首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel endo-β-N-acetylglucosaminidase capable of acting on complex type sugar chains of glycoproteins was found in the culture broth of a bacterium which was isolated from soil and identified as Acinetobacter sp. The enzyme was purified to homogeneity on polyacrylamide gel electrophoresis by successive purification procedures involving ammonium sulfate fractionation and chromatographies on DEAE-cellulose, hydroxylapatite and Sephadex G-150. Its molecular weight was about 35,000 on gel filtration. The optimum pH was 3.0–3.5, and the enzyme was stable in the pH range from 6–8. The enzyme had high activity on dansyl ovalbumin glycopeptide, and also could hydrolyze dansyl asialotransferrin glycopeptide and dansyl transferrin glycopeptide containing complex type sugar chains. The Km value for dansyl asialotransferrin glycopeptide as the substrate of enzyme assay was 0.68 mM. The enzyme could release complex type sugar chains from intact asialotransferrin without the addition of any detergent.  相似文献   

2.
The Cuvierian tubules of Holothuria forskali Della Chiaje, a sea cucumber found in the Adriatic Sea, were investigated with regard to their carbohydrate moieties. From a Pronase digest of these tubules three types of carbohydrate units were isolated and characterized. 1. A high-molecular-weight glycopeptide fraction was shown to contain sulphated polyfucose, galactosamine, a uronic acid and a previously unknown neuraminic acid derivative. The sulphate was shown by i.r. analysis to be present as an O-ester. The carbohydrate unit was linked O-glycosidically to threonine and serine residues in the polypeptide chain. The hitherto unknown neuraminic acid derivative (Hf-neuraminic acid) was resistant to enzymic cleavage by neuraminidase, even after mild alkaline hydrolysis for the removal of O-acyl residues. However, the glycosidic linkage of this compound to the other part of the carbohydrate moiety was readily cleaved by mild acid hydrolysis. Its chromatographic properties distinguished Hf-neuraminic acid from other known neuraminic acid derivatives (N-acetyl-, NO-diacetyl-, NOO-triacetyl- and N-glycollyl-neuraminic acid). Further, this acidic sugar was shown to possess neuraminic acid as its basic structure. Thus, an as yet unknown substituent lends the distinct properties to Hf-neuraminic acid. 2. The carbohydrate composition of a second glycopeptide fraction consisting of a derivative of neuraminic acid, galactose, mannose and glucosamine was similar to that of the well-known carbohydrate groups of the globular glycoproteins. 3. The third fraction contained two glycopeptides containing the disaccharide, glucosylgalactose, which was shown to be linked to the hydroxyl group of hydroxylysine residues of a collagen-like protein. Approximately half of these residues were glycosylated. In addition to these glycopeptides, a small amount of a third glycopeptide that carried only a galactosyl residue was detected. The amino acid sequence of the two major compounds were found to be Gly-Ala-Hyl*-Gly-Ser and Gly-Pro-Hyl*-Gly-Asp, where Hyl* represents a glycosylated amino acid residue.  相似文献   

3.
A beta-N-acetylgalactosaminyltransferase that preferentially transferred N-acetylgalactosamine to Sd(a-) Tamm-Horsfall glycoprotein was found in guinea-pig kidney microsomal preparations. This enzyme was kidney-specific and was able to transfer the sugar to other glycoproteins, such as fetuin and alpha 1-acidic glycoprotein. The presence of sialic acid in the acceptors was essential for the transferase activity when either glycoproteins or their Pronase glycopeptides were used as acceptors. Two glycopeptides (Tamm-Horsfall glycopeptides I and II) with a different carbohydrate composition were separated by DEAE-Sephacel chromatography from Pronase-digested Tamm-Horsfall glycoprotein. The amount of N-acetylgalactosamine transferred to glycopeptides by the enzyme correlated with their degree of sialylation. Enzymic digestion of N-[14C]acetylgalactosamine-labelled Tamm-Horsfall glycopeptide II showed that the transferred sugar was susceptible to beta-N-hexosaminidase. The amount of sugar cleaved by beta-hexosaminidase was strongly increased when the labelled Tamm-Horsfall glycopeptide II was pretreated with mild acid hydrolysis, a procedure that removed the sialic acid residues. Alkaline borohydride treatment of the labelled Tamm-Horsfall glycopeptide II did not release radioactivity, thus indicating that enzymic glycosylation took place at the N-asparagine-linked oligosaccharide units of Tamm-Horsfall glycoprotein.  相似文献   

