首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A novel photosynthetic bacterium, Rhodopseudomonas palustris P4, was isolated from an anaerobic wastewater sludge digester by virtue of its ability to utilize CO with the production of H2. P4 grew under light with CO as a sole carbon source with the doubling time of 2 h and produced H2 at 20.7 mmol –1 cell h.  相似文献   

2.
A new hydrogen producing bacterium, Rhodopseudomonas palustris P4, originally isolated under an anaerobic/phototrophic condition, grew well under aerobic/chemoheterotrophic or anaerobic/chemoheterotrophic conditions and showed CO-dependent, H2 production activity when transferred to anaerobic conditions. Cell growth was best under an aerobic/chemoheterotrophic condition as the doubling time of 1 h, while the H2 production activity was highest in the cells grown under an aerobic/chemoheterotrophic condition at 20 mmol g–1 cell–1 h–1.  相似文献   

3.
Packed-bed bioreactors containing activated carbon as support carrier were used to produce H2 anaerobically from a sucrose-limiting medium while acclimated sewage sludge was used as the H2 producer. The effects of bed porosity (b) and substrate loading rate on H2 fermentation were examined using packed beds with b of 70–90% being operated at hydraulic retention times (HRT) of 0.5–4 h. Higher b and lower HRT favored H2 production. With 20 g COD l–1 of sucrose in the feed, the optimal H2 production rate (7.4 l h–1 l–1) was obtained when the bed with b=90% was operated at HRT = 0.5 h. Flocculation of cells enhanced the retention of sludge for stable operations of the bioreactor at low HRTs. The gas products resulting from fermentative H2 production consisted of 30–40% H2 and 60–70% CO2. Butyric acid was the primary soluble product, followed by propionic acid and valeric acid.  相似文献   

4.
Four from 18 strains of Erwinia herbicola tested had nitrogenase activity and grew with N2 as sole source of nitrogen under strict anaerobic conditions with a doubling time of 20–24 h. Nitrogenase activity started only 96–120 h after transfer to a special medium maintained under anaerobic conditions. A ten fold increase in protein per culture found after the maximum nitrogenase activity of 80–130 nmol C2H4. mg protein-1·min-1 was accompanied by a fall in pH of the medium (20 mM phosphate buffer and in 125 mM Tris-buffer) from pH 7.2 to 5.4 or less, but only to 6.8 in 100 mM phosphate buffer. In all cases we found a sharp curtailing of nitrogenase activity 48 h after the maximum. The bacteria utilized only 35–50% of the nitrogen fixed for growth. Erwinia herbicola strains differed from two strains of Enterobacter agglomerans in being unable to fix nitrogen on agar surfaces exposed to air. Specific nitrogenase activity in Erwinia herbicola is compared with data reported for other Enterobacteriaceae and is found to be higher than that reported for Klebsiella pneumoniae, Enterobacter cloacae or Citrobacter freundii.  相似文献   

5.
H2 oxidation,O2 uptake and CO2 fixation in hydrogen treated soils   总被引:2,自引:0,他引:2  
Dong  Z.  Layzell  D.B. 《Plant and Soil》2001,229(1):1-12
In many legume nodules, the H2 produced as a byproduct of N2 fixation diffuses out of the nodule and is consumed by the soil. To study the fate of this H2 in soil, a H2 treatment system was developed that provided a 300 cm3 sample of a soil:silica sand (2:1) mixture with a H2 exposure rate (147 nmol H2 cm–3hr–1) similar to that calculated exist in soils located within 1–4 cm of nodules (30–254 nmol H2 cm–3hr–1). After 3 weeks of H2 pretreatment, the treated soils had a Km and Vmax for H2 uptake (1028 ppm and 836 nmol cm–3 hr–1, respectively) much greater than that of control, air-treated soil (40.2 ppm and 4.35 nmol cm–3 hr–1, respectively). In the H2 treated soils, O2, CO2 and H2 exchange rates were measured simultaneously in the presence of various pH2. With increasing pH2, a 5-fold increase was observed in O2 uptake, and CO2 evolution declined such that net CO2 fixation was observed in treatments of 680 ppm H2 or more. At the H2 exposure rate used to pretreat the soil, 60% of the electrons from H2 were passed to O2, and 40% were used to support CO2 fixation. The effect of H2 on the energy and C metabolism of soil may account for the well-known effect of legumes in promoting soil C deposition.  相似文献   

