首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
NO3?-dependent O2 in synchronous Scenedesmus obtusiusculus Chod. in the absence of CO2 is stoichiometric with NH4+ excretion, indicating a close coupling of NO3? reduction to non-cyclic electron flow. Also in the presence of CO2, NO3? stimulates O2 evolution as manifested by an increase in the O2/CO2 ratio from 0.96 to 1.11. This quotient was increased to 1.36 by addition of NO2?, without competitive interaction with CO2 fixation, indicating that the capacity for non-cyclic electron transport at saturating light is non-limiting for simultaneous reduction of NO3? and CO2 at high rates. During incubation with NO3?+ CO2, no NH4+ is released to the outer medium, whereas during incubation with NO2?+ CO2, excess NH4+ is formed and excreted. NO3? uptake is stimulated by CO2, and this stimulation is also significant when the cellular energy metabolism is restricted by moderate concentrations of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, whereas NO3? uptake in the absence of CO2 is severely inhibited by the uncoupler. Also under energy-restricted conditions NO3? uptake is not competitive with CO2 fixation. Antimycin A is inhibitory for NO3? uptake in the absence of CO2, and there is no enhancement of NO3? uptake by CO2 in the presence of antimycin A. It is assumed that the energy demand for NO3? uptake is met by energy fixed as triosephosphates in the Calvin cycle. Antimycin A possibly affects the transfer of reduced triose phosphates from the chloroplast to the cytoplasm. Active carbon metabolism also seems to exert a control effect on NO3? assimilation, inducing complete incorporation of all NO3? taken up into amino acids. This control effect is not functional when NO2? is the nitrogen source. Active carbon metabolism thus seems to be essential both for provision of energy for NO3? uptake and for regulation of the process.  相似文献   

2.
Sea urchins have elaborated multiple defenses to assure monospermic fertilization. In this work, we have concentrated on a study of the mechanism(s) by which hydrogen peroxide (H2O2) prevents polyspermy in Arbacia punctulata. We found that it is not H2O2 but probably hypochlorous acid/hypochlorite (HOCl/OCl?) derived from H2O2 that is toxic to the supernumerary sperm. The spermicidal activity of H2O2 is potentiated by at least one order of magnitude by cupric ions (Cu2+). This increased toxicity is not due to the formation of hydroxyl radicals (·OH) because ·OH scavengers did not counteract the activity of Cu2+. More-over, substitution of Cu2+ by ferrous ions (Fe2+), which are known to cause formation of ·OH from H2O2, had no effect on fertilization even at 102?103 times higher concentrations. In contrast, 3-amino-1,2,4-triazole (AT), an HOCl/OCl? scavenger, totally reversed the toxic effects of Cu2+. Furthermore, we found that HOCl/OCl? is generated in solutions of H2O2 and Cu2+ in the presence of 0.5 M NaCl and that its accumulation is abolished by AT. Thus it is possible that the antifertility properties of copper are due to its ability to mediate formation of HOCl/OCl?. HOCl/OCl? generated by Cu2+ from H2O2 and Cl?, a low concentration of exogenously added HOCl/OCl?, or increased concentrations of H2O2 has similar inhibitory effects on the fertilization process in sea urchins. Therefore, we suggest that polyspermy is prevented by the action of a myeloperoxidase that affects the formation of HOCl/OCl? from the Cl? present in sea water through reaction with H2O2 generated by the newly fertilized egg.  相似文献   

3.
Energetics of Functional Activation in Neural Tissues   总被引:14,自引:0,他引:14  
Glucose utilization (lCMRglc) increases linearly with spike frequency in neuropil but not perikarya of functionally activated neural tissues. Electrical stimulation, increased extracellular [K+] ([K+]0), or opening of Na+ channels with veratridine stimulates 1CMRglc in neural tissues; these increases are blocked by ouabain, an inhibitor of Na+,K+-ATPase. Stimulating Na+,K+-ATPase activity to restore ionic gradients degraded by enhanced spike activity appears to trigger these increases in lCMRglc. Cultured neurons behave similarly. Astrocytic processes that envelop synapses in neuropil probably contribute to the increased lCMRglc. lCMRglc in cultured astroglia is unaffected by elevated [K+]0 but is stimulated by increased intracellular [Na+] ([Na+]i), and this stimulation is blocked by ouabain or tetrodotoxin. L-Glutamate also stimulates lCMRglc in astroglia. This effect is unaffected by inhibitors of NMDA or non-NMDA receptors, blocked by ouabain, and absent in Na+-free medium; it appears to be mediated by increased [Na+]i due to combined uptake of Na+ with glutamate via Na+/glutamate co-transporters.  相似文献   