4.
Cold-insoluble globulin (CIg) is a member of a group of circulating and cell-associated, high-molecular-weight glycoproteins termed fibronectins. CIg was isolated from human plasma by affinity chromatography on gelatin-Sepharose. SDS-polyacrylamide gel electrophoresis of the purified glycoprotein gave a double band that migrated near myosin. The CIg glycopeptides were released by pronase digestion and isolated by chromatography on Sephadex G-50. Affinity chromatography of the major G-50 peak on Con A-Sepharose resulted in two fractions: one-third of the glycopeptides were unbound and two-thirds were weakly bound (WB). Sugar composition analysis of the unbound glycopeptides by GLC of the trimethylsilyl methyl glycosides gave the following molar ratios: sialic acid, 2.5; galactose, 3.0; N-acetylglucosamine, 4.9; and mannose, 3.0. Sugar composition analysis of the WB glycopeptides gave the following molar ratios: sialic acid, 1.7; galactose, 2.0; N-acetylglucosamine, 4.1; and mannose, 3.0. The WB CIg glycopeptides cochromatographed on Sephadex G-50 with WB transferrin glycopeptides giving an estimated molecular weight of 2,800. After degradation with neuraminidase alone or sequentially with β-galactosidase the CIg and transferrin glycopeptides again cochromatographed. Methylation linkage analysis of the intact and the partially degraded glycopeptides indicated that the carbohydrate structure of the major human CIg glycopeptide resembles that of the major glycopeptide from transferrin.  相似文献   

5.
1. Fraction I, a fraction containing acidic glycoproteins, isolated from guinea-pig serum, was digested with Pronase after removal of sialic acid and a major and a minor glycopeptide fraction were isolated by chromatography with Sephadex G-25 and G-50. 2. The major fraction was examined by various methods and shown to contain several glycopeptides. Estimates of molecular weight of the glycopeptide fractions were obtained. Although some variation appeared to occur, the glycopeptides were not grossly heterogeneous with respect to size. An average prosthetic group was estimated to contain about 15 sugar residues. 3. Aspartic acid was the principal amino acid present in the fractions and in all subfractions of the major fraction investigated. Where examined, ammonia was liberated on acid hydrolysis in approximately equimolar amounts to the aspartic acid present. The carbohydrate composition of the fractions was also determined. 4. The glycopeptides showed relatively little degradation in alkaline solution. 5. These results suggest that an N-acylglycosylamine bond involving aspartic acid forms the major type of linkage between carbohydrate and polypeptide. The isolation of a compound with the composition and chromatographic properties of 2-acetamido-1-(l-beta-aspartamido)-1,2-dideoxy-beta-d-glucose supports this view, and indicates that N-acetylglucosamine is the sugar involved in at least many linkages. 6. Fraction I contains some glycoproteins that are susceptible to Pronase and one or more others that resist digestion before the removal of sialic acid. A brief examination revealed some similarities between prosthetic groups derived from both kinds of glycoprotein.  相似文献   