6.
Reverse micelles serve as a novel tool to entrap enzymes and microbial whole cells within aqueous pockets and can be of great use in enhancing the efficiency and sustainability of the biological system. Photosynthetic bacterium Rhodopseudomonas sphaeroides entrapped inside the aqueous pool of reverse micelles prepared from benzene-sodium lauryl sulphate exhibited 25-fold enhancement of H2 photoproduction rate (1.67 ml H2 [mg protein]1 h–1) compared to cells suspended in normal aqueous medium. Hydrogen photoproduction by the bacterium was catalysed by the nitrogenase enzyme system which was supported at a low light intensity of 12 Em–2 sec–1 photon flux energy at a wavelength of 520 nm. The optimum temperature for the process was 40 °C.  相似文献   

7.
H2 production from glucose by Ruminococcus albus was almost completely inhibited by 10–5 M molybdate only when sulfide was present in the growth medium. Inhibition was accompanied by a significant increase in the production of formate. Extracts of molybdate-sulfide-grown cells did not contain hydrogenase activity. Active enzyme in extracts of uninhibited cells was not inhibited by the molybdate-sulfide-containing growth medium. The results indicate that a complex formed from molybdate and sulfide prevents the formation of active hydrogenase and electrons otherwise used to form H2 are used to reduce CO2 to formate. Growth was significantly inhibited when molybdate was increased to 10–4 M. Reversal of growth inhibition but not inhibition of H2 production occurred between 10–4 and 10–3 M molybdate. H2 production by R. bromei but not by R. flavefaciens, Butyrivibrio fibrisolvens, Veillonella alcalescens, Klebsiella pneumoniae and Escherichia coli was inhibited by molybdate and sulfide.  相似文献   

8.
Photoinduced H2 production with Mg chlorophyll-a from Spirulina as a visible light photosensitizer by use of a three component system consisting of NADPH as an electron donor, Methyl Viologen as electron relay and colloidal platinum as catalyst was investigated. By using this system, the H2 production rate was estimated to be 0.70 ± 0.03 × 10–6 mol h–1.  相似文献   

9.
An anaerobic, motile, gram-negative, rod-shaped bacterium is described which degrades benzoate in coculture with an H2-utilizing organism and in the absence of exogenous electron acceptors such as O2, SO 4 = or NO 3 - . The bacterium was isolated from a municipal primary, anaerobic sewage digestor using anaerobic roll-tube medium with benzoate as the main energy source and in syntrophic association with an H2-utilizing sulfate-reducing Desulfovibrio sp. which cannot utilize benzoate or fatty acids apart from formate as energy source. The benzoate utilizer produced acetate (3 mol/mol of substrate degraded) and presumably CO2 and H2, or formate from benzoate. In media without sulfate and with Methanospirillum hungatei (a methanogen that utilizes only H2–CO2 or formate as the energy source) added, 3 mol of acetate and 0.7 mol of methane were produced per mol of benzoate and CO2 was probably formed. Low numbers of Desulfovibrio sp. were present in the methanogenic coculture and a pure coculture of the benzoate utilizer with M. hungatei was not obtained. The generation times for growth of the sulfate-reducing and methanogenic cocultures were 132 and 166h, respectively. The benzoate utilizer did not utilize other common aromatic compounds, C 3 - –C7 monocarboxylic acids, or C4-C6 dicarboxylic acids for growth, nor did it appear to use SO 4 = , NO 3 - or fumarate as alternative electron acceptors. Addition of H2 inhibited growth and benzoate degradation.  相似文献   

10.
Cellulose in wastewater was converted into H2 by a mixed culture in batch experiments at 55°C with various wastewaters pH (5.5–8.5) and cellulose concentrations (10–40 g l–1). At the optimal pH of 6.5, the maximum H2 yield was 102 ml g–1 cellulose and the maximum production rate was 287 ml d–1 for each gram of volatile suspended solids (VSS). Analysis of 16S rDNA sequences showed that the cellulose-degrading mixed culture was composed of microbes closely affiliated to genus Thermoanaerobacterium.  相似文献   

