首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Incorporation of chimeric gag protein into retroviral particles.   总被引:2,自引:36,他引:2       下载免费PDF全文
The product of the Rous sarcoma virus (RSV) gag gene, Pr76gag, is a polyprotein precursor which is cleaved by the viral protease to yield the major structural proteins of the virion during particle assembly in avian host cells. We have recently shown that myristylated forms of the RSV Gag protein can induce particle formation with very high efficiency when expressed in mammalian cells (J. W. Wills, R. C. Craven, and J. A. Achacoso, J. Virol. 63:4331-4343, 1989). We made use of this mammalian system to examine the abilities of foreign antigens to be incorporated into particles when fused directly to the myristylated Gag protein. Our initial experiments showed that removal of various portions of the viral protease located at the carboxy terminus of the RSV Gag protein did not disrupt particle formation. We therefore chose this region for coupling of iso-1-cytochrome c from Saccharomyces cerevisiae to Gag. This was accomplished by constructing an in-frame fusion of the CYC1 and gag coding sequences at a common restriction endonuclease site. Expression of the chimeric gene resulted in synthesis of the Gag-cytochrome fusion protein and its release into the cell culture medium. The chimeric particles were readily purified by simple centrifugation, and transmission electron microscopy of cells that produced them revealed a morphology similar to that of immature type C retrovirions.  相似文献   

2.
D Bonnet  P F Spahr 《Journal of virology》1990,64(11):5628-5632
In avian cells, the product of the gag gene of Rous sarcoma virus, Pr76gag, has been shown to be targeted to the plasma membrane, to form virus particles, and then to be processed into mature viral gag proteins. To explore how these phenomena may be dependent upon cellular (host) factors, we expressed the Rous sarcoma virus gag gene in a lower eucaryote, Saccharomyces cerevisiae, and studied the behavior of the gag gene product. We show here that Pr76gag is processed in yeast cells and that this processing is specific, since it is abolished in a mutant in which the active site of the gag protease has been destroyed. In this mutant, the uncleaved precursor is found associated with the yeast plasma membrane, yet no virus particles were detected in cells or in the culture medium. From our results, we can speculate either that in yeast cells, a host protease initiates Pr76gag processing in the cytosol or that in avian cells, an inhibitor prevents the processing until the viral particle is formed.  相似文献   

3.
Rous sarcoma virus is an example of a replication-competent retrovirus whose Gag protein is not modified with myristic acid. The purpose of the experiments described in this report was to determine whether the addition of this 14-carbon fatty acid would interfere with the replication of Rous sarcoma virus. We found that myristylated derivatives of the Rous sarcoma virus Gag protein are fully functional for particle formation in avian cells and that the addition of myristic acid has very little effect on infectivity.  相似文献   

4.
It has recently been shown by mass spectral analysis (Henderson et al., Proc. Natl. Acad. Sci. U.S.A. 80:339-343, 1983) that the p15gag protein of murine leukemia viruses contains a novel post-translational modification, an amino-terminal myristyl (tetradecanoyl) amide. In this report we show that p15gag is the only structural protein to contain this fatty acid. In addition, the gag precursor polyproteins of type B, C, and D retroviruses have been examined for the presence of myristic acid by metabolic labeling and immunoprecipitation studies. In a panel of mammalian type C retroviruses we found that the precursor polyprotein Pr65gag homologs, but not the glycosylated forms (gPr80gag homologs), were specifically labeled after a 5-min incubation of infected cells with [3H]myristic acid. The gag precursor polyprotein was also labeled in mouse mammary tumor virus and in Mason-Pfizer monkey virus, but Pr76gag of Rous sarcoma virus failed to incorporate [3H]myristate. Under similar conditions, [3H]palmitate was not found to be incorporated into any viral gag proteins. Thus, myristylation appears to be a common feature of mammalian type B, C, and D retroviruses but not of avian retroviruses.  相似文献   

5.
6.
Unspliced cytoplasmic retroviral RNA in chronically infected cells either is encapsidated by Gag proteins in the manufacture of virus or is used to direct synthesis of Gag proteins. Several models have been suggested to explain the sorting of viral RNA for these two purposes. Here we present evidence supporting a simple biochemical mechanism that accounts for the routing of retroviral RNA. Our results indicate that ribosomes compete with the Gag proteins to determine the fate of nascent retroviral RNA. Although the integrity of the entire Rous sarcoma virus leader sequence is important for retroviral packaging and translation, the RNA structure around the third small open reading frame, which neighbors the psi site required for packaging of the RNA, is particularly critical for maintenance of the balance between translation and packaging. These results support the hypothesis that Gag proteins autogenously regulate their synthesis and encapsidation of retroviral RNA and that an equilibrium exists between RNA destined for translation and packaging that is based on the intracellular levels of Gag proteins and ribosomes. To test the model, mRNAs with natural or mutated 5' leader sequences from Rous sarcoma virus were expressed in avian cells in the presence and absence of Pr76gag. We demonstrate that Pr76gag acts as a translational repressor of these mRNAs in a dose-dependent manner, supporting the hypothesis that Pr76gag can sort retroviral RNA for translation and encapsidation.  相似文献   