6.
The carbohydrate components of influenza C virions grown in chicken kidney (CK) cells were analyzed by gel filtration following exhaustive digestion with Pronase. The [3H]glucosamine-labeled glycopeptides were larger and more heterogeneous than those of influenza A/WSN virions; three major size classes (G1, G2, and G3) were resolved. Treatment with Vibrio cholerae neuraminidase caused a decrease in size of G1 and G2, along with release of about 16% of the 3H label. The released sugar components were identified as N-acetylneuraminic acid by thin-layer chromatography. Peak G3 was highly labeled with [3H]mannose, whereas G1 and G2 contained lower levels of mannose. The three major viral glycoproteins gp88, gp65, and gp30 were isolated from sodium dodecyl sulfate-polyacrylamide gels, and their glycopeptide components were analyzed after Pronase digestion. The three size classes of glycopeptides were obtained from any of the three glycoproteins; however, the relative amounts of the three components varied among the glycoproteins. Host cell-derived components, which appear to be mucopolysaccharides and glycoproteins, were found associated with influenza C virions grown in CK cells. These components contained glycopeptides that were mainly of sizes similar to peak G2 from influenza C virions. Previous studies have shown that influenza A/WSN virus grown in several cell types contained only two size classes of glycopeptides. Two size classes comparable to peaks G2 and G3 from influenza C virions were also observed in influenza A/WSN grown in CK cells. Thus the large G1 glycopeptides appear to be characteristic of influenza C virions.  相似文献   

7.
Fractionation of the leech (Hirudo medicinalis) body-wall glycoproteins yielded a collagen fraction containing only d-glucose and d-galactose as its carbohydrate constituents. Digestion of the collagen with trypsin and pronase, and alkaline degradation of the resulting glycopeptides, gave a product that contained a disaccharide linked to hydroxylysine. Mild, acid hydrolysis of the N-acetylated glycopeptides yielded a disaccharide consisting of a d-glucose and a d-galactose residue. Various chemical and enzymic reactions of the disaccharide, the glycosyloxylysine, and the glycopeptide fraction indicated that the disaccharide is 2-O-α-d-glucopyranosyl-d-galactose, and that this is β-glycosidically linked to O-5 of the hydroxylysine residue in the collagen.  相似文献   

8.
Mannose-rich glycopeptides derived from brain glycoproteins were recovered by affinity chromatography on Concanavalin A-Sepharose. These glycopeptides, which adsorb to the lectin and are eluted with α-methylmannoside, constitute about 25–30% of the total glycopeptide material recovered from rat brain glycoproteins. They contain predominately mannose and N-acetylglucosamine (mannose/N-acetylglucosamine = 3), as well as small amounts of galactose and fucose. Approx. 65% of the Concanavalin A-binding glycopeptide carbohydrate was recovered after treatment with leucine aminopeptidase, gel filtration on Biogel P-4, and ion-exchange chromatography on coupled Dowex 50-hydrogen and Dowex 1-chrolide columns. The purified glycopeptide fraction contained six mannose and two N-acetylglucosamine residues per aspartic acid and possessed an apparent molecular weight of about 2000 as assessed by gel filtration and amino acid analysis. Galactose and fucose were absent. Treatment of the purified glycopeptides with α-mannosidase drastically reduced their affinity for Concanavalin A, suggesting the presence of one or more terminal mannose residues.  相似文献   

9.
Two types of linkages between the carbohydrate and the peptide moiety in the glycopeptide from Ascobolus furfuraceus are described. Treatment with mild alkali produced beta-elimination of a small oligosaccharide. Evidence for the O-glycosidic linkage was provided by increase in absorbance at 240 nm, decrease in threonine and serine content after the alkaline treatment and detection of tritiated oligosaccharide following alkaline NaB3H4 reduction. Mannose is the sugar involved in the O-glycosidic linkage. The remaining glycopeptide was branched by galactofuranose units, which were selectivity released by mild acid hydrolysis. The N-glycosidic linkage of the sugar chain was conclusively proved by cleavage with endo-beta-N-acetyl-glucosaminidase. Sequential NaB3H4 reduction and acid hydrolysis gave [3H]glucosaminitol. The structure of the sugar chain was studied by 13C NMR spectroscopy and by methylation analysis.  相似文献   