11.
Methanobacterium thermoautotrophicum was grown on a defined mineral salts medium under strictly anaerobic conditions with H2 and CO2 as the sole energy and carbon sources, respectively. The cultivation medium was optimized with respect to non-organic components including Se(IV), W(VI), N, Ni(II), Fe(II), Co(II) and Mo(VI). Sulphide concentration in the medium was maintained constant using an on-line regulatory system by the addition of 0.5 M Na2S. A maximum supply rate of 0.6 vvm of a mixture of 80% H2 and 20% CO2 was achieved for the gaseous substrates. Under these conditions a specific growth rate of 0.30 h–1 and a cell concentration of 4.8 g cell dry weight (DW) l–1, representing a 140% increase over previously published results, were obtained. The growth yield of 2.3 g DW mol–1 CH4 was similar to published values. However, the overall specific productivity was enhanced from 11 mmol CH4 g–1 DW h–1 to 24 mmol CH4 g–1 DW h–1, corresponding to an improvement of 120%. Correspondence to: U. von Stockar  相似文献   

12.
Summary Non-symbiotic heterotrophic N2 fixation in coniferous bark litter was investigated with the acetylene reduction assay under aerobic and anaerobic conditions. The litter studied was composed essentially of bark, of pH 5 and a C/N ratio of 101; the ratio of available C to available N, which governs N2 fixation, was considerably higher. The rate of N2 fixation was estimated as 2.5–4.4 g N. g–1 dry wt. day–1. Nitrogenase activity was still evident after seven months of incubation under aerobic conditions. The N2-ase activity was O2 dependent: under anaerobic conditions no N2-ase activity was found unless a fermentable C source was added. The importance of N2 fixation in N-poor litter for the maintenance of soil fertility is emphasized.  相似文献   

13.
The mineralization of organic carbon to CH4 and CO2 inSphagnum-derived peat from Big Run Bog, West Virginia, was measured at 4 times in the year (February, May, September, and November) using anaerobic, peat-slurry incubations. Rates of both CH4 production and CO2 production changed seasonally in surface peat (0–25 cm depth), but were the same on each collection date in deep peat (30–45 cm depth). Methane production in surface peat ranged from 0.2 to 18.8 mol mol(C)–1 hr–1 (or 0.07 to 10.4 g(CH4) g–1 hr–1) between the February and September collections, respectively, and was approximately 1 mol mol(C)–1 hr–1 in deep peat. Carbon dioxide production in surface peat ranged from 3.2 to 20 mol mol(C)–1 hr–1 (or 4.8 to 30.3 g(CO2) g–1 hr–1) between the February and September collections, respectively, and was about 4 mol mol(C)–1 hr–1 in deep peat. In surface peat, temperature the master variable controlling the seasonal pattern in CO2 production, but the rate of CH4 production still had the lowest values in the February collection even when the peat was incubated at 19°C. The addition of glucose, acetate, and H2 to the peat-slurry did not stimulate CH4 production in surface peat, indicating that CH4 production in the winter was limited by factors other than glucose degradation products. The low rate of carbon mineralization in deep peat was due, in part, to poor chemical quality of the peat, because adding glucose and hydrogen directly stimulated CH4 production, and CO2 production to a lesser extent. Acetate was utilized in the peat by methanogens, but became a toxin at low pH values. The addition of SO4 2– to the peat-slurry inhibited CH4 production in surface peat, as expected, but surprisingly increased carbon mineralization through CH4 production in deep peat. Carbon mineralization under anaerobic conditions is of sufficient magnitude to have a major influence on peat accumulation and helps to explain the thin (< 2 m deep), old (> 13,000 yr) peat deposit found in Big Run Bog.  相似文献   

