首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular role of poly (ADP-ribose) polymerase-1 in DNA repair is unclear. Here, we show that the single-strand break repair protein XRCC1 is rapidly assembled into discrete nuclear foci after oxidative DNA damage at sites of poly (ADP-ribose) synthesis. Poly (ADP-ribose) synthesis peaks during a 10 min treatment with H2O2 and the appearance of XRCC1 foci peaks shortly afterwards. Both sites of poly (ADP-ribose) and XRCC1 foci decrease to background levels during subsequent incubation in drug-free medium, consistent with the rapidity of the single-strand break repair process. The formation of XRCC1 foci at sites of poly (ADP-ribose) was greatly reduced by mutation of the XRCC1 BRCT I domain that physically interacts with PARP-1. Moreover, we failed to detect XRCC1 foci in Adprt1–/– MEFs after treatment with H2O2. These data demonstrate that PARP-1 is required for the assembly or stability of XRCC1 nuclear foci after oxidative DNA damage and suggest that the formation of these foci is mediated via interaction with poly (ADP-ribose). These results support a model in which the rapid activation of PARP-1 at sites of DNA strand breakage facilitates DNA repair by recruiting the molecular scaffold protein, XRCC1.  相似文献   

2.
The coding sequence for human poly(ADP-ribose) polymerase was expressed inducibly in Saccharomyces cerevisiae from a low-copy-number plasmid vector. Cell free extracts of induced cells had poly(ADPribose) polymerase activity when assayed under standard conditions; activity could not be detected in non-induced cell extracts. Induced cells formed poly(ADP-ribose) in vivo, and levels of these polymers increased when cells were treated with the alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). The cytotoxicity of this agent was increased in induced cells, and in vivo labelling with [3H]adenine further decreased their viability. Increased levels of poly(ADP-ribose) found in cells treated with the alkylating agent were not accompanied by lowering of the NAD concentration.  相似文献   

3.
4.
Poly(ADP-ribose) is routinely detected by the use of radioactive polymers formed from labeled substrates. In this report a simple and time-saving method for the biotinylation and the detection of poly(ADP-ribose) on blots is described. The polymer modified by light-induced reaction with photobiotin was colorimetrically detected and quantified, using streptavidine-alkaline phosphatase conjugates. The separation of poly(ADP-ribose) chains on polyacrylamide gels was not affected by the biotinylation of the polymers. When biotinylated poly(ADP-ribose) was used to detect the poly(ADP-ribose) binding capability of proteins in ligand blots, the results were comparable to those obtained with poly([32P]ADP-ribose). Experiments with histones and rat liver nuclear proteins demonstrate that in studies on poly(ADP-ribose)-protein interaction, this method is applicable to the detection of poly(ADP-ribose) binding proteins.  相似文献   

5.
Amyotrophic lateral sclerosis (ALS) is associated with progressive degeneration of motor neurons. Several of the genes associated with this disease encode proteins involved in RNA processing, including fused-in-sarcoma/translocated-in-sarcoma (FUS/TLS). FUS is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of proteins that bind thousands of pre-mRNAs and can regulate their splicing. Here, we have examined the possibility that FUS is also a component of the cellular response to DNA damage. We show that both GFP-tagged and endogenous FUS re-localize to sites of oxidative DNA damage induced by UVA laser, and that FUS recruitment is greatly reduced or ablated by an inhibitor of poly (ADP-ribose) polymerase activity. Consistent with this, we show that recombinant FUS binds directly to poly (ADP-ribose) in vitro, and that both GFP-tagged and endogenous FUS fail to accumulate at sites of UVA laser induced damage in cells lacking poly (ADP-ribose) polymerase-1. Finally, we show that GFP-FUSR521G, harbouring a mutation that is associated with ALS, exhibits reduced ability to accumulate at sites of UVA laser-induced DNA damage. Together, these data suggest that FUS is a component of the cellular response to DNA damage, and that defects in this response may contribute to ALS.  相似文献   

6.
Oxygen enhances in vivo myocardial synthesis of poly(ADP-ribose)   总被引:1,自引:0,他引:1  
In vivo synthesis of poly(ADP-ribose) is demonstrated in cultured chick embryo heart cells. Cells grown with (14C) ribose incorporate 28 – 31% more radioactivity into poly(ADP-ribose) in 20% O2 (in which they divide more slowly) than in 5% O2. Reaction product was identified as poly(ADP-ribose) by its insensitivity to various enzymes and by its digestion with snake venom phosphodiesterase to phosphoribosyl-AMP and AMP. Poly(ADP-ribose) glycohydrolase activity was similar in 20% and 5% O2. Thus, both poly(ADP-ribose) polymerase activity (shown in an earlier study) and poly(ADP-ribose) increase in cells growing more slowly in 20% vs 5% O2. These data suggest that poly(ADP-ribose) metabolism participates in the regulation of heart cell division by O2.  相似文献   

