首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary By means of metaphase chromosomes, the genes for mink thymidine kinase (TK) and hypoxanthine-phosphoribosyltransferase (HPRT) were transferred to mutant mouse cells, LMTK-, A9 (HPRT-) and teratocarcinoma cells, PCC4-aza 1 (HPRT-). Eighteen colonies were isolated from LMTK- (series A), 9 from A9 (series B) and none from PCC4-aza 1. The transformed clones contained mink TK or HPRT. Analysis of syntenic markers in series B demonstrated that one clone contained mink glucose-6-phosphate dehydrogenase (G6PD) and the other alpha-galactosidase; in series A, nine clones contained mink galactokinase (GALK) and six mink aldolase C (ALDC). Analysis of 12 asyntenic markers located in ten mink chromosomes showed the presence of only aconitase-1 (ACON1) (the marker of mink chromosome 12) in three clones of series A. The clones lost mink ACON1 between the fifth to tenth passages. Cytogenetic analysis established the presence of a fragment of mink chromosome 8 in eight clones of series A, but not in series B. The clones of series A lost mink TK together with mink GALK and ALDC during back-selection; in B, back-selection retained mink G6PD. No stable TK+ phenotype was detected in clones with a visible fragment of mink chromosome 8. Stability analysis demonstrated that about half of the clones of series B have stable HPRT+ phenotype whereas only three clones of series A have stable TK+ phenotype. It is suggested that the recipient cells, LMTK- and A9, differ in their competence for genetic transformation and integration of foreign genes.  相似文献   

2.
3.
4.
5.
We show that N-1 in adenine of chromosomal DNA is methylated by treatment of metaphase chromosomes with dimethylsulphate while this is not the case in chromatin. The data on methylation are consistent with those obtained from the experiments with S1-nuclease treatment of chromatin and chromosomes. This suggests a disarrangement of DNA secondary structure in the metaphase chromosomes.  相似文献   

6.
Mitotic chromosome structure is pivotal to cell division but difficult to observe in fine detail using conventional methods. DNA catenation has been implicated in both sister chromatid cohesion and chromosome condensation, but has never been observed directly. We have used a lab-on-a-chip microfluidic device and fluorescence microscopy, coupled with a simple image analysis pipeline, to digest chromosomal proteins and examine the structure of the remaining DNA, which maintains the canonical ‘X’ shape. By directly staining DNA, we observe that DNA catenation between sister chromatids (separated by fluid flow) is composed of distinct fibres of DNA concentrated at the centromeres. Disrupting the catenation of the chromosomes with Topoisomerase IIα significantly alters overall chromosome shape, suggesting that DNA catenation must be simultaneously maintained for correct chromosome condensation, and destroyed to complete sister chromatid disjunction. In addition to demonstrating the value of microfluidics as a tool for examining chromosome structure, these results lend support to certain models of DNA catenation organization and regulation: in particular, we conclude from our observation of centromere-concentrated catenation that spindle forces could play a driving role in decatenation and that Topoisomerase IIα is differentially regulated at the centromeres, perhaps in conjunction with cohesin.  相似文献   

7.
8.
9.
Normal diploid human cells with a limited life-span in culture, as well as primary or secondary cell cultures of mouse or rat embryos, can be transformed in vitro (i.e. grow in soft-agar or low-serum medium) after a single exposure to metaphase chromosomes from SV40-transformed human or rat cells, Ad5-transformed human cells and several spontaneous human or mouse tumor cells. Chromosomes from normal diploid cells do not show any such transforming activity. As judged from the number of colonies formed in selective medium, the efficiency of transformation is, with some exceptions, of the order of 10(-5)--10(-6) and is generally higher for homologous than for heterologous transfers. A fraction of the colonies demonstrate abortive transformation. Nevertheless, using chromosomes from all but one donor cell population, at least one transferent cell line expressing a stable transformed phenotype has been established. Our results demonstrate that transformation of normal diploid cells by a presumptive chromosome-mediated gene transfer can be obtained with a variety of donor and recipient cells.  相似文献   

10.
11.
A late replicating X or Y chromosome can be detected by 33258 Hoechst staining and fluorescence microscopy in a large proportion of female or male mouse embryo cells, respectively, which have been cultured in medium containing 5-bromodeoxyuridine (BUdR) for part of one DNA synthesis period, The observed distribution of late replicating chromosome regions also includes centromeric heterochromatin and some quinacrine positive bands.  相似文献   

12.
Metaphase chromosomes prepared from colcemid-treated mouse L929 cells by non-ionic detergent lysis exhibit distinct heterochromatic centromere regions and associated kinetochores when viewed by whole mount electron microscopy. Deoxyribonuclease I treatment of these chromosomes results in the preferential digestion of the chromosomal arms leaving the centromeric heterochromatin and kinetochores apparently intact. Enrichment in centromere material after DNase I digestion was quantitated by examining the increase in 10,000xg pellets of the 1.691 g/cc satellite DNA relative to main band DNA. This satellite species has been localized at the centromeres of mouse chromosomes by in situ hybridization. From our analysis it was determined that DNase I digestion results in a five to six-fold increase in centromeric material. In contrast to the effect of DNase I, micrococcal nuclease was found to be less selective in its action. Digestion with this enzyme solubilized both chromosome arms and centromeres leaving only a small amount of chromatin and intact kinetochores.  相似文献   

13.
P Vernole 《BioTechniques》1990,9(2):200-204
A technique of in situ hybridization on metaphases of chromosomes by a digoxigenin-labeled probe is described. This technique was able to detect single DNA sequences of 2 and 7 kilobases. The results obtained were compared with those of a biotin streptavidin alkaline phosphatase-based detection system. The digoxigenin method was at least as efficient and sensitive as the biotin-streptavidin method.  相似文献   