4.
Summary The pH-dependence of NO 3 - and NO 2 - uptake is different from that of phosphate uptake, but similar to that of sulfate uptake, with optima between pH 7.4 and 8.2 and smaller peaks at higher H+-concentration.Since the ATP-level is not affected by addition of ions and since phosphate uptake is not depressed by NO 3 - , the inhibition of phosphate uptake by K+ reported in former papers cannot be explained by competition for the available energy(ATP) at the site of uptake.NO 3 - uptake is strongly dependent on the activity of the NO 3 - reducting system, as can be seen from the inhibition of NO 3 - uptake in light by N2 compared with that in air. Furthermore, the pH-dependences of NO 3 - and NO 2 - uptake correspond to the pH-optima known for the reductases.Phosphate uptake is enhanced by NO 3 - and NO 2 - in N2. Since the enhancement of phosphate uptake is sensitive to DCMU and since this DCMU-sensitive phosphate uptake is accompanied by O2-evolution, it is probably due to an NO 3 - -stimulated noncyclic photophosphorylation which enhances the ATP-turnover and hence the incorporation of phosphate into organic compounds.
Abkürzungen TCE Trichloressigsäure - P Orthophosphat - P0 TCE-lösliche organische Phosphatverbindungen - Pu TCE-unlösliche Phosphatverbindungen - GP Gesamtphosphat  相似文献   

5.
A testable mechanism of CO2 accumulation in photolithotrophs, originally suggested by Pronina & Semenenko, is quantitatively analysed. The mechanism involves (as does the most widely accepted hypothesis) the delivery of HCO3? to the compartment containing Rubisco. It differs in proposing subsequent HCO3? entry (by passive uniport) to the thylakoid lumen, followed by carbonic anhydrase activity in the lumen; uncatalysed conversion of HCO3? to CO2, even at the low pH of the lumen, is at least 300 times too slow to account for the rate of inorganic C acquisition. Carbonic anhydrase converts the HCO3? to CO2 at the lower pH maintained in the illuminated thylakoid lumen by the light-driven H+ pump, generating CO2 at 10 times or more the thylakoid HCO3? concentration. Efflux of this CO2 can suppress Rubisco oxygenase activity and stimulate carboxylase activity in the stroma. This mechanism differs from the widely accepted hypotheses in the required location of carbonic anhydrase, i.e. in the thylakoid lumen rather than the stroma or pyrenoid, and in the need for HCO3? influx to thylakoids. The capacity for anion (assayed as Cl?) entry by passive uniport reported for thylakoid membranes is adequate for the proposed mechanism; if the Cl? channel does not transport HCO3?, HCO3? entry could be by combination of the Cl? channel with a Cl? HCO3? antiporter. This mechanism is particularly appropriate for organisms which lack overt accumulation of total inorganic C in cells, but which nevertheless have the gas exchange characteristics of an organism with a CO2-concentrating mechanism.  相似文献   