7.
The NAD pools of Xenopus laevis oocytes and early embryos can be radioactively labelled by microinjection of [adenine- 3H]NAD. This technique is used to study the metabolism of NAD in oocytes and during early development. The rate at which NAD is degraded in vivo has been monitored by determining the rate of transfer of adenine residues from the NAD pool into other nucleotides and polynucleotides. In oocytes, NAD turnover is extremely slow, with a half-life of about 400 h. NAD turnover increases dramatically after fertilisation, and the half-life of the compound decreases to 37 h in 5-h-old embryos and to 10 h in 40-h-old embryos. 2 mM 3-aminobenzamide, a specific inhibitor of poly(ADP-ribose) polymerase, reduces the NAD turnover rate by about 20%, whereas 5 mM isonicotinic acid hydrazide, a specific inhibitor of NAD glycohydrolase, produces no significant inhibition. This indicates that a significant fraction of the considerable NAD turnover observed involves poly(ADP-ribose) polymerase. Our results indicate that poly(ADP-ribose) polymerase is active during early development and suggest that this activity may be involved in one or more aspects of the nuclear metabolism of the embryo.  相似文献   

8.
Poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase activities were both investigated in chicken erythroblasts transformed by Avian Erythroblastosis Virus. Respectively 21% and 58% of these activities were found to be present in the post-mitochondrial supernatant (PMS). Fractionation of the PMS on sucrose gradients and poly(A+) mRNA detection by hybridization to [3H] poly(U) show that cytoplasmic poly(ADP-ribose) polymerase is exclusively localized in free mRNP. The glycohydrolase activity sedimented mostly in the 6 S region but 1/3 of the activity was in the free mRNP zone. Seven poly(ADP-ribose) protein acceptors were identified in the PMS in the Mr 21000–120000 range. The Mr 120000 protein corresponds to automodified poly(ADP-ribose) polymerase. A Mr 21000 protein acceptor is abundant in PMS and a Mr 34000 is exclusively associated with ribosomes and ribosomal subunits. The existence of both poly(ADP-ribose) polymerase and glycohydrolase activities in free mRNP argues in favour of a role of poly(ADP-ribosylation) in mRNP metabolism. A possible involvement of this post translational modification in the mechanisms of repression-derepression of mRNA is discussed.Abbreviations ADP-ribose adenosine (5) diphospho(5)--D ribose - poly(ADP-ribose) polymer of ADP-ribose - mRNP messenger ribonucleoprotein particles - PMSF phenylmethylsulfonyl fluoride - LDS lithium dodecyl sulfate - TCA trichloroacetic acid  相似文献   

9.
The effect of theophylline on poly(ADP-ribosyl)ation was investigated. The poly(ADP-ribose) synthetase activity in vitro was markedly reduced in the liver nuclei prepared from theophylline-treated chick embryo. This reduction was not due to the enzyme inhibition by theophylline contamination in the nuclear fraction. The hydroxyapatite column chromatographic analysis of [3H]adenosine-labelled poly(ADP-ribose) molecules formed in vivo revealed that the in vivo formation of poly(ADP-ribose) molecules was also decreased by theophylline administration. The theophylline-induced reduction of poly(ADP-ribose) synthesis was not due to either low NAD levels or to a decrease in the chain length of the poly(ADP-ribose) molecule, rather this reduction was derived from a decrease in the number of poly(ADP-ribose) molecules. Possible mechanisms related to reduction of poly(ADP-ribose) synthesis in vivo are discussed.  相似文献   

10.
ADP-ribosylation reaction, that is the transfer of the ADP-ribose moiety of NAD+ to acceptor protein, is catalyzed by two classes of ADP-ribosyltransferases,i.e., poly(ADP-ribose) synthetase and mono (ADP-ribosyl)transferases. These two types differ not only in the number of transferring ADP-ribose units but also in the acceptor amino acid(s) and protein. Their in hibitors, particularly those of poly(ADP-ribose) synthetase, have been successfully employed in studies on biological functions of the enzymes and other related fields of research. Recently, we found many potent and specific inhibitors of poly-(ADP-ribose) synthetase, and broadened their chemical as well as biochemical variety. More recently, we found several potent inhibitors of arginine-specific mono(ADP-ribosyl)transferases and activators of poly(ADP-ribose) synthetase.  相似文献   