14.
15.
16.
D A Spandidos  L Siminovitch 《Cell》1977,12(3):675-682
The cellular property of being able to grow on agar (aga+) or to show anchorage independence has been transferred by means of metaphase chromosomes from CHO cells to BHK and other permanent transformed hamster lines unable to grow on agar. As with other genetic markers, the transferents are unstable when grown under non-selective conditions. The aga+ transferents are tumorigenic, providing further evidence for the association between the ability to grow in agar or anchorage independence and tumorigenicity. Evidence has been obtained in these experiments for the existence of at least two discrete events in the transformation of normal into tumorigenic cells. The ability to transfer and select for the aga+ marker in recipient cells indicates that tumorigenicity behaves dominantly phenotypically.  相似文献   

17.
Summary A method of in situ hybridization for visualizing individual human chromosomes from pter to qter, both in metaphase spreads and interphase nuclei, is reported. DNA inserts from a single chromosomal library are labeled with biotin and partially preannealed with a titrated amount of total human genomic DNA prior to hybridization with cellular or chromosomal preparations. The cross-hybridization of repetitive sequences to nontargeted chromosomes can be markedly suppressed under appropriate preannealing conditions. The remaining single-stranded DNA is hybridized to specimens of interest and detected with fluorescent or enzymelabeled avidin conjugates following post-hybridization washes. DNA inserts from recombinant libraries for chromosomes 1, 4, 7, 8, 13, 14, 18, 20, 21, 22, and X were assessed for their ability to decorate specifically their cognate chromosome; most libraries proved to be highly specific. Quantitative densitometric analyses indicated that the ratio of specific to nonspecific hybridization signal under optimal preannealing conditions was at least 8:1. Interphase nuclei showed a cohesive territorial organization of chromosomal domains, and laserscanning confocal fluorescence microscopy was used to aid the 3-D visualization of these domains. This method should be useful for both karyotypic studies and for the analysis of chromosome topography in interphase cells.  相似文献   

18.
Restriction enzyme banding of mouse metaphase chromosomes   总被引:4,自引:0,他引:4  
Fixed metaphase chromosomes from mouse strain RIII embryos or A9 cells were treated with a restriction endonuclease, followed by Giemsa staining. Aha I, Hinf I, or Mbo I treatment produced a C-band pattern, and Eco RII or Hae III produced a G-band plus C-band pattern. Ava II and Bst NI each produced a G-band pattern, but on most chromosomes only a small segment of each C-band, adjacent to the centromere, was stained. These tiny residual C-bands may contain a minor satellite located adjacent to the major satellite clusters.  相似文献   

19.
The structural organization of mouse metaphase chromosomes   总被引:1,自引:0,他引:1  
The binding of highly purified anti-nucleoside antibodies to mouse (Mus musculus) metaphase chromosomes was studied by an immunofluorescence technique. The chromosomal DNA was denatured by one of two selective denaturation procedures because these antibodies reacted with single stranded but not native DNA. After ultraviolet irradiation (UV), which produced single stranded regions primarily in AT rich DNA, the binding of antiadenosine (anti-A) produced a pattern of fluorescent bands similar to that produced by quinacrine (Q-bands). Additional foci of bright fluorescence were observed at the centrometric (C-band) regions, which are known to contain AT rich satellite DNA. After photooxidation, which produced single stranded regions in GC rich DNA, the binding of anti-A produced a fluorescent banding pattern similar to the R-banding pattern seen after thermal denaturation and staining with coriphosphine O. After photooxidation, R-band patterns were also obtained with anti-cytidine (anti-C) and anti-5-methylcytidine (anti-M). After either UV irradiation or photooxidation, anti-M, but not anti-C, showed intense binding to the C-band regions of mouse chromosomes. — These findings led to the following conclusions: (1) Antibody banding patterns reflect the presence of a class of AT rich, GC poor DNA in chromosome regions which show bright quinacrine fluorescence and in the regions that contain the AT rich satellite DNA. (2) The alternate, quinacrine dull regions contain a relatively GC rich class of DNA which appears to be more highly methylated than the AT rich DNA in the Q-bright bands, but not the AT rich satellite DNA in the Q-dull C-bands. (3) 5-Methylcytosine residues occur in a sequence of mouse satellite DNA that contains both adjacent pyrimidines and guanine residues. The basic repeating unit of mouse satellite DNA is known to contain the sequence 5-GAAAAATGA-3 (Biro et al., 1975). Therefore, assuming the antibodies used could detect single bases in denatured DNA, the methylated sequence in mouse satellite DNA   相似文献   

20.
Thymidine incorporated as a terminal pulse into chromosomes otherwise substituted with 5-bromodeoxyuridine can be detected by associated bright 33258 Hoechst fluorescence. The location of metaphase chromosome regions identified by this method as last to complete DNA synthesis is consistent with the results of autoradiographic analyses with tritiated thymidine. The very late-replicating regions correspond to a subset of those which appear as bands after chromosomes are stained by quinacrine or modified Giemsa techniques. The high resolution of the 33258 Hoechst fluorescence pattern within individual cells is especially useful for revealing variations in the order of terminal replication. Both homolog asynchrony and fluctuations in the distribution of bright 33258 Hoechst fluorescence within chromosomes from different cells are apparent and localized to individual bands. The results are consistent with the possibility that these bands constitute units of chromosome replication as well as structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号