M salts and could function in up to 2.0 M salts.Cells grew as well in the presence as in the absence of choline in 0.5 M and 1.0 M NaCl, but formed no intracellular betaine. Choline stimulated growth in 2.0 M NaCl and was essential for growth in 3.0 M NaCl. Thus, while betaine is important for some of the adaptations to high salt concentration by V. costicola, it by no means accounts for all of them.Abbreviations CDMM chemically-defined minimal medium - PPT proteose-peptone tryptone medium - SDS sodium dodecyl sulfate Deceased, 1987  相似文献   

15.
Uptake of exogenous 14C-glycine betaine has been followed in the cyanobacterium Aphanothece halophytica and other species able to synthesise glycine betaine in response to osmotic stress. At 1 mmol dm–3 uptake was rapid (flux rate=29.50 nmol m–2 s–1), equilibrating at an internal concentration of 120 mmol dm–3 within 30 min. This rapid uptake, coupled with high internal accumulation, was characteristic of glycine betaine-synthesising cyanobacteria only. The 14C-glycine betaine transported was not catabolised. Kinetic studies indicated a Michaelis-Menten type relationship (K m=2.0 mol dm–3, V max=45 nmol min–1 mm–3 cell volume), with a pH optimum of 8.0–8.5. Darkness dramatically decreased the flux rate. Higher 14C-glycine betaine levels occurred in cells growth in medium of elevated osmotic strength, and glycine betaine uptake was sensitive to changes in external salinity. A relationship between Na+ availability and glycine betaine uptake was observed, with >80 mmol dm–3 Na+ required for optimal stimulation of uptake in seawater-grown cells. Severe hyperosmotic stress (1000 mmol dm–3 NaCl) reduced the rate of glycine betaine uptake but increased internal glycine betaine concentration at equilibrium. Hypo-osmotic stress caused a decline in the internal glycine betaine concentration due to an increased rate of loss, indicating that the efflux system was also sensitive to ambient salinity changes. It is envisaged that this active transport system may be an adaptive mechanism in halophilic glycine betaine-synthesising cyanobacteria.  相似文献   

16.
Hyperhomocysteinemia (Hhcy) may induce memory deficits with β‐amyloid (Aβ) accumulation and tau hyperphosphorylation. Simultaneous supplement of folate and vitamin B12 partially restored the plasma homocysteine level and attenuated tau hyperphosphorylation, Aβ accumulation and memory impairments induced by Hhcy. However, folate and vitamin B12 treatment have no effects on Hhcy which has the methylenetetrahydrofolate reductase genotype mutation. In this study, we investigated the effects of simultaneous supplement of betaine on Alzheimer‐like pathological changes and memory deficits in hyperhomocysteinemic rats after a 2‐week induction by vena caudalis injection of homocysteine (Hcy). We found that supplementation of betaine could ameliorate the Hcy‐induced memory deficits, enhance long‐term potentiation (LTP) and increase dendritic branches numbers and the density of the dendritic spines, with up‐regulation of NR1, NR2A, synaptotagmin, synaptophysin, and phosphorylated synapsin I protein levels. Supplementation of betaine also attenuated the Hcy‐induced tau hyperphosphorylation at multiple AD‐related sites through activation protein phosphatase‐2A (PP2A) with decreased inhibitory demethylated PP2AC at Leu309 and phosphorylated PP2AC at Tyr307. In addition, supplementation of betaine also decreased Aβ production with decreased presenilin‐1 protein levels. Our data suggest that betaine could be a promising candidate for arresting Hcy‐induced AD‐like pathological changes and memory deficits.  相似文献   

17.
The trimethylammonium compound glycine betaine (N,N,N-trimethylglycine) can be accumulated to high intracellular concentrations, conferring enhanced osmo- and cryotolerance upon Listeria monocytogenes. We report the identification of betL, a gene encoding a glycine betaine uptake system in L. monocytogenes, isolated by functional complementation of the betaine uptake mutant Escherichia coli MKH13. The betL gene is preceded by a consensus ςB-dependent promoter and is predicted to encode a 55-kDa protein (507 amino acid residues) with 12 transmembrane regions. BetL exhibits significant sequence homologies to other glycine betaine transporters, including OpuD from Bacillus subtilis (57% identity) and BetP from Corynebacterium glutamicum (41% identity). These high-affinity secondary transporters form a subset of the trimethylammonium transporter family specific for glycine betaine, whose substrates possess a fully methylated quaternary ammonium group. The observed Km value of 7.9 μM for glycine betaine uptake after heterologous expression of betL in E. coli MKH13 is consistent with values obtained for L. monocytogenes in other studies. In addition, a betL knockout mutant which is significantly affected in its ability to accumulate glycine betaine in the presence or absence of NaCl has been constructed in L. monocytogenes. This mutant is also unable to withstand concentrations of salt as high as can the BetL+ parent, signifying the role of the transporter in Listeria osmotolerance.  相似文献   

18.
Ibi  Daisuke  Kondo  Sari  Ohmi  Ayano  Kojima  Yuya  Nakasai  Genki  Takaba  Rika  Hiramatsu  Masayuki 《Neurochemical research》2022,47(8):2333-2344

