首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
National parks are an important tool for conserving biodiversity, particularly in areas of high biodiversity and endemism such as the tropical Andes. However, national parks often face a variety of stressors related to recreation, road construction and illegal extraction of natural resources. Unfortunately, the influence of these stressors for biodiversity is rarely well documented. Cajas National Park in Ecuador is no exception. Despite being traversed by the Cuenca-Molleturo-Naranjal road, effects of the road construction on biodiversity have not been determined. We therefore assessed the influence of road proximity on bird species richness and abundance as well as composition of bird habitat groups in Cajas National Park using transect walks at 25 m and 250 m distance to the road (overall 18 transects, each 1 km length). In total, we recorded 1110 individuals of 28 páramo bird species. Overall species richness did not differ between transects near and far from the road. Nevertheless, the average abundance of shrubby páramo species was significantly higher far from the road than near the road (Far = 36, Near = 25). Moreover, we found a tendency towards differences in the composition of bird habitat groups between transects near and far from the road. One aspect potentially driving the observed patterns was the increasing proportion of planted non-native woody tree species within páramo grassland near the road, which may have caused reduced abundances of shrubby páramo bird species there. While roads represented a clear impact on the composition of bird species in the páramo, the major effect seems to be driven by the introduction of non-native plant species along the roadside. In order to reduce the impact of roads to a minimum, we suggest that park managers should control the introduction of such plant species.  相似文献   

2.
Le Roux X  Bardy M  Loiseau P  Louault F 《Oecologia》2003,137(3):417-425
Stimulation of nitrification and denitrification by long term (from years to decades) grazing has commonly been reported in different grassland ecosystems. However, grazing generally induces important changes in plant species composition, and whether changes in nitrification and denitrification are primarily due to changes in vegetation composition has never been tested. We compared soil nitrification- and denitrification-enzyme activities (NEA and DEA, respectively) between semi-natural grassland sites experiencing intensive (IG) and light (LG) grazing/mowing regimes for 13 years. Mean NEA and DEA (i.e. observed from random soil sampling) were higher in IG than LG sites. The NEA/DEA ratio was higher in IG than LG sites, indicating a higher stimulation of nitrification. Marked changes in plant species composition were observed in response to the grazing/mowing regime. In particular, the specific phytomass volume of Elymus repens was lower in IG than LG sites, whereas the specific volume of Lolium perenne was higher in IG than LG sites. In contrast, the specific volume of Holcus lanatus, Poa trivialis and Arrhenatherum elatius were not significantly different between treatments. Soils sampled beneath grass tussocks of the last three species exhibited higher DEA, NEA and NEA/DEA ratio in IG than LG sites. For a given grazing regime, plant species did not affect significantly soil DEA, NEA and NEA/DEA ratio. The modification of plant species composition is thus not the primary factor driving changes in nitrification and denitrification in semi-natural grassland ecosystems experiencing long term intensive grazing. Factors such as trampling, N returned in animal excreta, and/or modification of N uptake and C exudation by frequently defoliated plants could be responsible for the enhanced microbial activities.  相似文献   