7.
A semisynthetic gene precisely encoding the 502 amino acids of the human immunodeficiency virus type 1 gag precursor (Pr53gag) was expressed in the yeast Saccharomyces cerevisiae. Amino acid sequence analysis of the recombinant Pr53gag showed that the amino terminus was fully blocked. Labeling of Pr53gag with [3H]myristic acid demonstrated that, as with Pr53gag isolated from virus-infected cells, the yeast-derived protein was demethionylated and N myristylated on glycine, the second amino acid residue.  相似文献   

8.
9.
The interaction of the human immunodeficiency virus (HIV) Gag protein with the plasma membrane of a cell is a critical event in the assembly of HIV particles. The matrix protein region (MA) of HIV type 1 (HIV-1) Pr55Gag has previously been demonstrated to confer membrane-binding properties on the precursor polyprotein. Both the myristic acid moiety and additional determinants within MA are essential for plasma membrane binding and subsequent particle formation. In this study, we demonstrated the myristylation-dependent membrane interaction of MA in an in vivo membrane-binding assay. When expressed within mammalian cells, MA was found both in association with cellular membranes and in a membrane-free form. In contrast, the intact precursor Pr55Gag molecule analyzed in an identical manner was found almost exclusively bound to membranes. Both membrane-bound and membrane-free forms of MA were myristylated and phosphorylated. Differential membrane binding was not due to the formation of multimers, as dimeric and trimeric forms of MA were also found in both membrane-bound and membrane-free fractions. To define the requirements for membrane binding of MA, we analyzed the membrane binding of a series of MA deletion mutants. Surprisingly, deletions within alpha-helical regions forming the globular head of MA led to a dramatic increase in overall membrane binding. The stability of the MA-membrane interaction was not affected by these deletions, and no deletion eliminated membrane binding of the molecule. These results establish that myristic acid is a primary determinant of the stability of the Gag protein-membrane interaction and provide support for the hypothesis that a significant proportion of HIV-1 MA molecules may adopt a conformation in which myristic acid is hidden and unavailable for membrane interaction.  相似文献   

10.
The avian sarcoma and leukosis viruses (ASLV) encode a protease (PR) at the C terminus of gag which in vivo catalyzes the processing of both gag and gag-pol precursors. The studies reported here were undertaken to determine whether PR is able to cleave these polyproteins while it is still part of the gag precursor or whether the release of its N terminus to form free PR is necessary for full proteolytic activity. To address this question, we created a mutation that disrupts the PR cleavage site between the NC and PR coding regions of the gag gene. This mutation was introduced into a eukaryotic vector that expresses only the gag precursor and into an otherwise infectious clone of ASLV that carries the neo gene as a selectable marker. These constructs were expressed in monkey COS cells or in quail QT35 cells, respectively. Processing was impaired in both systems. Mutant particles were formed, but they contained no mature processed gag proteins. We observed only the uncleaved gag precursor polypeptide Pr76 in one case or Pr76 and a cleaved product of about 60 kDa in the other. Processing of the mutant gag precursor could be complemented in trans by from a wild-type construct, suggesting that the mutation did not induce gross structural alterations in its precursor. Our results suggest that the PR first must be released from its precursor before it can attack other sites in the gag and gag-pol polyproteins and that cleavage at the NC-PR boundary is a prerequisite for the initiation of the PR-directed processing.  相似文献   

11.
Processing proteases of avian and mammalian retroviruses cut the polyprotein precursors encoded by the retroviral genes into mature functional proteins. Retroviral processing proteases are still a rather poorly characterized group as to their relation to other proteases, specificity, and mechanism of enzymatic action. In avian retroviruses the generation of the processing protease itself comprises a processing cleavage event - the protease p15gag is cut off the carboxy-terminus of a gag polyprotein precursor, Pr76gag. We report here that direct and efficient production of the avian retrovirus processing protease p15gag (required for structure-function studies and rational design of inhibitors) was obtained in an E. coli system, where massive expression of a size-reduced, recombinant precursor (Pr25lac-delta gag) was accompanied by its structurally accurate processing.  相似文献   

