首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Rotigaptide (formerly ZP123) is a novel antiarrhythmic peptide that prevents uncoupling of connexin 43 (Cx43)-mediated, gap junction communication during acute metabolic stress. Since rotigaptide's long-term effects on Cx43 are unknown, we studied its effect on Cx43 protein levels at 24 h in neonatal ventricular myocytes. As determined by Western blot analysis, rotigaptide produced a dose-dependent increase in Cx43 protein expression that reached a maximum level at 100 nM. Furthermore, 100 nM rotigaptide markedly increased Cx43 immunoreactivity and Cx43-positive gap junctions as observed in immunocytochemical studies. Cycloheximide, an inhibitor of protein synthesis, was used to investigate rotigaptide's mechanism of action. Cycloheximide (10 μg/ml) reduced Cx43 protein levels to 39% of vehicle (17 mM ethanol) whereas cotreatment of 10 μg/ml cycloheximide with 100 nM rotigaptide reduced Cx43 protein levels to 56% of vehicle. Our findings suggest that rotigaptide's effect on Cx43 expression is partly due to increased biosynthesis.  相似文献   

2.
This study examined whether triiodo-L-thyronine (T3) affects the expression of the major intercellular channel protein, connexin-43, and contractile protein alpha-sarcomeric actin. Cultured cardiomyocytes from newborn rats were treated on day three in culture with 10 or 100 nM T3 and examined 48 and 72 h thereafter. Treated and untreated cells were examined by immunofluorescence and electron microscopy. Expression levels of Cx43 and sarcomeric alpha-actin were monitored by Western blot analysis. Immunofluorescence labeling showed cell membrane location of Cx43 in punctuate gap junctions, whereby fluorescence signal area was significantly higher in cultured cardiomyocytes exposed to T3. This correlated with electron microscopical findings showing increased numbers and size of gap junction profiles, as well as with a significant dose-dependent increase of Cx43 expression detected by Western blot. Immunofluorescence of sarcomeric a-actin was enhanced and its expression increased dose- and time-dependently in T3-treated cultured heart myocytes. However, exposure to the higher dosage (100 nM) of T3 caused mild disintegration of sarcomeric a-actin in some myocytes, suggesting an over-dosage. The results indicate that T3 up-regulates Cx43 and accelerates gap junction formation in cultured neonatal cardiomyocytes. They suggest that thyroid status cannot only modulate the mechanical function of cardiomyocytes but also cell-to-cell communication essential for myocardial electrical and metabolic synchronizations.  相似文献   

3.
Gap junctions form channels that allow exchange of materials between cells and are composed of transmembrane protein subunits called connexins. While connexins are believed to mediate cellular signaling by permitting intercellular communication to occur, there is also increasing evidence that suggest connexins may mediate growth control via a junction-independent mechanism. Connexin43 (Cx43) is the most abundant gap junction protein found in astrocytes, and gliomas exhibit reduced Cx43 expression. We have previously observed that restoration of Cx43 levels in glioma cells led to increased expression of CCN3 (NOV) proteins. We now report that overexpression of Cx43 in C6-glioma cells (C6-Cx43) also upregulates the expression of CCN1 (Cyr61). Both CCN1 and CCN3 belong to the Cyr61/Connective tissue growth factor/Nephroblastoma-overexpressed (CCN) family of secretory proteins. The CCN proteins are tightly associated with the extracellular matrix and have important roles in cell proliferation and migration. CCN1 promotes growth in glioma cells, as shown by the increased proliferation rate of CCN1-overexpressing C6 cells. In addition to its effect on cell growth, CCN1 also increased the motility of glioma cells in the presence of extracellular substrates such as fibronectin. Gliomas expressing high levels of Cx43 preferentially upregulated CCN3 which resulted in reduced growth rate. CCN3 could also be observed in Cx43 gap junction plaques in confluent C6-Cx43H culture at the stationary phase of their growth. Our results suggest that the dissimilar growth characteristics between high and low Cx43 expressors may be due to differential regulation of CCN3 by varying levels of Cx43.  相似文献   