6.
Illuminated intact pea chloroplasts in the presence of O-acetylserine (OAS) catalysed incorporation of SeO32- and SO32- into selenocysteine and cysteine at rates of ca 0.36 and 6 μmol/mg Chl per hr respectively. Sonicated chloroplasts catalysed SeO32- and SO32- incorporation at ca 3.9 and 32% respectively of the rates of intact chloroplasts. Addition of GSH and NADPH increased the rates to ca 91 and 98% of the intact rates, but SeO32- incorporation under these conditions was essentially light-independent. In the absence of OAS, intact chloroplasts catalysed reduction of SO32- to S2- at rates of ca 5.8 μmol/mg Chl per hr. In the presence of OAS, S2- did not accumulate. Glutathione (GSH) reductase was purified from peas and was inhibited by ZnCl2. This enzyme, in the presence of purified clover cysteine synthase, OAS, GSH and NADPH, catalysed incorporation of SeO32- into selenocysteine (but not SO32- into cysteine). The reaction was inhibited by ZnCl2. Incorporation of SeO32- into selenocysteine by illuminated intact chloroplasts and sonicated chloroplasts (with NADPH and GSH) was also inhibited by ZnCl2 but not by KCN. Conversely, incorporation of SO32- into cysteine was inhibited by KCN but not by ZnCl2. It was concluded that SeO32- and SO32- are reduced in chloroplasts by independent light-requiring mechanisms. It is proposed that SeO32- is reduced by light-coupled GSH reductase and that the Se2- produced is incorporated into selenocysteine by cysteine synthase.  相似文献   

7.
Anabaena flos-aquae (Lyngb.) Bréb. was grown in varying concentrations of nitrate. Specific growth rates, as estimated in batch culture, were constant and approached the maximum rate at all concentrations of NO3?-N tested bewteen 0 and 400 μ/L. Steady-state biomass, as determined in semicontinuous culture, did not vary with NO3? at slower dilution rates. However at a faster dilution rate, significantly less biomass occurred in intermediate concentrations of NO3? than in either higher or lower concentrations. The results indicate that both growth rate and standing crop are maximized by either N2 fixation or NO3? assimilation, but extracellular NO3? reduces the rate of N2 fixation. Consequently, at very low NO3? concentrations, growth is virtually maximized by N2 fixation alone, and at high concentrations of NO3?, N2 fixation is inhibited but growth is maximized by assimilation of NO3?. At intermediate concentrations of NO3?, growth becomes a function of NO3? assimilation augmented by N2 fixation. In this case, full growth potential is realized only if hydraulic residence time is sufficiently long to compensate for the reduced rate of N2 fixation. Growth rate and standing crop are not diminished in response to the large amount of energy allocated to N2 fixation. Instead, other cellular processes are probably affected negatively during N2 fixation.  相似文献   

8.
Clostridiumpasteurianum is able to take up NH4+ and CH3NH3+ against concentration gradients. Uptake of CH3NH3+ is abolished by NH4+ and partially inhibited by dinitrophenol. C.pasteurianum membranes are permeabilized for NH4+ by valinomycin. These results are regarded as evidence for an ammonium translocase in membranes otherwise only slightly permeable for NH3.  相似文献   

9.
Carbonyl sulfide (COS), a substrate for carbonic anhydrase, inhibited alkalization of the medium, O2 evolution, dissolved inorganic carbon accumulation, and photosynthetic CO2 fixation at pH 7 or higher by five species of unicellular green algae that had been air-adapted for forming a CO2-concentrating process. This COS inhibition can be attributed to inhibition of external HCO3 conversion to CO2 and OH by the carbonic anhydrase component of an active CO2 pump. At a low pH of 5 to 6, COS stimulated O2 evolution during photosynthesis by algae with low CO2 in the media without alkalization of the media. This is attributed to some COS hydrolysis by carbonic anhydrase to CO2. Although COS had less effect on HCO3 accumulation at pH 9 by a HCO3 pump in Scenedesmus, COS reduced O2 evolution probably by inhibiting internal carbonic anhydrases. Because COS is hydrolyzed to CO2 and H2S, its inhibition of the CO2 pump activity and photosynthesis is not accurate, when measured by O2 evolution, by NaH14CO3 accumulation, or by 14CO2 fixation.  相似文献   