12.
The Gag polyprotein of human immunodeficiency virus (HIV) (Pr55Gag) contains sufficient information to direct particle assembly events when expressed within tissue culture cells. HIV Gag proteins normally form particles at a plasma membrane assembly site, in a manner analogous to that of the type C avian and mammalian leukemia/sarcoma viruses. It has not previously been demonstrated that immature HIV capsids can form without budding through an intact cellular membrane. In this study, a rabbit reticulocyte lysate translation reaction was used to recreate HIV capsid formation in vitro. Production of HIV-1 Pr55Gag and of a matrix-deleted Gag construct resulted in the formation of a subset of Gag protein structures with an equilibrium density of 1.15 g/ml. Gel filtration chromatography revealed these Gag protein structures to be larger than 2 x 10(6) Da, consistent with the formation of large multimers or capsids. These Gag protein structures were protease sensitive in the absence of detergent, indicating that they did not contain a complete lipid envelope. Spherical structures were detected by electron microscopy within the reticulocyte lysate reaction mixtures and appeared essentially identical to immature HIV capsids or retrovirus-like particles. These results demonstrate that the HIV Gag protein is capable of producing immature capsids in a cell-free reaction and that such capsids lack a complete lipid envelope.  相似文献   

13.
S Oertle  P F Spahr 《Journal of virology》1990,64(12):5757-5763
Rous sarcoma virus nucleocapsid protein (NC) has been shown by site-directed mutagenesis to be involved in viral RNA packaging and in the subsequent maturation of genomic RNA in the progeny viral particles. To investigate whether NC exerts these activities as a free protein or as a domain of the polyprotein precursor Pr76gag, we have constructed several mutants unable to process Pr76gag and analyzed their properties in a transient-transfection assay of chicken embryo fibroblasts, the natural host of Rous sarcoma virus. A point mutation in the protease (PR) active site completely prevents Pr76gag processing. The full-length Pr76gag polyprotein is still able to package viral RNA, but cannot mature it. A shorter gag precursor polyprotein lacking the C-terminal PR domain, but retaining that of the NC protein, is however, unable even to package viral RNA. This indicates that the NC protein can participate in packaging viral RNA only as part of a full-length Pr76gag and that the PR domain is, indirectly or directly, also involved in RNA packaging. These results also demonstrate that processing of Pr76gag is necessary for viral RNA dimerization.  相似文献   

14.
15.
The human immunodeficiency virus type 1 gag gene product Pr55gag self-assembles when expressed on its own in a variety of eukaryotic systems. Assembly in T lymphocytes has not previously been studied, nor is it clear whether Pr55gag particles can package genomic RNA or if the Gag-Pol polyprotein is required. We have used a series of constructs that express Gag or Gag-Pol proteins with or without the viral protease in transient transfections in COS-1 cells and also expressed stably in CD4+ T cells to study this. Deletion of the p6 domain at the C terminus of protease-negative Pr55gag did not abolish particle release, while truncation of the nucleocapsid protein reduced it significantly, particularly in lymphocytes. Gag-Pol polyprotein was released from T cells in the absence of Pr55gag but did not encapsidate RNA. Pr55gag encapsidated human immunodeficiency virus type 1 RNA whether expressed in a protease-positive or protease-negative context. p6 was dispensable for RNA encapsidation. Marked differences in the level of RNA export were noted between the different cell lines.  相似文献   

16.
For the production of monoclonal antibodies against pp60src and the gag precursor protein Pr76gag, the spleens of mice bearing tumors that had been induced by avian sarcoma virus Schmidt-Ruppin D-transformed cells were used. One hybridoma culture produced antibodies that were directed against the p19 portion of the gag precursor. However, no antibodies directed against pp60src could be detected in any of the hybridoma supernatants. The anti-p19-producing hybridoma culture was cloned twice in soft agar, and a stable clone was used for the production of high-titer ascites fluid in mice. The monoclonal antibodies belonged to the immunoglobulin G subclass 2b. The antibodies precipitated Pr76gag and the processed virion-associated p19, as well as the 75,000-molecular-weight gag fusion protein from avian erythroblastosis virus-transformed bone marrow cells. Also, viral ribonucleoprotein complexes were specifically precipitable, indicating that they contain p19 molecules.  相似文献   