10.
The time course for the partial deglycosylation of blood-group-specific glycoproteins from human ovarian-cyst fluids with 0.25 M-H2SO4/acetic acid and 6 M-HCl in methanol was studied. Either reagent readily removed about 80% of the carbohydrate from the glycoproteins to leave non-diffusible glycopeptides that contain N-acetylgalactosamine as the predominant sugar. Some changes in amino acid distribution were observed during the deglycosylation, which were attributed to an accelerated break-up of the nonglycosylated regions of the parent glycoprotein. The N-acetylgalactosaminyl-peptides isolated were judged to be polydisperse by gel filtration, and ion-exchange chromatography divided the glycopeptide population into several fractions with differing amino acid compositions. A Lumbricus terrestris hexosaminidase preparation was successful in removing almost all the remaining sugar from the glycopeptides, but caused further rupture of the peptide. When a per O-acetylated glycoprotein was treated with the H2SO4/acetic acid reagent the glycopeptide contained, in addition to N-acetylgalactosamine, about 50% of the sialic acid present in the parent glycoprotein, indicating that most of this sugar is located near the peptide end of the carbohydrate chains.  相似文献   

11.
Myelin was purified from rat brain and sciatic nerve after invivo labeling with [3H]fucose and [14C]glucosamine to provide a radioactive marker for glycoproteins. The glycoproteins in the isolated myelin were digested exhaustively with pronase, and glycopeptides were isolated from the digest by gel filtration on Bio-Gel P-10. The glycopeptides from brain myelin separated into large and small molecular weight fractions, whereas the glycopeptides of sciatic nerve myelin eluted as a single symmetrical peak. The large and small glycopeptide fractions from central myelin and the single glycopeptide fraction from peripheral myelin were analyzed for carbohydrate by colorimetric and gas liquid chromatographic techniques. The glycopeptides from brain myelin contained 2.4 μg of neutral sugar and 0.59 μg of sialic acid per mg total myelin protein, whereas sciatic nerve myelin glycopeptides contained 10 μg of neutral sugar and 3.8 μg of sialic acid per mg total protein. Similarly, the gas-liquid chromatographic analyses showed that the glycopeptides from peripheral myelin contained 4- to 7-fold more of each individual per mg total myelin protein than those from central myelin. Most of the sialic acid and galactose in the glycopeptides from central myelin were in the large molecular weight fraction, and the small molecular weight glycopeptides contained primarily mannose and N-acetylglucosamine. The considerably higher content of glycoprotein-carbohydrate in peripheral myelin supports the results of gel electrophoretic studies, which indicate that the major protein in peripheral myelin in glycosylated while the glycoproteins in purified central myelin are quantitatevely minor components.  相似文献   

12.
Human vascular endothelial cells synthesize lactosaminoglycan-type glycoproteins which are found both associated with cells and secreted into the culture medium. Pronase-derived glycopeptides prepared from [3H]glucosamine-labeled glycoproteins were found to contain about 10% of the labeled products as a large size (Mr > 5000) 3H-labeled glycopeptide. Digestion of these 3H-labeled glycopeptides with endo-β-galactosidase resulted in the release of smaller size saccharides, which were characterized as having the structure sialic acid → Gal → GlcNAc → Gal. Treatment of [3H]glucosamine-labeled cells with melittin caused 3H-labeled glycoconjugates to be released from the cells. Separation of released glycoproteins from proteoglycans by DEAE-cellulose chromatography indicated that melittin had released 25% of the total 3H-labeled glycoproteins from the cell and 3% of the 3H-labeled proteoglycans. The 3H-labeled glycoproteins were digested with Pronase and the resulting 3H-labeled glycopeptides were fractionated on Sephadex G-50. The large size fraction (Mr > 5000) now comprised about 30% of these released 3H-labeled glycopeptides. These high molecular weight 3H-labeled glycopeptides were degraded with endo-β-galactosidase but not with testicular hyaluronidase. Analysis of the released 3H-labeled glycoproteins indicated a preferential release of glycoproteins of 70–90 kDa enriched in lactosaminoglycan-type oligosaccharides.  相似文献   