4.
5.
Gap junction channels provide the basis for the electrical syncytial properties of the heart as a communicating electrical network. Cardiac gap junction channels are predominantly composed of connexin 40 or connexin 43. The conductance of these channels (g(j)) can be regulated pharmacologically: substances which activate protein kinase C, protein kinase A or protein kinase G may alter Cx43 gap junction conductance. However, for PKC, this seems to be subtype specific. Thus, antiarrhythmic peptides can enhance g(j) via activation of PKCepsilon, while FGF-2 reduces g(j) via PKCepsilon. Lipophilic drugs can uncouple the channels. Besides an acute regulation of g(j), the expression of the cardiac connexins can also be regulated. A decrease in Cx43 with a concomitant increase in Cx40 has been found in end-stage failing hearts, while in renovascular hypertension, an increase in Cx43 has been described. Mediators like endothelin-1, angiotensin-II, TGF-beta, VEGF, and cAMP have been shown to increase Cx43. Interestingly, endothelin-1 and angiotensin-II increased Cx43 but did not affect Cx40 expression. In contrast, in humans suffering from atrial fibrillation (AF), the content in Cx40 can be enhanced while Cx43 was unaltered, although in several other studies, other changes of the cardiac connexins were found, which might be related to the type of AF. Regarding the role of calcium, the content in both Cx40 and Cx43 was decreased in cultured neonatal rat cardiomyocytes after 24 h administration of 100 nM verapamil. Thus, gap junctional channels can be affected pharmacologically either acutely by modulating gap junction conductance or chronically by altering gap junction protein expression. Interestingly, it appears that the expression of Cx43 and Cx40 can be differentially regulated.  相似文献   

6.
Enzyme prodrug therapy using neural progenitor cells (NPCs) as delivery vehicles has been applied in animal models of gliomas and relies on gap junction communication (GJC) between delivery and target cells. This study investigated the effects of histone deacetylase (HDAC) inhibitors on GJC for the purpose of facilitating transfer of therapeutic molecules from recombinant NPCs. We studied a novel immortalized midbrain cell line, NGC-407 of embryonic human origin having neural precursor characteristics, as a potential delivery vehicle. The expression of gap junction protein connexin 43 (Cx43) was analyzed by western blot and immunocytochemistry. While Cx43 levels were decreased in untreated differentiating NGC-407 cells, the HDAC inhibitor 4-phenylbutyrate (4-PB) increased Cx43 expression along with increased membranous deposition in both proliferating and differentiating cells. Simultaneously, Ser 279/282-phosphorylated form of Cx43 was declined in both culture conditions by 4-PB. The 4-PB effect in NGC-407 cells was verified by using HNSC.100 human neural progenitors and Trichostatin A. Improved functional GJC is of imperative importance for therapeutic strategies involving intercellular transport of low molecular-weight compounds. We show here an enhancement by 4-PB, of the functional GJC among NGC-407 cells, as well as between NGC-407 and human glioma cells, as indicated by increased fluorescent dye transfer.  相似文献   

7.
Connexin 43 (Cx43), a gap junction protein expressed in differentiated granulosa cells, is necessary for normal follicular development. Cx43 expression and regulation by epidermal growth factor (EGF) were characterized in immature rabbit granulosa cells. Cx43 mRNA was expressed in the granulosa cells of primary follicles, but was undetectable in primordial follicles. Abundant expression of Cx43 mRNA was maintained in the granulosa cells of growing follicles through maturity. Granulosa cells were isolated from early preantral follicles and maintained in monolayer cultures for 72 hr. After the first 24 hr of culture, they were maintained for 48 hr in serum-free medium supplemented with 0, 1, 5, or 10 ng/ml of mouse EGF. Granulosa cell proteins were isolated, solubilized, and evaluated for Cx43 by Western blot analysis using antibodies to rat Cx43. Relative amounts of Cx43 protein (both phosphorylated and nonphosphorylated) were increased (P < 0.05) by EGF in a dose-dependent manner. Northern blot analysis of RNA from cultured granulosa cells demonstrated increased amounts of Cx43 mRNA in the EGF treated cultures (10 ng EGF/ml) relative to controls (P < 0.03). In summary, Cx43 gap junctions are synthesized in granulosa cells following the onset of folliculogenesis in vivo and their expression is enhanced by EGF in vitro.  相似文献   

