首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. We examined the cnidomes (total complement of nematocysts) of medusae of the zooxanthellate and azooxanthellate jellyfishes Phyllorhiza punctata and Catostylus mosaicus (Rhizostomeae, Scyphozoa), and compared the assemblage of zooplankton captured on the oral arms of each species to determine whether differences in the types or amount of zooplankton captured were consistent with possible differences in the cnidomes. Cnidomes were described using light and scanning electron microscopy. Each species had a distinct cnidome and, in general, specimens of P. punctata appeared to have far fewer nematocysts than those of C. mosaicus. Four types of nematocysts were identified in medusae of C. mosaicus; 2 types of holotrichous isorhizae, rhopaloids, and birhopaloids. In C. mosaicus, the oral arms and bell margins possessed all of these types, but the cnidomes of the 2 regions differed in relative abundances and sizes of isorhizae and rhopaloids. Five types of nematocysts were identified in medusae of P. punctata, although not all types were found in all specimens. Round holotrichous isorhizae were found only in the bell, while oval holotrichous isorhizae, rhopaloids of 2 distinct size ranges, and birhopaloids were found in the bell and oral arms. Cnidomes of the bell and oral arms in specimens of P. punctata also differed in the relative abundance and sizes of oval isorhizae and rhopaloids. Although there were clear differences in the overall cnidomes and absolute abundances of nematocysts in each species, the oral arms (feeding appendages) of specimens of both C. mosaicus and P. punctata had similar types and relative abundances of nematocysts. Zooplankton sampled from the oral arms of each species showed that both species preyed predominantly on copepod nauplii and larvae of gastropods and bivalves. Medusae of C. mosaicus captured ~10 × more gastropod larvae and 5 × more bivalve larvae than those of P. punctata. Specimens of P. punctata captured approximately twice as many copepod nauplii as those of C. mosaicus. Differences in the relative abundance of types of zooplankton captured by each species could not be adequately explained by differences in the cnidomes of the oral arms.  相似文献   

2.
The prey capture phase of feeding behavior in the pteropod molluscClione limacina consists of an explosive extrusion of buccal cones, specialized oral appendages which are used to catch the prey, and significant acceleration of swimming. Several groups of neurons which control different components of prey capture behavior inClione have been previously identified in the CNS. However, the question of their coordination in order to develop a normal behavioral reaction still remains open. We describe here a cerebral interneuron which has wide-spread excitatory and inhibitory effects on a number of neurons in the cerebral and pedal ganglia, directed toward the initiation of prey capture behavior inClione. This bilaterally symmetrical neuron, designated Cr-PC (Cerebral interneuron initiating Prey Capture), produced monosynaptic activation of Cr-A motoneurons, which control buccal cone extrusion, and inhibition of Cr-B and Cr-L motoneurons, whose spike activities maintain buccal cones in a withdrawn position inside the head in non-feeding animals. In addition, Cr-PC produced monosynaptic activation of a number of swim motoneurons and interneurons of the swim central pattern generator (CPG) in the pedal ganglia, pedal serotonergic Pd-SW neurons involved in a peripheral modulation of swimming and the serotonergic Heart Excitor neuron.  相似文献   

3.
The kinematics of prey capture by Ascaphus truei was investigated. High-speed films (100 fps) of 13 successful and one unsuccessful prey capture sequences from six adult frogs were analysed. Ascaphus , the sister group of all living frogs, shares several aspects of feeding kinematics, including rotation of the tongue pad about the mandibular symphysis and mandibular bending during mouth opening and closing, with more derived frogs such as Bufo marinus. The times required for tongue retraction, mouth opening and closing are similar in Ascaphus and Bufo. However, because Bufo is much larger and protracts its tongue much farther than Ascaphus , the velocities of tongue retraction, mouth opening and mouth closing are relatively lower in Ascaphus than in Bufo. Differences in prey capture between Ascaphus and Bufo marinus are (1) the distance of tongue protraction is less in Ascaphus (±0.5 cm) than in Bufo (c. 2 cm); and (2) lunging of the whole body is more pronounced in Ascaphus. Prey capture is highly variable in Ascaphus. An intraoral transport sequence is sometimes (7 of 14 observations) inserted into the prey capture cycle before the completion of mouth closing. The gape cycles range from 80–150 ms for sequences with no oral transport and from 130–280 ms for sequences with oral transport. Also, the time required for tongue retraction is significantly longer in the unsuccessful capture attempt. This variability is generally greater than that observed during prey capture in salamanders, and suggests that frogs and salamanders may differ in the importance of sensory feedback in coordinating prey capture.  相似文献   