3.
Three aspects of the páramo vegetation's response to fires were investigated: the measurement of fire temperatures, general observations of changes in plant communities following fires, and monitoring the fate of individual plants after burning.Fire temperatures were strongly influenced by the physiognomy of the vegetation, dominated by tussocks of Calamagrostis spp. Temperatures were highest amongst the upper leaves of the tussock (sometimes >500°C). The middle levels of the tussock experienced temperatures in excess of 400°C, but in the dense leaf bases temperatures were often below 65°C. On the ground between tussocks, temperatures were variable, whereas 2 cm below ground temperatures failed to reach 65°C.Plant survival depended on the intensity of the fire and the plant's position within the tussock structure. Survival was often the result of high temperature avoidance (with buds shielded by other plant parts or buried beneath the soil surface).Post-fire Calamagrostis tiller mortality rates were high and tussock regrowth was slow. Some other species appear to maintain their populations by exploiting this recovery phase for seedling establishment on tussocks.Between tussocks, changes of occupancy at the level of the individual plants were greater after fire than in control vegetation. Most transitions were random. Those which departed from random often involved gaps and were related to post-fire mortality, regrowth from below-ground parts, colonisation or, in the case of a clonal mat-forming species, to spatial rearrangement of rosettes. Recovery was slower at higher altitude. Recovery was much slower in burned plots when the upper 2 cm of soil was removed (along with buried plant parts) compared with burned plots.Qualitative observations suggest that recovery may consist of a cyclical process, mediated by the serial dominance of several species that are physiognomically important.The frequency of fires determines the amount of fuel accumulated within grass tussocks and some plants may be unable to survive repeated burning. Chance survival of species in unburned patches of vegetation and random colonisation of gaps may be important determinants of subsequent community structure.  相似文献   

4.
5.
In this issue of the Journal of Vegetation Science, Lezama et al. confirm the hypothesis that the effects of grazing increase with productivity, based on data from steppes and prairies in Argentina and Uruguay. Their study can serve as a starting point for further studies addressing questions on the mechanisms behind vegetation dynamics in grassland, emphasizing the need for experimental studies over larger climatic gradients.  相似文献   

6.
7.
We conducted an 8-year exclosure experiment (1999–2006) in a forest–tundra ecotonal area in northwestern Finnish Lapland to study the effects of reindeer grazing on vegetation in habitats of variable productivity and microhabitat structure. The experimental sites included tundra heath, frost heath and riparian habitats, and the two latter habitats were characterized by hummock-hollow ground forms. The total cover of vegetation, cover of willow (Salix spp.), dwarf birch (Betula nana), dwarf shrubs, forbs and grasses (Poaceae spp.) increased in exclosures in all habitats. The increase in the total cover of vegetation and in the covers of willow and dwarf birch tended to be greatest in the least productive tundra heath. Opposing to the increase in the dominant vascular plant groups, the cover and species number of bryophytes decreased in exclosures. We conclude that the effects of reindeer grazing on vegetation composition depend on environmental heterogeneity and the responses vary among plant groups. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
The páramo is a high altitude tropical Andean ecosystem that contains peatlands with thick horizons of carbon (C) dense soils. Soil C data are sparse for most of the páramo, especially in peatlands, which limits our ability to provide accurate regional and country wide estimates of C storage. Therefore, the objective of our research was to quantify belowground C stocks and accumulation rates in páramo peatland soils in two regions of northeastern Ecuador. Peatland soil cores were collected from Antisana Ecological Reserve and Cayambe-Coca National Park. We measured soil C densities and 14C dates to estimate soil accumulation rates. The mean peatland soil depth across both regions was 3.8 m and contained an estimated mean C storage of 1282 Mg ha?1. Peatlands older than 3000 cal. year BP had a mean long-term C accumulation rate of 26 g m?2 year?1, with peatlands younger than 500 cal. year BP displaying mean recent rates of C accumulation of 134 g m?2 year?1. These peatlands also receive large inputs of mineral material, predominantly from volcanic deposition, that has created many interbedded non-peat mineral soil horizons that contained 48 % of the soil C. Because of large C stocks in Ecuadorian mountain peatlands and the potential disturbance from land use and climate change, additional studies are need to provide essential baseline assessments and estimates of C storage in the Andes.  相似文献   

9.
Livestock grazing on natural grasslands is widespread with negative consequences to biodiversity. In the High Andes, páramo grassland is a distinctive ecosystem where the influence of livestock grazing on páramo birds is poorly documented. We assessed the influence of habitat modification of páramo grassland related to livestock grazing on bird habitat guilds in the southern Andes of Ecuador. We recorded birds occurring along transects located in areas which showed a gradient (low to high) of grazing pressure. We found a decrease in abundance of páramo specialists in transects with more grazing pressure. We interpret this habitat modification as loss of key habitat necessary for habitat-specialized birds.  相似文献   

