首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reversible ADP-ribosylation of dinitrogenase reductase, catalyzed by the dinitrogenase reductase ADP-ribosyl transferase-dinitrogenase reductase-activating glycohydrolase (DRAT-DRAG) regulatory system, has been characterized in Rhodospirillum rubrum and other nitrogen-fixing bacteria. To investigate the mechanisms for the regulation of DRAT and DRAG activities, we studied the heterologous expression of R. rubrum draTG in Klebsiella pneumoniae glnB and glnK mutants. In K. pneumoniae wild type, the regulation of both DRAT and DRAG activity appears to be comparable to that seen in R. rubrum. However, the regulation of both DRAT and DRAG activities is altered in a glnB background. Some DRAT escapes regulation and becomes active under N-limiting conditions. The regulation of DRAG activity is also altered in a glnB mutant, with DRAG being inactivated more slowly in response to NH4+ treatment than is seen in wild type, resulting in a high residual nitrogenase activity. In a glnK background, the regulation of DRAT activity is similar to that seen in wild type. However, the regulation of DRAG activity is completely abolished in the glnK mutant; DRAG remains active even after NH4+ addition, so there is no loss of nitrogenase activity. The results with this heterologous expression system have implications for DRAT-DRAG regulation in R. rubrum.  相似文献   

2.
In the photosynthetic bacterium Rhodospirillum rubrum nitrogenase activity is regulated by reversible ADP-ribosylation of dinitrogenase reductase in response to external so called "switch-off" effectors. Activation of the modified, inactive form is catalyzed by dinitrogenase reductase activating glycohydrolase (DRAG) which removes the ADP-ribose moiety. This study addresses the signal transduction between external effectors and DRAG. R. rubrum, wild-type and P(II) mutant strains, were studied with respect to DRAG localization. We conclude that GlnJ clearly has an effect on the association of DRAG to the membrane in agreement with the effect on regulation of nitrogenase activity. Furthermore, we have generated a R. rubrum mutant lacking the putative ammonium transporter AmtB1 which was shown not to respond to "switch-off" effectors; no loss of nitrogenase activity and no ADP-ribosylation. Interestingly, DRAG was mainly localized to the cytosol in this mutant. Overall the results support our model in which association to the membrane is part of the mechanism regulating DRAG activity.  相似文献   

3.
The nitrogenase-regulating enzymes dinitrogenase reductase ADP-ribosyltransferase (DRAT) and dinitrogenase reductase-activating glycohydrolase (DRAG), from Rhodospirillum rubrum, were shown to be sensitive to the redox status of the [Fe(4)S(4)](1+/2+) cluster of nitrogenase Fe protein from R. rubrum or Azotobacter vinelandii. DRAG had <2% activity with oxidized R. rubrum Fe protein relative to activity with reduced Fe protein. The activity of DRAG with oxygen-denatured Fe protein or a low molecular weight substrate, N(alpha)-dansyl-N(omega)-(1,N(6)-etheno-ADP-ribosyl)-arginine methyl ester, was independent of redox potential. The redox midpoint potential of DRAG activation of Fe protein was -430 mV versus standard hydrogen electrode, coinciding with the midpoint potential of the [Fe(4)S(4)] cluster from R. rubrum Fe protein. DRAT was found to have a specificity opposite that of DRAG, exhibiting low (<20%) activity with 87% reduced R. rubrum Fe protein relative to activity with fully oxidized Fe protein. A mutant of R. rubrum in which the rate of oxidation of Fe protein was substantially decreased had a markedly slower rate of ADP-ribosylation in vivo in response to 10 mM NH(4)Cl or darkness stimulus. It is concluded that the redox state of Fe protein plays a significant role in regulation of the activities of DRAT and DRAG in vivo.  相似文献   