13.
The lipid-free protein residue of rat brain tissue was treated with papain to solubilize the heteropolysaccharide chains of the tissue glycoproteins. The glycopeptides were separated into non-dialyzable and dialyzable glycopeptide preparations. Each preparation was then sorted out into groups of glycopeptides by means of electrophoresis and gel filtration. The quantitatively predominant glycopeptides were the alkali-stable glycopeptides (Group A) which accounted for 64% of the glycopeptide carbohydrate recovered from rat brain. Most of the group A glycopeptides appeared in the non-dialyzable preparation. The molecular weight of the glycopeptides of Group A ranged from approximately 5200–3700. The largest glycopeptide molecule in this mixture possessed the highest electrophoretic mobility and contained one fucose, four N-acetylneuraminic acid (NANA), six N-acetylglucosamine, four galactose, and three mannose residues per molecule. The spectrum of glycopeptides isolated in this group showed a progressive decrease in NANA rsidues, NANA and galactose residues, and NANA, galactose, and N-acetylglucosamine residues which could be correlated with a progressive decline in molecular weight and electrophoretic mobility. Some of the glycopeptides in each fraction recovered from this group of glycopeptides contained sulfate ester groups.A second group of glycopeptides (Group C glycopeptides) accounted for 25% of the total glycoprotein carbohydrate recovered from rat brain. These were recoverd from the dialyzable glycopeptide preparation, and resolved into three fractions by column electrophoresis. These glycopeptides do not contain sulfate, are composed predominately of mannose and N-acetylglucosamine, and possess a molecular weight of approximately 3000.Several minor groups of glycopeptides were detected. Alkali-labile glycopeptides (Group B) appeared in the non-dialyzable glycopeptide preparation. The dialyzable glycopeptide preparation contained glycopeptides (Group E) which contained N-acetylgalactosamine and glucose. These had a molecular weight of approximately 2000. Group D glycopeptides recovered from the dialyzable glycopeptide preparation contained variable amounts of NANA, mannose, galactose, N-acetylglucosamine, and sulfate. These possessed a molecular weight of approximately 2900.  相似文献   

14.
Trypsin digestion of haptoglobin resulted i four glycopeptides. The glycopeptides were characterized by amino acid composition and molecular weight, as determined by thin-layer chromatography, and sodium dodecyl sulphate-polyacrylamide gel electrophoresis in the presence or absence of 2-mercaptoethanol. Hemoglobin-binding capacity and immunological properties were investigated. glycopeptides I and II did not form an active complex with hemoglobin and they inhibited the reaction of haptoglobin with specific antiserum by over 70%. Glycopeptides III and IV showed 11 and 4% of the hemoglobin-binding capacity and 82 and 67% of antigenic reactivity of native haptoglobin, respectively. Glycopeptide IV contained three antigenic determinants, whereas glycopeptides III contained four, one of them being exposed by trypsin digestion. In crossed two-dimensional immunoelectrophoresis, glycopeptide III showed at least four components reacting with antihaptoglobin serum, and glycopeptide IV, two components.  相似文献   

15.
A procedure is described for the isolation of nascent albuminyl peptides from rat liver polysomes which is based on the isolation of total peptidyl tRNA by ion-exchange chromatography on ECTEOLA cellulose followed by immuno-affinity chromatography employing monospecific anti-albumin antibodies immobilized on Sepharose 4B. Identity of the isolated nascent albuminyl peptides was assayed by tryptic peptide fingerprint analysis. Quantitation and determination of the specific activity of the nascent albuminyl peptides, labeled in vivo with l-[14c]leucine, were made by subjecting the peptides to acid hydrolysis, dansylation and resoultion of the amino acids by thin-layer chromatography, and determination of the specific activity of dansyl leucine.  相似文献   