10.
Interactions between bacteria and protozoa in soil were studied over 2-week periods in the field and in a pot experiment. Under natural conditions the total biological activity was temporarily synchronized by a large rainfall, and in the laboratory by the addition of water to dried-out soil, with or without plants. In the field, peaks in numbers and biomass of bacteria appeared after the rain, and a peak of naked amoebae quickly followed. Of the three investigated groups—flagellates, ciliates, and amoebae—only populations of the latter were large enough and fluctuated in a way that indicated a role as bacterial regulators. The bacterial increase was transient, and the amoebae alone were calculated to be able to cause 60% of the bacterial decrease. The same development of bacteria and protozoa was observed in the pot experiment: in the presence of roots, amoebic numbers increased 20 times and became 5 times higher than in the unplanted soil. In the planted pots, the amoebic increase was large enough to cause the whole bacterial decrease observed; but in the unplanted soil, consumption by the amoebae caused only one-third of the bacterial decrease.  相似文献   

11.

Aims

By analysing cattle- and sheep-grazed sand grasslands, we tested the following hypotheses: (i) livestock type has a stronger effect on the vegetation characteristics than grazing intensity; (ii) sheep grazing results in lower biomass and species and functional diversity than cattle grazing, regardless of intensity; and (iii) increased grazing intensity causes a shift of the trait composition in grasslands.

Location

Sand grasslands in the Nyírség region, East Hungary.

Methods

We selected 26 sand grassland sites grazed by cattle or sheep and classified them into four intensity levels. Vegetation composition was surveyed in 2 m × 2 m plots. We harvested the above-ground biomass from 20 cm × 20 cm plots; then dried and sorted it to live biomass, litter, moss, and lichen. We compared Rao dissimilarity index, species richness, Shannon diversity, evenness, and the community-weighted means of nine vegetative and generative traits along a grazing intensity gradient. We calculated functional richness, evenness, and divergence for comparison.

Results

We found that some diversity metrics and community-weighted means of most studied traits were significantly affected by grazing intensity. Several characteristics were also affected by the interaction of grazing intensity and livestock type, but none of the studied characteristics was affected by livestock type in itself. Increasing Rao dissimilarity index peaking at the fourth grazing intensity level was detected, but for other multitrait indices, no such changes were proven, except for functional divergence, which was the lowest at the first intensity level. Graminoid, forb, and litter biomass were significantly affected by intensity, but none of the biomass fractions was affected by livestock type.

Conclusions

We suggest that for the management of sand grasslands, grazing intensity should be carefully adjusted, considering not only livestock units per hectare. For practical recommendations, well-defined, long-term experiments studying different livestock and habitat types along an intensity gradient would be essential.  相似文献   

12.
Ramsay  P. M.  Oxley  E. R. B. 《Plant Ecology》1997,131(2):173-192
A growth form classification for the plants of the Ecuadorian páramos is proposed, consisting of ten forms: stem rosettes, basal rosettes, tussocks, acaulescent rosettes, cushions and mats, upright shrubs, prostrate shrubs, erect herbs, prostrate herbs, and trailing herbs.The growth form composition of 192 samples of páramo vegetation from twelve different regions in Ecuador was analysed using multivariate techniques to determine physiognomic types. The distribution of growth forms was significantly related to altitude, rock cover, bare ground and to measures of disturbance and exposure.The dominant growth forms in all the samples belonged to one of Hedberg's (1964) five types, but other forms were also significant components of the vegetation. The majority of Ecuadorian páramo vegetation showed a relatively consistent growth form composition, dominated by tussocks. The accompanying growth forms were mostly acaulescent rosettes, cushions, upright shrubs, prostrate shrubs, erect herbs and prostrate herbs, sometimes with stem rosettes, basal rosettes or trailing herbs.At higher altitudes, the dominance of tussocks was reduced. At first, acaulescent rosettes became dominant, but higher still their dominance was shared with cushions. At the highest altitudes of all, where plant cover was thin, no single growth form was dominant. In other locations where plant cover was sparse, once again no single growth form was dominant. In humid páramos, stem rosettes were co-dominant with tussocks or erect herbs. Basal rosettes, erect herbs and prostrate herbs were locally co-dominant at higher altitudes.The growth form composition of the Ecuadorian páramos showed similarities with other tropical alpine regions, though no comparable quantitative data for these regions are available yet. The quantitative determination of growth form composition may also lead to a better understanding of community structure and the mechanisms which govern it.  相似文献   