4.
Rhodospirillum rubrum strains that overexpress the enzymes involved in posttranslational nitrogenase regulation, dinitrogenase reductase ADP-ribosyltransferase (DRAT) and dinitrogenase reductase activating glycohydrolase (DRAG), were constructed, and the effect of this overexpression on in vivo DRAT and DRAG regulation was investigated. Broad-host-range plasmid constructs containing a fusion of the R. rubrum nifH promoter and translation initiation sequences to the second codon of draT, the first gene of the dra operon, were constructed. Overexpression plasmid constructs which overexpressed (i) only functional DRAT, (ii) only functional DRAG and presumably the putative downstream open reading frame (ORF)-encoded protein, or (iii) all three proteins were generated and introduced into wild-type R. rubrum. Overexpression of DRAT still allowed proper regulation of nitrogenase activity, with ADP-ribosylation of dinitrogenase reductase by DRAT occurring only upon dark or ammonium stimuli, suggesting that DRAT is still regulated upon overexpression. However, overexpression of DRAG and the downstream ORF altered nitrogenase regulation such that dinitrogenase reductase did not accumulate in the ADP-ribosylated form under inactivation conditions, suggesting that DRAG was constitutively active and that therefore DRAG regulation is altered upon overexpression. Proper DRAG regulation was observed in a strain overexpressing DRAT, DRAG, and the downstream ORF, suggesting that a proper balance of DRAT and DRAG levels is required for proper DRAG regulation.  相似文献   

5.
Kim K  Zhang Y  Roberts GP 《FEBS letters》2004,559(1-3):84-88
In Rhodospirillum rubrum, nitrogenase activity is subject to posttranslational regulation through the adenosine diphosphate (ADP)-ribosylation of dinitrogenase reductase by dinitrogenase reductase ADP-ribosyltransferase (DRAT) and dinitrogenase reductase-activating glycohydrolase (DRAG). To study the posttranslational regulation of DRAG, its gene was mutagenized and colonies screened for altered DRAG regulation. Three different mutants were found and the DRAG variants displayed different biochemical properties including an altered affinity for divalent metal ions. Taken together, the results suggest that the site involved in regulation is physically near the metal binding site of DRAG.  相似文献   

6.
In the microaerophilic diazotroph Azospirillum brasilense, the addition of fixed nitrogen or a shift to anaerobic conditions leads to a rapid loss of nitrogenase activity due to ADP-ribosylation of dinitrogenase reductase. The product of draT (DRAT) is shown to be necessary for this modification, and the product of draG (DRAG) is shown to be necessary for the removal of the modification upon removal of the stimulus. DRAG and DRAT are themselves subject to posttranslational regulation, and this report identifies features of that regulation. We demonstrate that the activation of DRAT in response to an anaerobic shift is transient but that the duration of DRAT activation in response to added NH4+ varies with the NH4+ concentration. In contrast, DRAG appears to be continuously active under conditions favoring nitrogen fixation. Thus, the activities of DRAG and DRAT are not always coordinately regulated. Finally, our experiments suggest the existence of a temporary period of futile cycling during which DRAT and DRAG are simultaneously adding and removing ADP-ribose from dinitrogenase reductase, immediately following the addition of a negative stimulus.  相似文献   

7.
The interaction of dinitrogenase reductase-activating glycohydrolase (DRAG) with bacterial membranes and the solubilization of DRAG in response to nucleotides were characterized. Purified DRAG from Rhodospirillum rubrum reversibly bound bacterial pellet fractions from Rsp. rubrum and other nitrogen-fixing bacteria. DRAG saturated the membrane fraction of Rsp. rubrum at a concentration of 0.2 mol DRAG/mol bacteriochlorophyll, suggesting that the DRAG-binding species is prevalent in the membrane. DRAG bound poorly to phospholipid vesicles, suggesting a protein requirement for DRAG interaction with the membrane. Guanosine and uridine tri- and di-nucleotides specifically dissociated DRAG from the pellet fractions of Rsp. rubrum and Azotobacter vinelandii, while adenosine nucleotides had no dissociative effect. Guanosine 5′-triphosphate dissociated DRAG from the membrane at a concentration causing 50% dissociation (EC50) of 5.0 ± 0.5 mM; guanosine disphosphate had an EC50 of 15.0 ± 2.0 mM. We propose that GTP is a potential participant in the regulation of DRAG, possibly controlling the extent of DRAG association with the membrane. Received: 2 November 1998 / Accepted: 6 April 1999  相似文献   