8.
The α2-adrenoceptor inducer dexmedetomidine protects against acute lung injury (ALI), but the mechanism of this effect is largely unknown. The present study investigated the effect of dexmedetomidine on apoptosis induced by lipopolysaccharide (LPS) and the relationship between this effect and gap junction intercellular communication in human lung fibroblast cell line. Flow cytometry was used to detect apoptosis induced by LPS. Parachute dye coupling assay was used to measure gap junction function, and western blot analysis was used to determine the expression levels of connexin43 (Cx43). The results revealed that exposure of human lung fibroblast cell line to LPS for 24 h increased the apoptosis, and pretreatment of dexmedetomidine and 18α-GA significantly reduced LPS-induced apoptosis. Dexmedetomidine exposure for 1 h inhibited gap junction function mainly via a decrease in Cx43 protein levels in human lung fibroblast cell line. These results demonstrated that the inhibition of gap junction intercellular communication by dexmedetomidine affected the LPS-induced apoptosis through inhibition of gap junction function by reducing Cx43 protein levels. The present study provides evidence of a novel mechanism underlying the effects of analgesics in counteracting ALI.  相似文献   

9.
10.
Alveolar type II epithelial cells undergo phenotypic changes and establish gap junction intercellular communication as they reach confluence in primary culture. The pattern of gap junction protein (connexin) expression changes in parallel. Although connexin (Cx)43 mRNA and protein increase significantly by culture day 2, Cx26 and Cx32 expression decline. Along with increasing Cx43 expression, the cells assemble fibronectin derived both from serum in the culture medium and from de novo synthesis into the extracellular matrix (ECM). The present studies indicate that this ECM regulates Cx43 expression. Culture of type II cells in DMEM containing 8-10% fetal bovine serum (FBS) promotes assembly of a fibronectin-rich ECM that stimulates expression of both Cx43 mRNA and protein. Although Cx43 protein expression increased in response to FBS in a dose-dependent manner, fibronectin also elevated Cx43 protein in the absence of FBS. Anti-fibronectin antibody significantly reduced the serum-dependent increase in Cx43 expression. These results support the premise that fibronectin in the ECM contributes to the regulation of Cx43 expression by alveolar epithelial cells in primary culture.  相似文献   

11.
In the human heart, ventricular myocytes express connexin 43 (Cx43) and traces of Cx45. In congestive heart failure, Cx43 levels decrease, Cx45 levels increase and gap junction size decreases. To determine whether alterations of connexin coexpression ratio influence gap junction size, we engineered a rat liver epithelial cell line that endogenously expresses Cx43 to coexpress inducible levels of Cx45 under stimulation of the insect hormone, ponasterone A. In cells induced to express Cx45, gap junction sizes are significantly reduced (by 15% to 20%; p < 0.001), an effect that occurs despite increased levels of junctional connexons made from both connexins. In contrast, coexpression of Cx40 with Cx43 does not lead to any change in gap junction size. These results are consistent with the idea that increased Cx45 expression in the failing ventricle contributes to decreased gap junction size.  相似文献   