13.
Plant species leave a chemical signature in the soils below them, generating fine-scale spatial variation that drives ecological processes. Since the publication of a seminal paper on plant-mediated soil heterogeneity by Paul Zinke in 1962, a robust literature has developed examining effects of individual plants on their local environments (individual plant effects). Here, we synthesize this work using meta-analysis to show that plant effects are strong and pervasive across ecosystems on six continents. Overall, soil properties beneath individual plants differ from those of neighbours by an average of 41%. Although the magnitudes of individual plant effects exhibit weak relationships with climate and latitude, they are significantly stronger in deserts and tundra than forests, and weaker in intensively managed ecosystems. The ubiquitous effects of plant individuals and species on local soil properties imply that individual plant effects have a role in plant–soil feedbacks, linking individual plants with biogeochemical processes at the ecosystem scale.  相似文献   

14.
The ecological effects of novel grass–endophyte associations used in agriculture have not been widely studied. Previous studies of asexual Epichloë-infected Lolium perenne suggest that endophyte concentration is altered in high sugar grasses (HSGs) selectively bred to produce higher concentrations of water-soluble carbohydrates relative to conventional cultivars. We investigated whether differences are due to the effects of altered carbohydrates, or genetic background, by growing multiple cultivars in both high-sugar trait expression and non-expression conditions (using light/temperature treatments). Endophyte and alkaloid concentrations were measured in three HSG and three NSG (normal-sugar grass) cultivars infected with Lp19 or AR37 endophyte strains. Low molecular weight (LMW) carbohydrates had a small effect, explaining <6% of the variation in endophyte concentration. Endophyte concentrations were strongly dependent on plant genotype and fungal strain, with the highest concentrations seen in Lp19, suggesting that the interaction is highly dependent on genetic compatibility. Changes in endophyte concentration due to altered environmental variables and genetic compatibility may have consequences for persistence, toxicity, and invasive potential of endophyte-infected plants.  相似文献   

15.
Edaphic factors can lead to differences in plant morphology and tissue chemistry. However, whether these differences result in altered plant–insect interactions for soil-generalist plants is less understood. We present evidence that soil chemistry can alter plant–insect interactions both directly, through chemical composition of plant tissue, and indirectly, through plant morphology, for serpentine-tolerant Mimulus guttatus (Phrymaceae). First, we scored floral display (corolla width, number of open flowers per inflorescence, and inflorescence height), flower chemistry, pollinator visitation and florivory of M. guttatus growing on natural serpentine and non-serpentine soil over 2 years. Second, we conducted a common garden reciprocal soil transplant experiment to isolate the effect of serpentine soil on floral display traits and flower chemistry. And last, we observed arrays of field-collected inflorescences and potted plants to determine the effect of soil environment in the field on pollinator visitation and florivore damage, respectively. For both natural and experimental plants, serpentine soil caused reductions in floral display and directly altered flower tissue chemistry. Plants in natural serpentine populations received fewer pollinator visits and less damage by florivores relative to non-serpentine plants. In experimental arrays, soil environment did not influence pollinator visitation (though larger flowers were visited more frequently), but did alter florivore damage, with serpentine-grown plants receiving less damage. Our results demonstrate that the soil environment can directly and indirectly affect plant–mutualist and plant–antagonist interactions of serpentine-tolerant plants by altering flower chemistry and floral display.  相似文献   

16.
17.