8.
Nitrogenase activity is regulated by reversible ADP-ribosylation in response to NH4+ and anaerobic conditions in Azospirillum brasilense. The effect of mutations in ntrBC on this regulation was examined. While NH4+ addition to ntrBC mutants caused a partial loss of nitrogenase activity, the effect was substantially smaller than that seen in ntr+ strains. In contrast, nitrogenase activity in these mutants was normally regulated in response to anaerobic conditions. The analysis of mutants lacking both the ntrBC gene products and dinitrogenase reductase activating glycohydrolase (DRAG) suggested that the primary effect of the ntrBC mutations was to alter the regulation of DRAG activity. Although nif expression in the ntr mutants appeared normal, as judged by activity, glutamine synthetase activity was significantly lower in ntrBC mutants than in the wild type. We hypothesize that this lower glutamine synthetase activity may delay the transduction of the NH4+ signal necessary for the inactivation of DRAG, resulting in a reduced response of nitrogenase activity to NH4+. Finally, data presented here suggest that different environmental stimuli use independent signal pathways to affect this reversible ADP-ribosylation system.  相似文献   

9.
Association of dinitrogenase reductase-activating glycohydrolase (DRAG) with membrane proteins of chromatophores has been investigated. The formation of a multicomponent complex between DRAG and membrane proteins was demonstrated in the presence of glutaraldehyde and EDC/NHS (N-(3-dimethylaminopropyl)-N -ethylcarbodiimide hydrochloride/hydroxy-2,5-dioxopyrrolidine-3-sulfonic acid sodium salt). Complex formation was observed both in native chromatophore membrane and in chromatophores treated with 0.5 M NaCl in the presence of homogeneous DRAG and glutaraldehyde in cross-reaction. The molecular weight of the complex was around 200 kD, which is consistent with the association of DRAG with three or more chromatophore membrane proteins. A specific complex with molecular weight of about 75 kD was formed only in the presence of EDC/NHS in the cross-linking reaction. It was demonstrated that ammonium transport protein and P11 protein are possible candidates for association with DRAG in chromatophore membranes.  相似文献   

10.
11.
The mechanism for "NH4+ switch-off/on" of nitrogenase activity in Azospirillum brasilense and A. lipoferum was investigated. A correlation was established between the in vivo regulation of nitrogenase activity by NH4Cl or glutamine and the reversible covalent modification of dinitrogenase reductase. Dinitrogenase reductase ADP-ribosyltransferase (DRAT) activity was detected in extracts of A. brasilense with NAD as the donor molecule. Dinitrogenase reductase-activating glycohydrolase (DRAG) activity was present in extracts of both A. brasilense and A. lipoferum. The DRAG activity in A. lipoferum was membrane associated, and it catalyzed the activation of inactive nitrogenase (by covalent modification of dinitrogenase reductase) from both A. lipoferum and Rhodospirillum rubrum. A region homologous to R. rubrum draT and draG was identified in the genomic DNA of A. brasilense as a 12-kilobase EcoRI fragment and in A. lipoferum as a 7-kilobase EcoRI fragment. It is concluded that a posttranslational regulatory system for nitrogenase activity is present in A. brasilense and A. lipoferum and that it operates via ADP-ribosylation of dinitrogenase reductase as it does in R. rubrum.  相似文献   

12.
Cloning and expression of draTG genes from Azospirillum lipoferum   总被引:3,自引:0,他引:3  
A genomic library of Azospirillum lipoferum was constructed with phage lambda EMBL4 as vector. From this library, the genes encoding dinitrogenase reductase ADP-ribosyltransferase (DRAT), draT, and dinitrogenase reductase-activating glycohydrolase (DRAG), draG, were cloned by hybridization with the heterologous probes of Rhodospirillum rubrum. As in R. rubrum, draT is located between draG and nifH, the gene encoding dinitrogenase reductase (a substrate for the DRAG/DRAT system). In the crude extract of Escherichia coli harboring the expression vector for this region, DRAT and DRAG enzyme activities were detected, confirming the identity of the cloned genes. Southern hybridization with genomic DNA from different Azospirillum spp., demonstrated a correlation between observable draTG hybridization and the biochemical demonstration of this covalent modification system.  相似文献   

13.
固氮螺菌的固氮分子调控研究进展   总被引:3,自引:0,他引:3  
本文对巴西固氮螺菌周氨基因的结构和调控进行综述。其固氮基因的调控可分为两种水平:通过DRAT-DRAG系统的翻译后水平和通过NifA蛋白的转录水平。通过NifA活性进行调控的机理目前尚不明了。  相似文献   