12.
13.
Discordant action potential alternans creates large gradients of refractoriness, which are thought to be the mechanisms linking T-wave alternans to cardiac arrhythmogenesis. Since intercellular coupling acts to maintain synchronization of repolarization between cells, we hypothesized that intercellular uncoupling, such as during ischemia, would initiate discordant alternans and that restoration of intercellular coupling by the gap junction opener rotigaptide may provide a novel approach for suppressing arrhythmogenic discordant alternans. Optical mapping was used to record action potentials from ventricular epicardium of Langendorff-perfused guinea pig hearts. Threshold for spatially synchronized (i.e., concordant) alternans and discordant alternans was determined by increasing heart rate step-wise during 1) baseline, 2) treatment with rotigaptide or vehicle, and 3) global low-flow ischemia + rotigaptide or vehicle. Ischemia reduced the threshold for concordant alternans in both groups from 362 +/- 8 to 305 +/- 9 beats/min (P < 0.01) and for discordant alternans from 423 +/- 6 to 381 +/- 7 beats/min (P < 0.01). Interestingly, rotigaptide also increased the threshold for discordant alternans relative to vehicle both before (438 +/- 7 vs. 407 +/- 8 beats/min, P < 0.05) and during (394 +/- 7 vs. 364 +/- 9 beats/min, P < 0.05) ischemia. Rotigaptide increased conduction velocity and prevented conduction slowing and dispersion of repolarization during ischemia. Confocal immunofluorescence revealed that total connexin43 quantity and cellular distribution were unchanged before or after low-flow ischemia, with and without rotigaptide. However, connexin43 dephosphorylation in response to low-flow ischemia was significantly prevented by rotigaptide (15.9 +/- 7.0 vs. 0.3 +/- 6.4%, P < 0.001). These data suggest that intercellular uncoupling plays an important role in the transition from concordant to discordant alternans. By suppressing discordant alternans, repolarization gradients, and connexinx43 dephosphorylation, rotigaptide may protect against ischemia-induced arrhythmias. Drugs that selectively open gap junctions offer a novel strategy for antiarrhythmic therapy.  相似文献   

14.
Downregulation of the muscle-specific microRNA-1 (miR-1) mediates the induction of pathologic cardiac hypertrophy. Dysfunction of the gap junction protein connexin 43 (Cx43), an established miR-1 target, during cardiac hypertrophy leads to ventricular tachyarrhythmias (VT). However, it is still unknown whether miR-1 and Cx43 are interconnected in the pro-arrhythmic context of hypertrophy. Thus, in this study we investigated whether a reduction in the extent of cardiac hypertrophy could limit the pathological electrical remodeling of Cx43 and the onset of VT by modulating miR-1 levels. Wistar male rats underwent mechanical constriction of the ascending aorta to induce pathologic left ventricular hypertrophy (LVH) and afterwards were randomly assigned to receive 10mg/kg valsartan, VAL (LVH+VAL) delivered in the drinking water or placebo (LVH) for 12 weeks. Sham surgery was performed for control groups. Programmed ventricular stimulation reproducibly induced VT in LVH compared to LVH+VAL group. When compared to sham controls, rats from LVH group showed a significant decrease of miR-1 and an increase of Cx43 expression and its ERK1/2-dependent phosphorylation, which displaces Cx43 from the gap junction. Interestingly, VAL administration to rats with aortic banding significantly reduced cardiac hypertrophy and prevented miR-1 down-regulation and Cx43 up-regulation and phosphorylation. Gain- and loss-of-function experiments in neonatal cardiomyocytes (NCMs) in vitro confirmed that Cx43 is a direct target of miR-1. Accordingly, in vitro angiotensin II stimulation reduced miR-1 levels and increased Cx43 expression and phosphorylation compared to un-stimulated NCMs. Finally, in vivo miR-1 cardiac overexpression by an adenoviral vector intra-myocardial injection reduced Cx43 expression and phosphorylation in mice with isoproterenol-induced LVH. In conclusion, miR-1 regulates Cx43 expression and activity in hypertrophic cardiomyocytes in vitro and in vivo. Treatment of pressure overload-induced myocyte hypertrophy reduces the risk of life-threatening VT by normalizing miR-1 expression levels with the consequent stabilization of Cx43 expression and activity within the gap junction.  相似文献   