10.
The ability to use δ18O values of nitrous oxide (N2O) to apportion environmental emissions is currently hindered by a poor understanding of the controls on δ18O–N2O from nitrification (hydroxylamine oxidation to N2O and nitrite reduction to N2O). In this study fertilized agricultural soils and unfertilized temperate forest soils were aerobically incubated with different 18O/16O waters, and conceptual and mathematical models were developed to systematically explain the δ18O–N2O formed by nitrification. Modeling exercises used a set of defined input parameters to emulate the measured soil δ18O–N2O data (Monte Carlo approach). The Monte Carlo simulations implied that abiotic oxygen (O) exchange between nitrite (NO2?) and H2O is important in all soils, but that biological, enzyme‐controlled O‐exchange does not occur during the reduction of NO2? to N2O (nitrifier‐denitrification). Similarly, the results of the model simulations indicated that N2O consumption is not characteristic of aerobic N2O formation. The results of this study and a synthesis of the published literature data indicate that δ18O–N2O formed in aerobic environments is constrained between +13‰ and +35‰ relative to Vienna Standard Mean Ocean Water (VSMOW). N2O formed via hydroxylamine oxidation and nitrifier‐denitrification cannot be separated using δ18O unless 18O tracers are employed. The natural range of nitrifier δ18O–N2O is discussed and explained in terms of our conceptual model, and the major and minor controls that define aerobically produced δ18O–N2O are identified. Despite the highly complex nature of δ18O–N2O produced by nitrification this δ18O range is narrow. As a result, in many situations δ18O values may be used in conjunction with δ15N–N2O data to apportion nitrifier‐ and denitrifier‐derived N2O. However, when biological O‐exchange during denitrification is high and N2O consumption is low, there may be too much overlap in δ18O values to distinguish N2O formed by these pathways.  相似文献   

11.
Prenylquinols (tocochromanols and plastoquinols) serve as efficient physical and chemical quenchers of singlet oxygen (1O2) formed during high light stress in higher plants. Although quenching of 1O2 by prenylquinols has been previously studied, direct evidence for chemical quenching of 1O2 by plastoquinols and their oxidation products is limited in vivo. In the present study, the role of plastoquinol‐9 (PQH2‐9) in chemical quenching of 1O2 was studied in Arabidopsis thaliana lines overexpressing the SOLANESYL DIPHOSPHATE SYNTHASE 1 gene (SPS1oex) involved in PQH2‐9 and plastochromanol‐8 biosynthesis. In this work, direct evidence for chemical quenching of 1O2 by plastoquinols and their oxidation products is presented, which is obtained by microscopic techniques in vivo. Chemical quenching of 1O2 was associated with consumption of PQH2‐9 and formation of its various oxidized forms. Oxidation of PQH2‐9 by 1O2 leads to plastoquinone‐9 (PQ‐9), which is subsequently oxidized to hydroxyplastoquinone‐9 [PQ(OH)‐9]. We provide here evidence that oxidation of PQ(OH)‐9 by 1O2 results in the formation of trihydroxyplastoquinone‐9 [PQ(OH)3‐9]. It is concluded here that PQH2‐9 serves as an efficient 1O2 chemical quencher in Arabidopsis, and PQ(OH)3‐9 can be considered as a natural product of 1O2 reaction with PQ(OH)‐9. The understanding of the mechanisms underlying 1O2 chemical quenching provides information on the role of plastoquinols and their oxidation products in the response of plants to photooxidative stress.  相似文献   

12.
Malignant hyperthermia (MH) is potentially fatal pharmacogenetic disorder of skeletal muscle caused by intracellular Ca2+ dysregulation. NCX is a bidirectional transporter that effluxes (forward mode) or influxes (reverse mode) Ca2+ depending on cellular activity. Resting intracellular calcium ([Ca2+]r) and sodium ([Na+]r) concentrations are elevated in MH susceptible (MHS) swine and murine muscles compared with their normal (MHN) counterparts, although the contribution of NCX is unclear. Lowering [Na+]e elevates [Ca2+]r in both MHN and MHS swine muscle fibers and it is prevented by removal of extracellular Ca2+ or reduced by t-tubule disruption, in both genotypes. KB-R7943, a nonselective NCX3 blocker, reduced [Ca2+]r in both swine and murine MHN and MHS muscle fibers at rest and decreased the magnitude of the elevation of [Ca2+]r observed in MHS fibers after exposure to halothane. YM-244769, a high affinity reverse mode NCX3 blocker, reduces [Ca2+]r in MHS muscle fibers and decreases the amplitude of [Ca2+]r rise triggered by halothane, but had no effect on [Ca2+]r in MHN muscle. In addition, YM-244769 reduced the peak and area under the curve of the Ca2+ transient elicited by high [K+]e and increased its rate of decay in MHS muscle fibers. siRNA knockdown of NCX3 in MHS myotubes reduced [Ca2+]r and the Ca2+ transient area induced by high [K+]e. These results demonstrate a functional NCX3 in skeletal muscle whose activity is enhanced in MHS. Moreover reverse mode NCX3 contributes to the Ca2+ transients associated with K+-induced depolarization and the halothane-triggered MH episode in MHS muscle fibers.  相似文献   