14.
A high throughput assay (the DRAG test) is described, which could be a useful tool for the detection of repairable DNA adducts, and which is based on the inhibition of the growth of DNA repair-deficient Chinese hamster ovary (CHO) cells. The cytotoxicity of a test substance towards DNA repair-deficient CHO cell lines is compared with the corresponding cytotoxicity in the parental wild-type CHO cell line (AA8). A more pronounced toxicity toward a DNA repair-deficient cell line is interpreted as being the consequence of its inability to repair the DNA adduct induced by the compound. (+)-7beta,8alpha-Dihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, camptothecin, ethyl methanesulphonate and mitomycin C were used as reference substances, and the overall results indicate that the DRAG test could be useful in the screening of compounds for the production of repairable DNA adducts. The main advantages with the DRAG test are that it provides a relevant endpoint, it is rapid, it requires small amounts of the test item, and it permits a large number of compounds to be tested.  相似文献   

15.
Reversible ADP ribosylation of dinitrogenase reductase, catalyzed by the dinitrogenase reductase ADP-ribosyl transferase (DRAT)/dinitrogenase reductase activating glycohydrolase (DRAG) regulatory system, has been characterized in both Rhodospirillum rubrum and Azospirillum brasilense. Although the general functions of DRAT and DRAG are very similar in these two organisms, there are a number of interesting differences, e.g., in the timing and extent of the regulatory response to different stimuli. In this work, the basis of these differences has been studied by the heterologous expression of either draTG or nifH from A. brasilense in R. rubrum mutants that lack these genes, as well as the expression of draTG from R. rubrum in an A. brasilense draTG mutant. In general, these hybrid strains respond to stimuli in a manner similar to that of the wild-type parent of the recipient strain rather than the wild-type source of the introduced genes. These results suggest that the differences seen in the regulatory response in these organisms are not primarily a result of different properties of DRAT, DRAG, or dinitrogenase reductase. Instead, the differences are likely the result of different signal pathways that regulate DRAG and DRAT activities in these two organisms. Our results also suggest that draT and draG are cotranscribed in A. brasilense.  相似文献   

16.
The DRAG test is a rapid high-throughput screening assay for detection of repairable adducts by growth inhibition of Chinese hamster ovary cells (CHO) characterized by different defects in DNA repair. A more pronounced growth inhibition caused by a certain DNA-reactive substance in a repair-deficient cell line (EM9, UV4 and UV5) as compared to wild-type cells (AA8) is interpreted as a consequence of their inability to repair induced DNA lesions. Thus, the use of such cell lines in the DRAG test may provide information of the type of DNA lesions induced by a certain genotoxic substance. To select optimal assay conditions, as well as to provide a mechanistic basis for interpreting the results, the model compounds benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ethyl methanesulfonate (EMS), mitomycin C (MMC) and hydrogen peroxide (H2O2) were used. These agents can induce bulky adducts, alkyl adducts, cross-links and oxidative damage, respectively. The specificity of the DRAG test constitutes an important prerequisite for its practical use in a broader context. To assess this aspect, we have investigated the genotoxic and cytotoxic properties of a selection of metabolites of and isomers from polychlorinated biphenyls (PCB) and polybrominated diphenyl ethers (PBDE), along with a few other halogenated compounds. All these compounds have been detected as pollutants in the external environment, and for most of them there is no convincing evidence of mutagenicity from conventional assays. As could be predicted from their mode of action, BPDE, MMC, and EMS were all found to be more toxic in the repair-deficient cell lines compared with wild-type cells. The results with H2O2 were inconclusive, and the PCB metabolite 4,4'-diOH-CB80 only exhibited borderline activity, while all other halogenated compounds, or their metabolites, were found to be inactive. In conclusion, the DRAG assay could provide a robust and useful tool when screening large numbers of potentially genotoxic agents, while in addition providing mechanistic information. However, the usefulness of the selected cell lines to detect oxidative damage may be limited.  相似文献   