14.
The growth of the anaerobic acetogenic bacterium Acetobacterium woodii DSM 1030 was investigated in fructose-limited chemostat cultures. A defined medium was developed which contained fructose, mineral salts, cysteine · HCl and Ca pantothenate (1 mg · 1–1) supplied in a vitamin supplement. Growth at high dilution rates was dependent on the presence of CO2 in the gas phase. The max was found to be 0.16 h–1 and the fructose maintenance requirement was 0.1 to 0.13 mmol fructose · (g dry wt)–1 · h–1. A growth yield of 61 g dry wt · (mol fructose)–1, corrected for the cell maintenance requirement and for incorporation of fructose carbon into cell biomass, was determined from the fructose consumption. A corresponding growth yield of 69 g dry wt · (mol fructose)–1 was calculated from the acetate production assuming that fructose fermentation was homoacetogenic. A YATP of 12.2 to 13.8 g dry wt · (mol ATP)–1 was calculated from these growth yields using a value of 5 mol ATP · (mol fructose)–1 as an estimate of the amount of ATP synthesised from fructose fermentation. The addition of yeast extract (0.5 g · 1–1) to the medium did not influence the max or cell yield. After prolonged growth under fructose-limited conditions the requirement of the culture for CO2 in the gas phase was reduced.Abbreviations YE yeast extract - IC inorganic carbon - D fermenter dilution rate : h–1 - MX maintenance requirement for X: mmol X · (g dry wt)–1 · h–1 - X may be fructose (Fruct), fructose consumed in energy metabolism (Fruct [E]), acetate (Ac) - ATP CO2, NH inf4 sup+ or Pi - qX specific rate of utilisation or consumption of X: mmol X · (g dry wt)–1 · h–1 - V fermenter volume: litre - rC · Cell, fermenter cell carbon production: mmol C · h–1 - YX yield of cells on X: g dry wt · (mol X)–1 - Y infx supmax the yield corrected for cell maintenance: g dry wt · (mol X)–1 - SATP stoichiometry of ATP synthesis from fructose: mol ATP · (mol frucose)–1 - x cell concentration: g dry wt · 1–1 - specific growth rate : h–1 - max maximum specific growth rate: h–1  相似文献   

15.
J. F. Witty 《Plant and Soil》1979,52(2):151-164
Summary N2-fixation by algae on the Broadbalk continuous wheat experiment was measured over a two year period using the acetylene reduction technique. The plots studied receive spring fertilizer treatments including farmyard manure and combinations of nitrochalk and Na, P, K and Mg which have remained much the same since the experiment started in 1843.Nitrogen applied at 196 kg ha–1 in spring suppressed algal N2-fixation until late in the season but at lower levels (48 kg N ha–1) the denser plant canopy increased both surface moisture and fixation. Herbicide treatment decreased fixation on plots of moderate nutritional status early in the season but had little effect on unfertilised plots where weed cover was sparse. On plots where weed and crop cover was very dense herbicide treatment increased fixation in August.Algal N2-ase activity, assayed by C2H2 reduction, continued throughout the night at a rate which averaged 33% of the midday value. Laboratory experiments indicate that dark fixation is very temperature sensitive and this value may represent a maximum. Algal crust in the field dried to 4.5–6.8% H2O content became active 3 1/2 h after rewetting and reached a steady state after 7 h which represented only 6–22% of that at the previous maximum suggesting that many cells had been killed.In a year with average rainfall algae on plots receiving 48 kg N ha–1 were estimated to fix 25–28 kg N ha–1 and plots without fertiliser 13–19 kg N ha–1. Algal fixation appeared to make a substantial contribution to the continuing fertility of unfertilised plots.  相似文献   

16.
A bacterium utilizing 2-chloro-4,6-diamino-s-triazine (CAAT) as sole nitrogen source was isolated under a N2-free atmosphere and identified as Klebsiella pneumoniae. Concomitant to CAAT degradation the protein content increased and chloride was released into the medium. Under air and a N2-atmosphere no reduction of CAAT degradation resulted, though this strain is able to fix molecular nitrogen, but the decomposition accelerated under anaerobic conditions. The degradation rate increased continuously with increasing CAAT concentration. A continuous CAAT degradation without CAAT accumulation was possible up to a influx rate of 4.8 mol·l–1 h–1 (dilution rate = 0.007 h–1). K. pneumoniae A2 was also able to utilize deethylsimazine (CEAT) and deethylatrazine (CIAT) as nitrogen source. Both under aerobic and anaerobic conditions CEAT could be degraded faster than CIAT. The degradation sequence of mixed s-triazines was cyanuric acid < CAAT < CEAT < CIAT, which was reflected by the degradation times of single compounds. Complete degradation was assumed for all investigated s-triazine derivatives.  相似文献   