16.
The manual dansyl-Edman1 degradation procedure is one of the most convenient and widely used techniques for the sequencing of peptides up to about 15 residues in length (1,2). A frequently encountered complication in this procedure is the resistance of certain peptide bonds to acid hydrolysis. If the amino terminal peptide bond of the dansylated peptide is especially resistant, the dansyl dipeptide is frequently in higher yield than the corresponding dansyl amino acid. The resistant dansyl dipeptide is often composed of two hydrophobic amino acid residues. The resistance of such peptide bonds to acid hydrolysis is well understood (3). Other resistant bonds have, however, been noted in practice, e.g., those involving a hydrophobic and a prolyl residue. This phenomenon can lead to difficulty in interpretation of the thin-layer chromatogram and to subsequent incorrect identification of amino acid residues. Extending the hydrolysis time to 24 hr still leaves especially resistant dipeptides as the major product while significantly reducing the yield of other dansylated residues, notably dansyl proline, serine, and threonine. We report here the chromatographic behavior of 18 dansyl dipeptides on polyamide thin-layers using the solvent systems commonly employed in the dansyl-Edman procedure (2). All of these dipeptides have been encountered in practice, and the extent of hydrolysis in 6 n HCl at 110°C is usually less than 20%.  相似文献   

17.
Quantitative determination of the sulfated glycoproteins present in tissue and secretion fluid was performed. After digestion of the specimen with pronase in order to convert glycoproteins to glycopeptides, the sulfated glycopeptides were separated from a mixture of acidic glycans (glycosaminoglycans, sialoglycopeptides and sulfated glycopeptides) by two-dimensional electrophoresis on cellulose acetate membrane [(1986) J. Biochem. Biophys. Methods 12, 239-246]. After staining with alcian blue, the spot of sulfated glycopeptide on the cellulose acetate membrane was cut out, and then only the dye bound to the sulfated glycopeptide was extracted with a 5% cetylpyridinium chloride solution at 100 degrees C for 15 min. The extract was then measured by absorbance at 615 nm using an authentic sulfated glycopeptide as a standard. This method facilitated the determination of sulfated glycopeptides, which were separated from other acidic glycans, within the range 0-25 micrograms.  相似文献   

18.
19.
Synthesis of tumor-associated glycopeptide antigens   总被引:2,自引:0,他引:2  
Carbohydrates and peptides linked together in glycoproteins constitute important components of the molecular communication between cells in multicellular organisms. Cell morphogenesis and tumorigenesis are accompanied by changes in the glycoprotein profiles of the outer cell membranes. Glycopeptide fragments of glycoproteins that have altered structures in tumor cells are of interest as tumor-associated antigens for the distinction between normal cells and tumor cells. In contrast to glycoproteins isolated from biological sources, synthetic glycopeptides are obtained in pure form and exactly specified structures. The methods developed for the synthesis of glycopeptides with tumor-associated antigen structure are outlined in this article by means of a series of typical examples. Beginning with O-glycopeptides of the relatively simple alpha-O-galactosamine-serine/threonine (T(N)-antigen) type, glycopeptide antigens of increasing complexity are described. The review includes syntheses of the saccharide components, the glycosylation reactions to furnish the O-glycosyl amino acid building blocks, their selective C- and N-terminal deprotection and the use of these building blocks for glycopeptide syntheses both in solution and on the solid support. Particular attention is given to glycopeptides containing sialic acid residues, whose syntheses are demanding since reversible protection of the sialic carboxylic group is required. Synthetic methods for the construction of N-glycopeptides carrying the important cell adhesion ligands sialyl Lewis x and sialyl Lewis a antigen are also described. Strategies for the construction of glycopeptides of this type require methods compatible with the presence of the sialic acid residue, as well as with the acid-sensitivity of the fucoside bonds.  相似文献   

20.
β-Aspartylglycine is an indicator of the absence of bacterial enzymatic activity in the intestinal tract. This study describes and compares four methods — (1) dansylation with thin-layer chromatography, (2) ion-exchange chromatography, (3) thin-layer electrophoresis, (4) high-voltage paper electrophoresis — to determine the concentration of β-aspartylglycine in fecal supernatants of leukemic patients treated with antimicrobial agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号