Background and Aims

Fenced enclosures have become an important method for re-establishing degraded grassland on the Tibetan plateau, and examination of soil seed banks may provide useful insights to understanding the effects and mechanisms of fencing enclosure on the restoration.

Methods

An investigation was conducted into the effects of enclosure for 3 years on the soil seed banks of degraded natural and sown grasslands at eight study sites. Species composition, soil seed bank density and the relationships with above-ground vegetation were analysed based on 4800 soil core samples and counting of seeds extracted from soil samples.

Results

After 3 years of fencing enclosure, soil seed banks differed between the different communities across the study sites. Species numbers and seed density in soil seed banks decreased from natural grassland to sown grassland, with most seeds occurring in the upper 5 cm soil layer. In these alpine grasslands, relatively few species produced high numbers of seeds, although their occurrence across the eight study sites was variable. Total vegetation cover increased with enclosure due to the colonization capacity of the vegetation rather than soil seed banks.

Conclusions

This study provided evidence that soil seed banks do not play an important role in the restoration of degraded alpine grassland when using fencing enclosures. Further studies conducted over longer periods are needed to address this subject.  相似文献   

18.
19.
It is generally predicted that grazers enhance soil microbial activity and nutrient availability and promote soil bacteria in fertile ecosystems, but retard microbial activity and nutrient availability and promote soil fungi in infertile ecosystems. We tested these predictions in tundra by comparing grazing effects between fertile and infertile habitats and with/without nutrient manipulation by fertilization. Grazing decreased soil N content in fertile and in fertilized plots in infertile habitats while increased it in infertile tundra habitats, which directly opposed our prediction. We conclude that this unpredicted outcome probably resulted from nutrient transport between habitats. Also contrasting with our hypothesis, grazing increased fungal rather than bacterial abundance in fertilized plots at both habitats. In support with predictions, grazing increased microbial activity for soil C decomposition in fertile but decreased it in infertile habitats. The effect of grazing on soil C decomposition followed same patterns as grazer‐induced changes in the activity of β‐glucosidase, which is an extracellular enzyme synthesized by soil microorganisms for degrading soil cellulose. We suggest that the theoretical framework on grazer–soil interactions should incorporate microbial potential for extracellular enzyme production (‘microscale’ grazer effects) and nutrient translocation by grazers among habitats (‘macroscale’ grazer effects) as important mechanisms by which grazers influence soil processes and nutrient availability for plants at contrasting levels of habitat fertility.  相似文献   

20.
Increased fire frequency can significantly erode both soil properties and plant–pollinator interactions affecting plant reproductive success but they have seldom been assessed simultaneously. Here, we evaluate soil properties, pollinator assemblage and the reproductive success of two native Fabaceae herbs, Desmodium uncinatum and Rhynchosia edulis, growing in unburned, low and high fire frequency sites of Chaco Serrano across two consecutive years. Desmodium uncinatum is outcrossing with a high dependence on pollinators, whereas R. edulis is autogamous and completely independent of pollinators. We found that soil water content, nitrates and electrical conductivity significantly decreased in low and high fire frequency sites. Pollinator richness and composition visiting each plant species was similar across all fire frequency scenarios. However, fruit set of the exogamous D. uncinatum was strongly reduced in frequently burned sites, whereas fruit set of the autogamous R. edulis showed no significant changes. In both species, the probability of setting fruits was positively related to soil quality across fire frequency scenarios, implying that decreased reproduction was mainly driven by limitation of abiotic resources shaped by increased fire frequency. Because the pollinator-dependent D. uncinatum has a higher reproductive cost, reduced soil quality induced by fire frequency had stronger effects on its reproduction. Chronic reduction of sexual reproduction in frequently burned sites with depleted soils will limit population recruitment with negative consequences on long-term plant population persistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号