13.
The oxidation of NH4+ by Nitrosomonas europaea was insensitive to 10 mM NaClO3 (sodium chlorate) but was strongly inhibited by NaClO2 (sodium chlorite; Ki, 2 μM). The oxidation of NO2 by Nitrobacter winogradskyi was inhibited by both ClO3 and ClO2 (Ki for ClO2, 100 μM). N. winogradskyi reduced ClO3 to ClO2 under both aerobic and anaerobic conditions, and as much as 0.25 mM ClO2 was detected in the culture filtrate. In mixed N. europaea-N. winogradskyi cell suspensions, the oxidation of both NH4+ and NO2 was inhibited in the presence of 10 mM ClO3 after a 2-h lag period, despite the fact that, under these conditions, ClO2 was not detected in the filtrate. The data are consistent with the hypothesis that, in mixed culture, NH4+ oxidation is inhibited by ClO2 produced by reduction of ClO3 by the NO2 oxidizer. The use of ClO3 inhibition of NO2 oxidation in assays of nitrification by mixed populations necessitates cautious interpretation unless it can be shown that the oxidation of NH4+ is not affected.  相似文献   

14.
The receptor‐evoked Ca2+ signal is sensed and translated by mitochondria. Physiological cytoplasmic Ca2+ ([Ca2+]c) oscillations result in mitochondrial Ca2+ ([Ca2+]m) oscillations, while large and sustained [Ca2+]c increase results in a pathologic increase in basal [Ca2+]m and in Ca2+ accumulation. The physiological [Ca2+]m signal regulates [Ca2+]c and stimulates oxidative metabolism, while excess Ca2+ accumulation causes cell stress leading to cell death. [Ca2+]m is determined by Ca2+ uptake mediated by the mitochondria Ca2+ uniporter (MCU) channel and by Na+‐ and H+‐coupled Ca2+ extrusion 1 .  相似文献   

15.
Primary cultures of both mouse astrocytes and neurons accumulate more125I than36Cl from the medium. The average cell/medium ratio of125I of astrocytes (1.01) is greater than that of neurons (0.74), whereas the ratio of36Cl of neurons (0.47) is greater than that of astrocytes (0.25). The equilibrium potentials of both125I and36Cl calculated from the cell/medium ratios in astrocytes and neurons are significantly lower than their corresponding resting transmembrane potentials which suggest that both iodide and chloride are actively transported into both cell types. With respect to different transport inhibitors, thiocyanate is more effective in inhibiting125I uptake whereas furosemide is more effective in inhibiting36Cl uptake. Radioiodide uptake by mouse astrocytes was directly proportional to the [Na+]o but was not significantly affected by changes of [Cl]o or [HCO 3 ]o, except that it is low in bicarbonate-free medium. Radiochloride uptake by astrocytes was inversely related to [Cl]o and [HCO 3 ]o and was not affected [Na+]o, except that it was low in sodium-free medium. Radioiodide uptake by neurons was directly related to [Na+]o between 60 and 140 mM and inversely related to [HCO 3 ]o between 10 and 40 mM, but it was not affected by [Cl]o. Radiochloride uptake by neurons was directly related to [Cl]o and to [Na+]o between 60 and 140 mM and was not affected by [HCO 3 ]o. However, in sodium-free medium both125I and36Cl uptakes into neurons were higher than those in [Na+]o between 5 and 60 mM. These results indicate that uptake of125I and36Cl into astrocytes and neurons are different in their ion dependence and that they are under separate regulation.Special issue dedicated to Dr. Paola S. Timiras  相似文献   