In the pathophysiology of Alzheimer’s disease, the deposition of amyloid β peptide (Aβ) is associated with oxidative stress, leading to cognitive impairment and neurodegeneration. We have already reported that betaine (glycine betaine), an osmolyte and methyl donor in cells, prevents the development of cognitive impairment in mice with intracerebroventricular injection of Aβ25–35, an active fragment of Aβ, associated with oxidative stress in the hippocampus, but molecular mechanisms of betaine remain to be determined. Here, to investigate a key molecule underlying the preventive effect of betaine against cognitive impairments in Aβ25–35-injected mice, cognitive tests and qPCR assays were performed in Aβ25–35-injected mice with continuous betaine intake, in which intake was started a day before Aβ25–35 injection, and then continued for 8 days. The Aβ25–35 injection impaired short-term and object recognition memories in the Y-maze and object recognition tests, respectively. PCR assays revealed the down-regulation of Sirtuin1 (SIRT1), a NAD+-dependent deacetylase that mediates metabolic responses, in the hippocampus of Aβ25–35-injected mice, whereas betaine intake prevented memory deficits as well as the decrease of hippocampal SIRT1 expression in Aβ25–35-injected mice. Further, sirtinol, an inhibitor of the Sirtuin family, blocked the preventive effect of betaine against memory deficits. On the other hand, resveratrol, the potent compound that activates SIRT1, also prevented memory impairments in Aβ25–35-injected mice, suggesting that SIRT1 plays a causative role in the preventive effect of betaine against memory deficits caused by Aβ exposure.

  相似文献   

19.
Betaine analogues alter homocysteine metabolism in rats   总被引:2,自引:0,他引:2  
Glycine betaine supplementation lowers homocysteine levels in homocystinuria and in chronic renal failure patients through methylation catalysed by betaine-homocysteine methyltransferase (BHMT). The aim of this study was to determine the effect of glycine betaine analogues on homocysteine metabolism in Lewis rats. Glycine betaine, proline betaine, trigonelline, dimethylsulfoniopropionate (DMSP) or dimethylthetin (1.5 mmoles) was subcutaneously administered to rats fed a low betaine diet. The effect of each betaine on total plasma homocysteine and urinary and plasma betaine concentrations was monitored for 24h following administration. Baseline plasma homocysteine was 8.5 +/- micromol/l (S.E.M., n=44) and compared to controls concentrations decreased following glycine betaine (0.8+/-0.4 micromol/l, P = 0.064), DMSP (1.0+/-0.5 micromol/l, P = 0.041) and dimethylthetin (1.5 +/- 0.7micromol/l, P = 0.033) treatment, while concentrations increased following proline betaine (2.24 +/-0.7micromol/l, P = 0.002) and trigonelline (1.6 +/-0.3 micromol/l, P < 0.001) treatment. The effect of glycine betaine, DMSP and dimethylthetin on circulating homocysteine concentrations was thought to be mediated by BHMT in vivo. This hypothesis was supported by the finding that circulating glycine betaine concentrations increased following DMSP and dimethylthetin treatment. Proline betaine and trigonelline appeared to be poor BHMT substrates, being largely excreted in the urine unchanged, yet increased circulating homocysteine levels. This suggests they are inhibitors of BHMT. Urinary excretion of glycine betaine increased following treatment with all betaines, suggesting that the resorption of glycine betaine in the kidney was inhibited. The study shows that glycine betaine analogues have multiple effects on homocysteine metabolism (250).  相似文献   

20.
A simple, efficient, and economical method is presented for the preparation of radioactive betaine. It involves the incubation of radioactive choline with osmolyte-freePseudomonas aeruginosa previously grown in hyperosmolar medium with choline as an osmoprotectant. The summarized procedure was as follows: (i) bacteria were grown in high Pi basal salt medium (HPi-BSM) with 20mm succinate, 18.7mm NH4Cl, 0.8m NaCl, and 1mm nonradioactive choline. After the bacterial pellet was obtained, it was suspended in deionized water to release osmolytes accumulated during growth; (ii) suspension of the pellet, free of osmolytes, in hyperosmolar HPi-BSM with [methyl-14C]-choline (55 nCi/nmol) without the carbon and nitrogen sources. Incubation of the mixture at 37°C for 8–30 h. When only 10% of the initial radioactivity remained in the supernatant, it was withdrawn after centrifugation and the pellet suspended in deionized water. This step released the accumulated betaine plus some contaminants. Purification of betaine contained in the aqueous supernatant was carried out after rotoevaporation to dryness and solubilization of the residue in methanol. The methanolic extract was rotoevaporated to dryness, the residue solubilized in 10% acetic acid and transferred to a Dowex 50-X8 column. After the column was washed with water and 2m NH4OH, betaine was eluted by the addition of 4m NH4OH. The total procedure for obtaining pure radioactive betaine resulted in a yield of 80%. The product obtained was chemically and radiochemically pure, with a specific radioactivity of 54±1 nCi/nmol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号