17.
Nitrogen fixation is one of the major biogeochemical contributions carried out by diazotrophic microorganisms. The goal of this research is study of posttranslational modification of dinitrogenase reductase (Fe protein), the involvement of malate and pyruvate in generation of reductant in Rhodospirillum rubrum. A procedure for the isolation of the Fe protein from cell extracts was developed and used to monitor the modification of the Fe protein in vivo. The subunit pattern of the isolated the Fe protein after sodium dodecyl sulfate–polyacrylamide gel electrophoresis was assayed by Western blot analysis. Whole-cell nitrogenase activity was also monitored during the Fe protein modification by gas chromatograpy, using the acetylene reduction assay. It has been shown, that the addition of fluoroacetate, ammonia and darkness resulted in the loss of whole-cell nitrogenase activity and the in vivo modification of the Fe protein. For fluoroacetate, ammonia and darkness, the rate of loss of nitrogenase activity was similar to that for the Fe protein modification. The addition of NADH and reillumination of a culture incubated in the dark resulted in the rapid restoration of nitrogenase activity and the demodification of the Fe protein. Fluoroacetate inhibited the nitrogenase activity of R. rubrum and resulted in the modification of the Fe protein in cells, grown on pyruvate or malate as the endogeneous electron source. The nitrogenase activity in draTG mutant (lacking DRAT/DRAG system) decreased after the addition of fluoroacetate, but the Fe protein remained completely unmodified. The results showed that the reduced state of cell, posttranslational modifications of the Fe protein and the DRAT/DRAG system are important for nitrogenase activity and the regulation of nitrogen fixation.  相似文献   

18.
Many N2-fixing organisms can turn off nitrogenase activity in the presence of NH4 + and turn it on again when the NH4 + is exhausted. One of the most interesting systems for accomplishing this is by covalent modification of one subunit of dinitrogenase reductase by dinitrogenase reductase ADP-ribosyltransferase (DRAT). The system can be reactivated when NH4 + is exhausted, by dinitrogenase reductase activating glycohydrolase (DRAG) which removes the inactivating group. It is fascinating that some species of the genusAzospirillum possess the DRAT and DRAG systems (A. lipoferum andA. brasilense), whereasA. amazonense in the same genus lacks DRAT and DRAG.A. amazonense responds to NH4 + but does not exhibit modification of dinitrogenase reductase characteristic of the action of DRAT. However, it has been possible to clone DRAT and DRAG and to introduce them intoA. amazonense, whereupon they become functional in this organism. The DRAT and DRAG system does not appear to function inAcetobacter diazotrophicus, an organism isolated from sugar cane, that fixes N2 at a pH as low as 3.0.A. diazotrophicus does show a rather sluggish response to NH4 +. A level of about 10 M NH4 + is required to switch off the system. The response to NH4 + is influenced by the dissolved oxygen concentration (DOC) as has been reported forAzospirillum sp. A DOC in equilibrium with 0.1 to 0.2 kPa O2 seems optimal for the response inA. diazotrophicus.  相似文献   

19.
The photosynthetic bacteria Rhodobacter capsulatus and Rhodospirillum rubrum regulate their nitrogenase activity by the reversible ADP-ribosylation of nitrogenase Fe-protein in response to ammonium addition or darkness. This regulation is mediated by two enzymes, dinitrogenase reductase ADP-ribosyl transferase (DRAT) and dinitrogenase reductase activating glycohydrolase (DRAG). Recently, we demonstrated that another photosynthetic bacterium, Rhodobacter sphaeroides, appears to have no draTG genes, and no evidence of Fe-protein ADP-ribosylation was found in this bacterium under a variety of growth and incubation conditions. Here we show that four different strains of Rba. sphaeroides are incapable of modifying Fe-protein, whereas four out of five Rba. capsulatus strains possess this ability. Introduction of Rba. capsulatus draTG and nifHDK (structural genes for nitrogenase proteins) into Rba. sphaeroides had no effect on in vivo nitrogenase activity and on nitrogenase switch-off by ammonium. However, transfer of draTG from Rba. capsulatus was sufficient to confer on Rba. sphaeroides the ability to reversibly modify the nitrogenase Fe-protein in response to either ammonium addition or darkness. These data suggest that Rba. sphaeroides, which lacks DRAT and DRAG, possesses all the elements necessary for the transduction of signals generated by ammonium or darkness to these proteins.  相似文献   

20.
Site-directed mutagenesis of the draG gene was used to generate altered forms of dinitrogenase reductase-activating glycohydrolase (DRAG) with D123A, H142L, H158N, D243G, and E279R substitutions. The amino acid residues H142 and E279 are not required either for the coordination to the metal center or for catalysis since the variants H142L and E279R retained both catalytic and electron paramagnetic resonance spectral properties similar to those of the wild-type enzyme. Since DRAG-H158N and DRAG-D243G variants lost their ability to bind Mn(II) and to catalyze the hydrolysis of the substrate, H158 and D243 residues could be involved in the coordination of the binuclear Mn(II) center in DRAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号