15.
16.
Connexin 43 (Cx43) and gap junctional coupling appear to play a critical role in early follicular development because absence of Cx43 disrupts progression of follicles beyond primary stages in transgenic mouse ovaries. Two experimental culture systems were used to determine whether epidermal growth factor (EGF) stimulates expression of Cx43 in early porcine follicular development. Ovarian explants were collected from 32- to 40-day-old gilts and cultured for 6 days on membrane inserts in Waymouth MB 752/1 medium supplemented with 0, 50, or 500 ng/ml mouse EGF. Western blot analysis demonstrated significant increases (P < 0.05) in relative amounts of Cx43 protein (both phosphorylated and nonphosphorylated) with 50 and 500 ng/ml of EGF as compared with control cultures. Preantral follicles were enzymatically isolated from 70- to 86-day-old gilts and cultured for 8 days in collagen matrices. Medium and EGF treatments were the same as previously described. Western blot analysis demonstrated a significant increase (P < 0.05) in relative amounts of Cx43 protein with 50 and 500 ng/ml of EGF as compared with control cultures. EGF increased expression of Cx43 protein in secondary preantral follicles in a dose-dependent manner, which suggests that EGF or similar growth factor molecules may modulate early folliculogenesis by stimulating expression of Cx43 gap junctions.  相似文献   

17.
Myocardial cells respond to changes in the mechanical forces imposed on them with changes in myocardial tension in the short term and with structural remodeling in the long term. Since these responses involve intercellular communication, we have investigated regulation of the gap junction proteins, connexin 43 (Cx43), connexin 40 (Cx40) and connexin 37 (Cx37), by cyclical mechanical stretch. Results were compared with parallel experiments on c-fos and GAPDH. Twenty percent stretch of cultured rat cardiomyocytes caused a 3-fold increase in Cx43 mRNA levels by 2 h. c-fos mRNA levels increased after 30 min of stretch, whereas Cx40, Cx37, and GADPH mRNA did not change. Protein levels of Cx43 increased by 4 h and remained elevated for 16 h. New protein synthesis was not a requirement for the stretch-induced rise in Cx43 expression, since mRNA levels were unaffected by treatment with cycloheximide. In addition, mechanical stretch induced alkalization of cardiomyocytes that was antagonized by inhibiting Na-H exchanger (NHE). Gap junction potential (Gj) was concomitantly elevated. Chemical closure of Cx channels by insulin was followed by inhibition of NHE. In conclusion, cyclical mechanical stretch caused increased expression of the gap junction protein Cx43 in cardiomyocytes and also the Gj. The augmentation of Cx43 mRNA expression and its functional status were associated with activation of NHE.  相似文献   

18.
Gap junctions contain membrane channels that mediate the cell-to-cell movement of ions, metabolites and cell signaling molecules. As gap junctions are comprised of a hexameric array of connexin polypeptides, the expression of a mutant connexin polypeptide may exert a dominant negative effect on gap junctional communication. To examine this possibility, we constructed a connexin 43 (Cx43)/beta-galactosidase (beta-gal) expression vector in which the bacterial beta-gal protein is fused in frame to the carboxy terminus of Cx43. This vector was transfected into NIH3T3 cells, a cell line which is well coupled via gap junctions and expresses high levels of Cx43. Transfectant clones were shown to express the fusion protein by northern and western analysis. X-Gal staining further revealed that all of the fusion protein containing cells also expressed beta-gal enzymatic activity. Double immunostaining with a beta-gal and Cx43 antibody demonstrated that the fusion protein is immunolocalized to the perinuclear region of the cytoplasm and also as punctate spots at regions of cell-cell contact. This pattern is similar to that of Cx43 in the parental 3T3 cells, except that in the fusion protein expressing cells, Cx43 expression was reduced at regions of cell-cell contact. Examination of gap junctional communication (GJC) with dye injection studies further showed that dye coupling was inhibited in the fusion protein expressing cells, with the largest reduction in coupling found in a clone exhibiting little Cx43 localization at regions of cell-cell contact. When the fusion protein expression vector was transfected into the communication poor C6 cell line, abundant fusion protein expression was observed, but unlike the transfected NIH3T3 cells, no fusion protein was detected at the cell surface. Nevertheless, dye coupling was inhibited in these C6 cells. Based on these observations, we propose that the fusion protein may inhibit GJC by sequestering the Cx43 protein intracellularly. Overall, these results demonstrate that the Cx43/beta-gal fusion protein can exert a dominant negative effect on GJC in two different cell types, and suggests that it may serve as a useful approach for probing the biological function of gap junctions.  相似文献   