11.
In the early 1980s, we proposed a unifying model for β-cell damage (The OKAMOTO model), in which poly(ADP-ribose) synthetase/ polymerase (PARP) activation plays an essential role in the consumption of NAD+, which leads to energy depletion and necrotic cell death. In 1984, we demonstrated that the administration of PARP inhibitors to 90% depancreatized rats induces islet regeneration. From the regenerating islet-derived cDNA library we isolated Reg (Regenerating Gene) and demonstrated that Reg protein induces βcell replication via the Reg receptor and ameliorates experimental diabetes. More recently, we showed that the combined addition of IL-6 and dexamethasone induces the Reg gene expression in β-cells and that PARP inhibitors enhance the expression. In 1993, we found that cyclic ADP-ribose (cADPR), a product synthesized from NAD+, is a second messenger for intracellular Ca+ mobilization for insulin secretion by glucose, and proposed a novel mechanism of insulin secretion, the CD38-cADPR signal system. Therefore, PARP inhibitors prevent β-cell necrosis, induce β-cell replication and maintain insulin secretion. In this paper, we would like to present a perspective view based on our studies concerning cell death, cell regeneration, and cell function, especially on insulin-producing pancreatic βcells, in the processes of which poly(ADPribose) synthetase/polymerase (PARP) and cyclic ADP-ribose (cADPR) are functioning.  相似文献   

12.
Poly(ADP-ribose) glycohydrolase (PARG) is the primary enzyme responsible for the degradation of poly(ADP-ribose). PARG dysfunction sensitizes cells to alkylating agents and induces cell death; however, the details of this effect have not been fully elucidated. Here, we investigated the mechanism by which PARG deficiency leads to cell death in different cell types using methylmethanesulfonate (MMS), an alkylating agent, and Parg−/− mouse ES cells and human cancer cell lines. Parg−/− mouse ES cells showed increased levels of γ-H2AX, a marker of DNA double strand breaks (DSBs), accumulation of poly(ADP-ribose), p53 network activation, and S-phase arrest. Early apoptosis was enhanced in Parg−/− mouse ES cells. Parg−/− ES cells predominantly underwent caspase-dependent apoptosis. PARG was then knocked down in a p53-defective cell line, MIAPaCa2 cells, a human pancreatic cancer cell line. MIAPaCa2 cells were sensitized to MMS by PARG knockdown. Enhanced necrotic cell death was induced in MIAPaCa2 cells after augmenting γ-H2AX levels and S-phase arrest. Taken together, these data suggest that DSB repair defect causing S-phase arrest, but p53 status was not important for sensitization to alkylation DNA damage by PARG dysfunction, whereas the cell death pathway is dependent on the cell type. This study demonstrates that functional inhibition of PARG may be useful for sensitizing at least particular cancer cells to alkylating agents.  相似文献   

13.
Poly(ADP-ribosyl)ation, which is mainly regulated by poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG), is a unique protein modification involved in cellular responses such as DNA repair and replication. PARG hydrolyzes glycosidic linkages of poly(ADP-ribose) synthesized by PARP and liberates ADP-ribose residues. Recent studies have suggested that inhibitors of PARG are able to be potent anti-cancer drug. In order to discover the potent and specific Inhibitors of PARG, a quantitative and high-throughput screening assay system is required. However, previous PARG assay systems are not appropriate for high-throughput screening because PARG activity is measured by radioactivities of ADP-ribose residues released from radioisotope (RI)-labeled poly(ADP-ribose). In this study, we developed a non-RI and quantitative assay system for PARG activity based on dot-blot assay using anti-poly(ADP-ribose) and nitrocellulose membrane. By our method, the maximum velocity (Vmax) and the michaelis constant (km) of PARG reaction were 4.46 μM and 128.33 μmol/min/mg, respectively. Furthermore, the IC50 of adenosine diphosphate (hydroxymethyl) pyrrolidinediol (ADP-HPD), known as a non-competitive PARG inhibitor, was 0.66 μM. These kinetics values were similar to those obtained by traditional PARG assays. By using our assay system, we discovered two novel PARG inhibitors that have xanthene scaffold. Thus, our quantitative and convenient method is useful for a high-throughput screening of PARG specific inhibitors.  相似文献   

14.
15.
Summary Poly(ADP-ribose) polymerase catalyses the formation of ADP-ribose polymers covalently attached to various nuclear proteins, using NAD+ as substrate. The activity of this enzyme is strongly stimulated upon binding to DNA single or double strand breaks. Poly(ADP-ribosyl)ation is an immediate cellular response to DNA damage and is thought to be involved in DNA repair, genetic recombination, apoptosis and other processes during which DNA strand breaks are formed. In recent years we and others have established cell culture systems with altered poly(ADP-ribose) polymerase activity. Here we describe immunocytochemistry protocols based on the use of antibodies against the DNA-binding domain of human poly(ADP-ribose) polymerase and against its reaction product poly(ADP-ribose). These protocols allow for the convenient mass screening of cell transfectants with overexpression of poly(ADP-ribose) polymerase or of a dominant-negative mutant for this enzyme, i.e. the DNA-binding domain. In addition, the immunocytochemical detection of poly(ADP-ribose) allows screening for cells with altered enzyme activity.  相似文献   