17.
The transformation of a rat cell line, 3Y1, by nonmammalian tropic strains of avian sarcoma virus was tested using cell-virus fusion mediated by Sendai virus or polyethylene glycol. Furthermore, the establishment of several transformed 3Y1 cell clones induced by the Schmidt-Ruppin strain of Rous sarcoma virus (RSV), its derivative mutants, and the Bryan high-titer strain of RSV is reported. The presence and expression of the viral genomes in these cells were examined, and all transformed cell clones tested were found to contain rescuable RSV genomes when they had been fused with normal chicken embryo fibroblast cells or those preinfected with Rous-associated virus type 1. However, the gag gene product, pr76, was barely detectable in wild-type RSV-transformed cells, whereas it was produced in considerable amounts in cells transformed by env-deleted mutants, the Bryan high-titer strain of RSV and NY8 derived from the Schmidt-Ruppin strain of RSV.  相似文献   

18.
The Gag proteins of Rous sarcoma virus and human immunodeficiency virus (HIV) each contain a function involved in a late step in budding, defects in which result in the accumulation of these molecules at the plasma membrane. In the Rous sarcoma virus Gag protein (Pr76gag), this assembly domain is associated with a PPPY motif, which is located at an internal position between the MA and CA sequences. This motif is not contained anywhere within the HIV Gag protein (Pr55gag), and the MA sequence is linked directly to CA. Instead, a late assembly function of HIV has been associated with the p6 sequence situated at the C terminus of Gag. Here we demonstrate the remarkable finding that the late assembly domains from these two unrelated Gag proteins are exchangeable between retroviruses and can function in a positionally independent manner.  相似文献   

19.
R A Weldon  Jr  J W Wills 《Journal of virology》1993,67(9):5550-5561
Retroviral Gag proteins have the ability to induce budding and particle release from the plasma membrane when expressed in the absence of all of the other virus-encoded components; however, the locations of the functional domains within the Gag protein that are important for this process are poorly understood. It was shown previously that the protease sequence of the Rous sarcoma virus (RSV) Gag protein can be replaced with a foreign polypeptide, iso-1-cytochrome c from a yeast, without disrupting particle assembly (R. A. Weldon, Jr., C. R. Erdie, M. G. Oliver, and J. W. Wills, J. Virol. 64:4169-4179, 1990). An unexpected product of the chimeric gag gene is a small, Gag-related protein named p25C. This product was of interest because of its high efficiency of packaging into particles. The goal of the experiments described here was to determine the mechanism by which p25C is synthesized and packaged into particles. The results demonstrate that it is not the product of proteolytic processing of the Gag-cytochrome precursor but is derived from an unusual spliced mRNA. cDNA clones of the spliced mRNA were obtained, and each expressed a product of approximately 25 kDa, designated p25M1, which was released into the growth medium in membrane-enclosed particles that were much lighter than authentic retrovirions as measured in sucrose density gradients. DNA sequencing revealed that the clones encode the first 180 of the 701 amino acids of the RSV Gag protein and no residues from iso-1-cytochrome c. This suggested that a domain in the carboxy-terminal half of Gag is important for the packaging of Gag proteins into dense arrays within the particles. In support of this hypothesis, particles of the correct density were obtained when a small segment from the carboxy terminus of the RSV Gag protein (residues 417 to 584) was included on the end of p25.  相似文献   

20.
Assembly of human immunodeficiency virus type 1 (HIV-1) particles occurs at the plasma membrane of infected cells. Myristylation of HIV-1 Gag precursor polyprotein Pr55Gag is required for stable membrane binding and for assembly of viral particles. We expressed a series of proteins representing major regions of the HIV-1 Gag protein both with and without an intact myristyl acceptor glycine and performed subcellular fractionation studies to identify additional regions critical for membrane binding. Myristylation-dependent binding of Pr55Gag was demonstrated by using the vaccinia virus/T7 hybrid system for protein expression. Domains within the matrix protein (MA) region downstream of the initial 15 amino acids were required for membrane binding which was resistant to a high salt concentration (1 M NaCl). A myristylated construct lacking most of the matrix protein did not associate with the plasma membrane but formed intracellular retrovirus-like particles. A nonmyristylated construct lacking most of the MA region also was demonstrated by electron microscopy to form intracellular particles. Retrovirus-like extracellular particles were produced with a Gag protein construct lacking all of p6 and most of the nucleocapsid region. These studies suggest that a domain within the MA region downstream from the myristylation site is required for transport of Gag polyprotein to the plasma membrane and that stable plasma membrane binding requires both myristic acid and a downstream MA domain. The carboxyl-terminal p6 region and most of the nucleocapsid region are not required for retrovirus-like particle formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号