4.
The diversity of both the locomotor and feeding systems in fish is extensive, although little is known about the integrated evolution of the two systems. Virtually, all fish swim to ingest prey and all open their buccal cavity during prey capture, but the relationship between these two ubiquitous components of fish feeding strikes is unknown. We predicted that there should be a positive correlation between ram speed (RS) and maximum gape (MG) because the accuracy of a predatory strike goes down with an increase in RS and fish with larger mouths eat larger, more evasive prey. For 18 species of neotropical cichlids, we used phylogenetic-independent contrasts to study the relationship between the predator closing speed (RS) and mouth size (MG) during prey capture. To provide a robust comparative framework, we augmented existing phylogenetic information available from the mitochondrial cytochrome b gene with sequences from the S7 nuclear ribosomal intron for these species. Then, we captured high-speed (500 images per second), lateral view feeding sequences of each species by using a digital video camera and measured both RS and MG. Uncorrected species values of MG and RS were positively and significantly correlated. When accounting for any of the set of phylogenetic relationships recovered, the independent contrasts of RS and MG remained significantly, and positively, correlated. This tight evolutionary coupling highlights what is likely a common relationship between locomotor behaviour and feeding kinematics in many organisms.  相似文献   

5.
Due to morphological resemblance, polypterid fishes are used as extant analogues of Late Devonian lobe‐finned sarcopterygians to identify the features that allowed the evolution of a terrestrial lifestyle in early tetrapods. Previous studies using polypterids showed how terrestrial locomotion capacity can develop, and how air ventilation for breathing was possible in extinct tetrapodomorphs. Interestingly, one polypterid species, the reedfish Erpetoichthys calabaricus, has been noted being capable of capturing prey on land. We now identified the mechanism of terrestrial prey‐capture in reedfish. We showed that this species uses a lifted trunk and downward inclined head to capture ground‐based prey, remarkably similar to the mechanism described earlier for eel‐catfish. Reedfish similarly use the ground support and flexibility of their elongated body to realize the trunk elevation and dorsoventral flexion of the anterior trunk region, without a role for the pectoral fins. However, curving of the body to lift the trunk may not have been an option for the Devonian tetrapodomorphs as they are significantly less elongated than reedfish and eel‐catfish. This would imply that, in contrast to the eel‐like extant species, evolution of the capacity to capture prey on land in early tetrapods may be linked to the evolution of the pectoral system to lift the anterior part of the body.  相似文献   

6.
Like that of most scyphozoans, the ontogeny of Cyanea capillata medusae involves substantive alterations in feeding structures and mechanics. We used video and optical microscopy approaches to quantify these ontogenetic changes in morphology, flow, and feeding of C. capillata medusae. We found that alterations in gross morphology and nematocyst distributions coincided with a shift from prey capture on the manubrium or lappets of ephyrae (bell diameter 0.2-0.4 cm) to capture primarily on the tentacles in adult medusae (diameter >1.0 cm). These changes occurred within a hydrodynamic framework that itself changed due to medusan growth. Viscous forces were important in flows around small ephyrae (maximum Re <10(1)), whereas viscosity was less influential in the inertially dominated flows around adult medusae (Re > 10(2)). The relative timing of these events indicates that ontogenetic processes are closely synchronized with alterations in the hydrodynamic environment within which C. capillata medusae develop.  相似文献   