16.
Poly(ADP-ribose) synthetase has been purified to apparent homogeneity from mouse testicle by a rapid and simple procedure using column chromatography on DNA-agarose and on Cibacron blue F3G-A-Sephadex G-150. The purified enzyme absolutely requires DNA for activity, and half-maximal activation occurs at a DNA concentration of 25 μg/ml. The Km for NAD and V at pH 8.0 and 25 °C are 47 μm and 1400 nmol/min/ mg, respectively. The molecular weight is 116,000 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Amino acid analysis indicates that the mouse testicle enzyme is very similar to calf thymus enzyme, but there is a difference in the contents of several amino acid residues between the two enzymes. This difference appears to reflect species or tissue specificity of poly(ADP-ribose) synthetase.  相似文献   

17.
Cyclic ADP-ribose (cADPR) metabolism in mammals is catalyzed by NAD glycohydrolases (NADases) that, besides forming ADP-ribose, form and hydrolyze the N1-glycosidic linkage of cADPR. Thus far, no cADPR phosphohydrolase was known. We tested rat ADP-ribose/CDP-alcohol pyrophosphatase (ADPRibase-Mn) and found that cADPR is an ADPRibase-Mn ligand and substrate. ADPRibase-Mn activity on cADPR was 65-fold less efficient than on ADP-ribose, the best substrate. This is similar to the ADP-ribose/cADPR formation ratio by NADases. The product of cADPR phosphohydrolysis by ADPRibase-Mn was N1-(5-phosphoribosyl)-AMP, suggesting a novel route for cADPR turnover.  相似文献   

18.
Trypanosoma cruzi, etiological agent of Chagas’ disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose) glycohydrolase in a trypanosomatid (TcPARG). In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose) glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl) pyrrolidinediol) or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate) to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose) glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose) glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas’ disease.  相似文献   

19.
Free ADP-ribose is a putative second messenger and also a potentially toxic compound due to its non-enzymic reactivity towards protein side chains. ADP-ribose hydrolysis is catalysed by NDP-sugar/alcohol pyrophosphatases of differing specificity, including a highly specific, low-Km ADP-ribose pyrophosphatase. In humans, a submicromolar-Km ADP-ribose pyrophosphatase has been purified from placenta, while recombinant NUDT9 has been described as a similarly specific enzyme with a nudix motif, but with a 102–103 higher Km. Here, a comparative study of both proteins is presented showing that they are in fact enzymically indistinguishable; crucially, they both have submicromolar Km for ADP-ribose. This study firmly supports the view that the ADP-ribose pyrophosphatase present in human tissues is a product of the NUDT9 gene. In addition, this study reveals previously unknown properties of both enzyme forms. They display the same, differential properties in the presence of Mg2+ or Mn2+ as activating cations with respect to substrate specificity, ADP-ribose saturation kinetics, and inhibition by fluoride. Treatment with H2O2 alters the Mg2+/Mn2+ responses and increases the Km values for ADP-ribose, changes that are reversed by DTT. The results are discussed in relation to the proposed roles for ADP-ribose in oxidative/nitrosative stress and for ADP-ribose pyrophosphatase as a protective enzyme whose function is to limit the intracellular accumulation of ADP-ribose.  相似文献   

20.
ADP-ribosylation is a post-translational protein modification, in which ADP-ribose is transferred from nicotinamide adenine dinucleotide (NAD+) to specific acceptors, thereby altering their activities. The ADP-ribose transfer reactions are divided into mono- and poly-(ADP-ribosyl)ation. Cellular ADP-ribosylation levels are tightly regulated by enzymes that transfer ADP-ribose to acceptor proteins (e.g., ADP-ribosyltransferases, poly-(ADP-ribose) polymerases (PARP)) and those that cleave the linkage between ADP-ribose and acceptor (e.g., ADP-ribosyl-acceptor hydrolases (ARH), poly-(ADP-ribose) glycohydrolases (PARG)), thereby constituting an ADP-ribosylation cycle. This review summarizes current findings related to the ARH family of proteins. This family comprises three members (ARH1-3) with similar size (39 kDa) and amino acid sequence. ARH1 catalyzes the hydrolysis of the N-glycosidic bond of mono-(ADP-ribosyl)ated arginine. ARH3 hydrolyzes poly-(ADP-ribose) (PAR) and O-acetyl-ADP-ribose. The different substrate specificities of ARH1 and ARH3 contribute to their unique roles in the cell. Based on a phenotype analysis of ARH1−/− and ARH3−/− mice, ARH1 is involved in the action by bacterial toxins as well as in tumorigenesis. ARH3 participates in the degradation of PAR that is synthesized by PARP1 in response to oxidative stress-induced DNA damage; this hydrolytic reaction suppresses PAR-mediated cell death, a pathway termed parthanatos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号