19.
The gap junction-independent tumor-suppressing effect of connexin 43   总被引:6,自引:0,他引:6  
The gap junction gene connexin 43 (Cx43) showed tumor-suppressing effects on various tumor cell lines. We have previously demonstrated that Cx43 inhibited expression of S phase kinase-associated protein 2 (Skp2), the human F-box protein that regulates the ubiquitination of p27. Cx43 did not alter the mRNA level of SKP2, but it promoted the degradation of the Skp2 proteins (Zhang, Y. W., Nakayama, K., Nakayama K. I., and Morita, I. (2003) Cancer Res. 63, 1623-1630). In this study, we showed that the specific gap junction inhibitor 18 beta-glycyrrhetinic acid did not influence the inhibitory effect of Cx43 on Skp2 expression. Further, the deletion mutation analyses demonstrated that the C-terminal domain of Cx43 that did not form gap junctions was sufficient to inhibit expression of Skp2, whereas the N-terminal domain that formed the gap junctions did not show such an effect. Like the full-length Cx43, the C-terminal domain also increased the protein instability of Skp2, whereas the N terminus did not. Moreover, the C-terminal domain was as effective as the full-length Cx43 in inhibiting cell proliferation; however, the N-terminal domain did not show any inhibitory effect on cell proliferation. Therefore, these data revealed a gap junction-independent pathway for Cx43 to inhibit tumor growth by suppressing the Skp2 expression.  相似文献   

20.
Previous data showed that dipyridamole enhanced gap junction coupling in vascular endothelial and smooth muscle cell lines by a cAMP-dependent mechanism. The present study investigates the level at which dipyridamole affects gap junction coupling. In the GM-7373 endothelial cell line, scrape loading/dye transfer experiments revealed a rapid increase in gap junction coupling induced during the first 6 h of dipyridamole treatment, followed by a slow increase induced by further incubation. Immunostaining analyses showed that the rapid enhancement of gap junction coupling correlated with an increased amount of Cx43 gap junction plaques and a reduced amount of Cx43 containing vesicles, while the amount of Cx43 mRNA or protein was not changed during this period, as found by semiquantitative RT-PCR and Western blot. Additionally, brefeldin A did not block this short-term-induced enhancement of gap junction coupling. Along with the dipyridamole-induced long-term enhancement of gap junction coupling, the amount of Cx43 mRNA and protein additionally to the amount of Cx43 gap junction plaques were increased. Furthermore, the anti-Cx43 antibody detected only two bands at 42 kDa and 44 kDa in control cells and cells treated with dipyridamole for 6 h, while long-term dipyridamole-treated cells showed a third band at 46 kDa. We propose that a dipyridamole-induced cAMP synthesis increased gap junction coupling in the GM-7373 endothelial cell line at different levels: the short-term effect is related to already oligomerised connexins beyond the Golgi apparatus and the long-term effect involves new expression and synthesis as well as posttranslational modification of Cx43.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号