7.
Acipenseriformes (sturgeon and paddlefish) are basal actinopterygians with a highly derived cranial morphology that is characterized by an anatomical independence of the jaws from the neurocranium. We examined the morphological and kinematic basis of prey capture in the Acipenseriform fish Scaphirhynchus albus, the pallid sturgeon. Feeding pallid sturgeon were filmed in lateral and ventral views and movement of cranial elements was measured from video sequences. Sturgeon feed by creating an anterior to posterior wave of cranial expansion resulting in prey movement through the mouth. The kinematics of S. albus resemble those of other aquatic vertebrates: maximum hyoid depression follows maximum gape by an average of 15 ms and maximum opercular abduction follows maximum hyoid depression by an average of 57 ms. Neurocranial rotation was not a part of prey capture kinematics in S. albus, but was observed in another sturgeon species, Acipenser medirostris. Acipenseriformes have a novel jaw protrusion mechanism, which converts rostral rotation of the hyomandibula into ventral protrusion of the jaw joint. The relationship between jaw protrusion and jaw opening in sturgeon typically resembles that of elasmobranchs, with peak upper jaw protrusion occurring after peak gape.  相似文献   

8.
The distribution, behavior and metabolism of the mesopelagic jellyfish, Periphylla periphylla (Péron & Lesueur), were investigated in Lurefjorden, Norway. Field studies, conducted in 1998–1999 with plankton nets and a remotely operated vehicle, indicated that 80-90% of the dense (up to 2.5 m–3) population migrated 200–400 m vertically each day throughout the year. In situ observations with red light revealed that swimming rates and feeding activity varied with age and time of day. Detection of turbulence and contact with surfaces caused this medusa to conceal one or all of its tentacles in the stomach or to shed nematocyst-laden tissue from the tentacles. Stomachs of medusae collected with nets were often full of prey entangled with the sloughed tissue. Stomachs of medusae captured individually with ROV samplers were empty or contained only a few prey in their stomachs (typically, 1–4 copepods Calanus spp. or chaetognaths Eukrohnia hamata Möbius per medusa). Low rates (0.4–5.6 l O2 mg C–1 h–1) of oxygen consumption of P. periphylla suggested that this species was sustained by relatively few (1–34) prey d–1.  相似文献   

9.
Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator–prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process.  相似文献   

10.
Spangenberg  D. B.  Lattanzio  F. A.  Navarro  G. 《Hydrobiologia》2004,530(1-3):355-363
Glutamate (MSG) causes low pulse numbers and swimming cessation in Aurelia jellyfish ephyrae. Ephyrae given MSG for 1h and subsequently maintained in artificial sea water (ASW) were observed at 1, 3, 24, and 48 h intervals. Abnormality of motility was found at all post-treatment periods but some ephyrae resumed swimming and normal pulsing within 48 h. Swimming and pulsing were impaired in a significant number of ephyrae within 15 min of MSG treatment. The mechanism of MSG action on ephyrae motility is unknown, but glutamate damage to neurons and hair cells of higher animals is partly attributed to the formation of reactive oxygen species (ROS). Laser confocal fluorescent microscopy of ephyrae following MSG treatment indicated an increase of calcium and free radicals in the ephyrae as early as 5 min following MSG exposure. To determine whether antioxidants could alleviate MSG effects, we exposed ephyrae to gold chloride before, during, and after treatment with MSG. Ephyrae given gold chloride pre-treatment for 1h and then transferred into gold chloride plus MSG for 1h showed statistically significant recovery from MSG impairment of pulsing at the 3, 24, and 48 h post-glutamate time periods and higher numbers of swimmers at 3 h and 24 h. Ephyrae groups given gold plus MSG but without gold pretreatment showed recovery of swimming at 24 h and pulsing at 48 h. d-methionine given simultaneously with MSG significantly improved the pulse numbers and swimming of ephyrae at the 3, 24, and 48h post-glutamate time periods compared to those receiving MSG alone. Both d-methionine and gold chloride accelerated the time of recovery from glutamate-induced motility impairment, possibly through their antioxidant activities.  相似文献   

11.
1. We studied the diet of the invasive round goby (Neogobius melanostomus) on a diel basis in the Flint River, a warmwater stream in Michigan, U.S.A. Diet and available prey samples were collected seven times over a 24 h period in four consecutive months. The section of river studied lacked zebra mussels (Dreissena polymorpha), the primary prey of adult round gobies elsewhere in the Great Lakes region. 2. Diet changed on a diel basis with hydropsychid caddisfly and chironomid larvae predominating during the day, chironomid pupae dominating in the evening and heptageniid mayflies dominating at night. Simultaneous study of macroinvertebrate drift suggested that caddisfly and chironomid larvae were most likely picked from submerged rocks, chironomid pupae were most likely taken during their emergent ascent and mayflies were either captured from the drift or picked from rocks. 3. The Flint River lacks a diverse darter (Family: Percidae) and sculpin (Family: Cottidae) fauna and it appears that the round goby has occupied a generalised darter/sculpin niche. Our results indicate that round gobies have the potential to invade successfully riverine systems, particularly those lacking a diverse benthic fish assemblage.  相似文献   