16.
The HCO3 anion activates sperm motility, an important early step in capacitation, by increasing flagellar beat frequency through a pathway that requires the atypical adenylyl cyclase SACY and the sperm-specific Cα2 catalytic subunit of PKA. Here we show that the accelerating action of HCO3 also requires the continued presence of external Ca2+ (EC50 ∼ 0.5 mM), and find that Ca2+ can be replaced by Sr2+ but not by Mn2+. Ca2+ is required for HCO3 to elevate cAMP, but not for cAMP-AM to increase beat frequency, indicating that external Ca2+ acts before rather than after stimulation of SACY by HCO3. With external Ca2+ present, HCO3 does not alter cytosolic or near-membrane [Ca2+]. Removal of external Ca2+ initiates a slow decline in intracellular [Ca2+] and rapid block of the HCO3-evoked acceleration that is not relieved upon increasing internal [Ca2+] by rapid photolysis of caged Ca2+. We also find that the rapid (t1/2 ∼ 10 s) accelerating action of HCO3 is slowed more than three-fold by the carbonic anhydrase inhibitor acetazolamide. It is unaltered by the broad spectrum anion transport inhibitor SITS, and is not accompanied by detectable changes in intracellular pH. We propose that external Ca2+ binds an unidentified extracellular protein that is required for HCO3 to engage cAMP-mediated activation of motility.  相似文献   

17.
The effect of SO32? on the activity of PEP-carboxylase and on subsequent malate formation has been studied in leaf extracts of Zea mays. PEP-carboxylase was assayed by incorporation of H14CO3 - into oxaloacetate dinitrophenylhydrazone and by a spectrophotometric method. In contrast to ribulose diphosphate carboxylase, PEP-carboxylase was not inhibited by 10 mM SO32? with respect to PEP. As was the case with ribulose diphosphate carboxylase, the activity of PEP-carboxylase was inhibited non-competitively with respect to Mg2+. However, the Ki value (84.5 mM) was found to be very high. With respect to HCO3?, like ribulose diphosphate carboxylase, PEP-carboxylase was inhibited competitively, but the Ki value (27 mM SO32?) increased by about the same factor (× 9) as the Km, (0·5 mM HCO3?) is decreased. This indicates that the replacement of HCO3? by SO32?, common to both enzymes, is facilitated by decreasing the affinity of the enzyme for HCO3?. At substrate saturating conditions malate formation by the combined action of PEP-carboxylase and endogenous NADH-dependent malate dehydrogenase in leaf extracts was not inhibited by 10 mM SO32?. Although the malate dehydrogenase is inhibited at this SO32? concentration to about 85%, malate formation is unaffected, as PEP-carboxylase is the rate limiting step its turnover rate being only about 8% of NADH-dependent malate dehydrogenase.  相似文献   

18.
Barry Halliwell 《Planta》1978,140(1):81-88
The enzyme horseradish peroxidase (EC 1.11.1.7) catalyses oxidation of NADH. NADH oxidation is prevented by addition of the enzyme superoxide dismutase (EC 1.15.1.1) to the reaction mixture before adding peroxidase but addition of dismutase after peroxidase has little inhibitory effect. Catalase (EC 1.11.1.6) inhibits peroxidase-catalysed NADH oxidation when added at any time during the reaction. Apparently the peroxidase uses hydrogen peroxide (H2O2) generated by non-enzymic breakdown of NADH to catalyse oxidation of NADH to a free-radical, NAD., which reduces oxygen to the superoxide free-radical ion, O2 .-. Some of the O2 .- reacts with peroxidase to give peroxidase compound III, which is catalytically inactive in NADH oxidation. The remaining O2 .- undergoes dismutation to O2 and H2O2. O2 .- does not react with NADH at significant rates. Mn2+ or lactate dehydrogenase stimulate NADH oxidation by peroxidase because they mediate a reaction between O2 .- and NADH. 2,4-Dichlorophenol, p-cresol and 4-hydroxycinnamic acid stimulate NADH oxidation by peroxidase, probably by breaking down compound III and so increasing the amount of active peroxidase in the reaction mixture. Oxidation in the presence of these phenols is greatly increased by adding H2O2. The rate of NADH oxidation by peroxidase is greatest in the presence of both Mn2+ and those phenols which interact with compound III. Both O2 .- and H2O2 are involved in this oxidation, which plays an important role in lignin synthesis.  相似文献   