12.
When a three-spined stickleback Gasterosteus aculeatus encountered prey simultaneously the probability of hanging and the median pursuit time were greater than when prey were encountered sequentially. During simultaneous prey encounter fish did not choose to attack the more profitable prey but instead the nearer prey was handled first except when the difference between the two prey sizes was large. No difference was found in the level of total energetic intake by the fish regardless of prey size pairing. Fish that handled and ate the first prey of a pair in <5 s attacked the second prey with a high probability of success, demonstrating an opportunistic feeding strategy. Importantly however, the fish did not choose to maximize long term energy intake rate by eating both prey, but rather short-term considerations over the course of feeding took precedence. With an empty stomach, the probability of a fish eating ( P eat) the first prey handled was high regardless of prey size. As stomach fullness increased, the P eat the first prey handled decreased if it was the larger prey. Hence, the fish were unselective when the stomach was empty but thereafter there was a shift in preference towards the smaller prey. The decision of which prey to attack and eat appeared to be based on short-term energy considerations and the level of stomach fullness. This study demonstrates that feeding on a short-term scale is a crucial factor to take account of when analysing fish feeding during simultaneous prey encounter.  相似文献   

13.
Prey capture success and foraging mode were studied in brown trout Salmo trutta at temperatures ranging from 5.7 to 14.0° C. At low temperatures, there was a positive correlation between prey capture success and the proportion of time that the fish spent holding feeding stations. This correlation was not found at temperatures >10° C.  相似文献   

14.
Wrona  Frederick J.  Koopowitz  Harold 《Hydrobiologia》1998,383(1-3):35-40
The prey-capture and feeding behavior of the rhabdocoel flatworm Mesostoma ehrenbergii (Focke, 1836) was analyzed using a variety of live and dead prey, including Daphnia, mosquito larvae, and tubifex annelids. Prey-capture behavior was broken down into its individual components. Mesostoma could accommodate to and change its behavior depending on the size and type of prey. Mechanical rather than chemical cues were effective in inducing prey-capture behavior. No evidence for a special chemical paralysis as suggested by other workers was found. The apparent paralysis observed in cladocera such as Daphnia and mosquito larvae was, in part a behavioral response of the prey in ‘playing possum’ and also in part due to immobilization of the prey by the flatworm with mucous threads. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The medusa Phyllorhiza punctata has been found in Brazilian waters where it is an exotic species, having arrived in ballasts from the Indo-Pacific Ocean in the general region of North Australia and Indonesia. Fatty acids of the intact animal and its component umbrella, oral arms, and mucus were identified. Two different groups of glycolipids and a sphingolipid were isolated by silica-gel column chromatography and characterized using GC-MS, ESI-MS, 1D, 2D (13)C, (1)H and (31)P NMR spectroscopy. They were sulfoquinovosyldiacylglycerol (SQDG), monogalactosyldiacylglycerol (MGDG), and ceramide aminoethylphosphonate (CAEP). The CAEP long chain base (LCB) and its polar head group (PHG) formed by partial hydrolysis, were analyzed by ESI-MS/MS. The probable origin of MGDG and SQDG in the jellyfish is the result of an endosymbiotic association with a microalga of the Dinoflagellate group, since these lipids are commonly found in photosynthetic membranes.  相似文献   

16.
Synopsis High-speed cinematography and video using modified Schlieren optics and laser illumination helped elicit details of prey capture mechanisms used by Chromis viridis while feeding on calanoid copepods and Artemia. Chromis viridis is capable of a ram-jaw, low-suction feeding, as well as a typical suction feeding behavior described for other species of planktivores. By adjusting the degree of jaw protrusion and amount of suction used during a feeding strike, this fish can modulate its feeding strikes according to the prey type being encountered. The ram-jaw feeding mode enables C. viridis to capture highly evasive calanoid copepods within 6 to 10 msec. The use of specialized feeding behavior for evasive prey and the ability to vary feeding behavior are adaptations for feeding on evasive prey.  相似文献   

17.
The advanced snakes (Alethinophidia) include the extant snakes with a highly evolved head morphology providing increased gape and jaw flexibility. Along with other physiological and morphological adaptations, this allows them to immobilize, ingest, and transport prey that may be disproportionately large or presents danger to the predator from bites, teeth, horns, or spines. Reported incidents of snakes failing to consume prey and being injured or killed during feeding mostly reflect information in the form of natural-history notes. Here we provide the first extensive review of such incidents, including 101 publications describing at least 143 cases of mortality (including six of ‘multiple individuals’) caused by ingestion or attempted consumption of injurious prey. We also report on 15 previously unpublished injurious feeding incidents from the USA, Austria, and Bulgaria, including mortality of five juvenile piscivorous dice snakes (Natrix tessellata) from a single location. Occurrences are spread across taxa, with mortality documented for at least 73 species from eight families and 45 genera. Incidents were generally well represented within each of three major categories: oversized prey (40.6%), potentially harmful prey (40.6%), and predator's behavioural/mechanical errors (18.9%). Reptile (33%) and fish (26%) prey caused disproportionately high mortality compared to mammals (16%). Feeding can be dangerous throughout a snake's life, with the later stages of feeding likely being more perilous. The number of reports has increased over time, and the data seem biased towards localities with a higher number of field-working herpetologists. We propose a standardized framework, comprising a set of basic information that should ideally be collected and published, and which could be useful as a template for future data collection, reporting, and analyses. We conclude that incidents of mortality during feeding are likely to be more common than previously assumed, and this hypothesis has implications for the ecology of persistence where populations are impacted by changing trophic environments.  相似文献   

18.
19.
Coral reefs comprise a variety of microhabitats, each with a characteristic pattern of water movement. Variation in flow microhabitat is likely to influence the distribution and abundance of suspension feeders, including the corals. Water flow was measured concurrently with wave heights at 8 depths along the forereef slope in Salt River Canyon, St Croix, U.S.V.I. The greatest flow speeds occurred on the shallow forereef at 7 m depth, where oscillatory wave-induced flow reached speeds over 50 cm s–1. From 7 m to at least 15 m depth, flow decreased and was primarily bidirectional. Below 15 m depth, flow decreased even further, to less than one fifth of that experienced by shallow corals, and was unidirectional. The relationship between particle capture by the corals Meandrina meandrites and Madracis decactis and water flow was studied in the field. Colony morphology and the resulting modification of flow influenced the relationship of flow to feeding success; prey capture by the branching Madracis colonies increased with flow, while that of the flat Meandrina colonies did not. Such relationships may contribute to differences in distribution of corals of divergent morphologies. In transect surveys from 7 to 45 m depth,; branching and mounding corals with tentacular feeding modes were most common in the shallow forereef habitats, and plating corals with small polyps (ciliary mucus feeders) were ubiquitous in the deeper zones.This paper was presented at the Fifth International Conference on Coelenterate Biology at Southampton, UK in July 1989. A synopsis appears in the Proceedings (Hydrobiologia 216/217: 247–248, 1991).This paper was presented at the Fifth International Conference on Coelenterate Biology at Southampton, UK in July 1989. A synopsis appears in the Proceedings (Hydrobiologia 216/217: 247–248, 1991).  相似文献   

20.
When hunting at sea, pinnipeds should adapt their foraging behaviors to suit the prey they are targeting. We performed captive feeding trials with two species of otariid seal, Australian fur seals (Arctocephalus pusillus doriferus) and subantarctic fur seals (Arctocephalus tropicalis). This allowed us to record detailed observations of how their foraging behaviors vary when presented with prey items that cover the full range of body shapes and sizes encountered in the wild. Small prey were captured using suction alone, while larger prey items were caught in the teeth using raptorial biting. Small fish and long skinny prey items could then be swallowed whole or processed by shaking, while all prey items with body depths greater than 7.5 cm were processed by shaking at the water's surface. This matched opportunistic observations of feeding in wild Australian fur seals. Use of “shake feeding” as the main prey processing tactic also matches predictions that this method would be one of the only tactics available to aquatic tetrapods that are unable to secure prey using their forelimbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号