19.
This study investigated the underlying mechanisms of oxytocin (OT)-induced increases in intracellular Ca2+ concentrations ([Ca2+]i) in acutely dispersed myometrial cells from prepartum sows. A dosedependent increase in [Ca2+]i was induced by OT (0.1 nM to 1 μM) in the presence and absence of extracellular Ca2+ ([Ca2+]e). [Ca2+]i was elevated by OT in a biphasic pattern, with a spike followed by a sustained plateau in the presence of [Ca2+]e. However, in the absence of [Ca2+]e, the [Ca2+]i response to OT became monophasic with a lower amplitude and no plateau, and this monophasic increase was abolished by pretreatment with ionomycin, a Ca2+ ionophore. Administration of OT (1 μM) for 15 sec increased inositol 1,4,5-trisphosphate (IP3) formation by 61%. Pretreatment with pertussis toxin (PTX, 1 μg/ml) for 2 hr failed to alter the OT-induced increase in [Ca2+]i and IP3 formation. U-73122 (30 nM to 3 μM), a phospholipase C (PLC) inhibitor, depressed the rise in [Ca2+]i by OT dose dependently. U-73122 (3 μM) also abolished the OT-induced IP3 formation. Thapsigargin (2 μM), an inhibitor of Ca2+-ATPase in the endoplasmic reticulum, did not increase [Ca2+]i. However, it did time-dependently inhibit the OT-induced increase in [Ca2+]i. Nimodipine (1 μM), a Voltage-dependent Ca2+ channel (VDCC) blocker, inhibited the OT-induced plateau by 26%. La3+ (1 μM), a nonspecific Ca2+ channel blocker, abrogated the OT-induced plateau. In whole-cell patch-clamp studies used to evaluate VDCC activities, OT (0.1 μM) increased Ca2+ Current (Ica) by 40% with no apparent changes in the current-voltage relationship. The OT-induced increase in Ica reached the maximum in 5 min, and the increase was abolished by nimodipine (1 μM). These results suggested that (1) activation of OT receptors in porcine myometrium evokes a cascade in the PTX-insensitive G-protein–PLC-IP3 signal transduction, resulting in an increase in [Ca2+]i; (2) the OT-induced increase in [Ca2+]i is characterized by a biphasic pattern, in which the spike is predominately contributed by the intracellular Ca2+ release from the IP3-sensitive pool, and to a lesser extent by Ca2+ influx, whereas the plateau is from increased Ca2+ influx; and (3) the influx is via VDCC and receptor-operated Ca2+ channels. © 1995 Wiley-Liss, Inc.  相似文献   

20.
Yanan Ren  Jingquan Zhao 《BBA》2010,1797(8):1421-3132
Chloride is an essential cofactor for photosynthetic water oxidation. However, its location and functional roles in active photosystem II are still a matter of debate. We have investigated this issue by studying the effects of Cl replacement by Br in active PSII. In Br substituted samples, Cl is effectively replaced by Br in the presence of 1.2 M NaBr under room light with protection of anaerobic atmosphere followed by dialysis. The following results have been obtained. i) The oxygen-evolving activities of the Br-PSII samples are significantly lower than that of the Cl-PSII samples; ii) The same S2 multiline EPR signals are observed in both Br and Cl-PSII samples; iii) The amplitudes of the visible light induced S1TyrZ and S2TyrZ EPR signals are significantly decreased after Br substitution; the S1TyrZ EPR signal is up-shifted about 8 G, whereas the S2TyrZ signal is down-shifted about 12 G after Br substitution. These results imply that the redox properties of TyrZ and spin interactions between TyrZ and Mn-cluster could be significantly modified due to Br substitution. It is suggested that Cl/Br probably coordinates to the Ca2+ ion of the Mn-cluster in active photosystem II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号