17.
Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of growing at 90°C. It was found to be able to grow in the presence of micromolar molecular oxygen (O2). Activity of NADH oxidase was detected in the cell-free extract of T. hypogea, from which an NADH oxidase was purified to homogeneity. The purified enzyme was a homodimeric flavoprotein with a subunit of 50 kDa, revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It catalyzed the reduction of O2 to hydrogen peroxide (H2O2), specifically using NADH as electron donor. Its catalytic properties showed that the NADH oxidase had an apparent Vmax value of 37 mol NADH oxidized min–1 mg–1 protein. Apparent Km values for NADH and O2 were determined to be 7.5 M and 85 M, respectively. The enzyme exhibited a pH optimum of 7.0 and temperature optimum above 85°C. The NADH-dependent peroxidase activity was also present in the cell-free extract, which could reduce H2O2 produced by the NADH oxidase to H2O. It seems possible that O2 can be reduced to H2O by the oxidase and peroxidase, but further investigation is required to conclude firmly if the purified NADH oxidase is part of an enzyme system that protects anaerobic T. hypogea from accidental exposure to O2.  相似文献   

18.
A reactor-scale hydrogen (H2) productionvia the water-gas shift reaction of carbon monoxide (CO) and water was studied using the purple nonsulfur bacterium,Rhodopseudomonas palustris P4. The experiment was conducted in a two-step process: an aerobic/chemoheterotrophic cell growth step and a subsequent anaerobic H2 production step. Important parameters investigated included the agitation speed, inlet CO concentration and gas retention time. P4 showed a stable H2 production capability with a maximum activity of 41 mmol H2 g cell−1h−1 during the continuous reactor operation of 400 h. The maximal volumetric H2 production rate was estimated to be 41 mmol H2 L1h−1, which was about nine-fold and fifteen-fold higher than the rates reported for the photosynthetic bacteriaRhodospirillum rubrum andRubrivivax gelatinosus, respectively. This is mainly attributed to the ability of P4 to grow to a high cell density with a high specific H2 production activity. This study indicates that P4 has an outstanding potential for a continuous H2 productionvia the water-gas shift reaction once a proper bioreactor system that provides a high rate of gas-liquid mass transfer is developed.  相似文献   

19.
Summary An anaerobic continuous culture device was constructed that permits accurate delivery of media containing insoluble substrates, even at very low volumetric flow rates (<3 ml/h). The system consisted of: (1) a reservoir in which the medium slurry was mixed well by the combined use of stirring and diffusive gas sparging to suspend a cellulose substrate of small (< 45 m) particle size; (2) a delivery system that segmented the slurry into small (~ 20l) discrete liquid segments separated by intervening bubbles of CO2 gas; and (3) a stirred, temperature-controlled 2-l fermentation vessel. The device was used to examine substrate consumption, product formation, and cell yield by the anaerobic ruminal cellulolytic bacterium Ruminococcus flavefaciens FD-1 under steady-state, cellulose-limited conditions at six different dilution rates (D) ranging from 0.017 to 0.101 h–1 (pH 6.4–6.6). Cellulose consumption decreased from 4.00 g/1 (at D=0.017 h–1) to 2.56 g/1 (at D=0.101 h–1). Increases in D resulted in a progressive shift toward production of more acetate and formate, and less succinate. Redox balance calculations revealed a deficiency in reduced products, probably due to the production of H2, which was not directly measured. Reducing sugar values remained low (0.05–0.10 g/1, as glucose) at all D values. The cellulose fermentation was characterized by a low maintenance coefficient (0.07 g cellulose/g cells per hour) and a high true growth yield (YG = 0.24 g cells/g cellulose, corrected for maintenance). Comparison of the data with literature values suggests that the fermentation of cellulose by this organism gives cell yields at least as great as the yields obtained from the fermentation of soluble sugars.Mention of specific products is for the benefit of the reader and does not constitute an endorsement of said products over other products not mentionedOffprint requests to: P. J. Weimer  相似文献   

20.
The chickpea (Cicer arietinum L.) cv. HC-1 was raised in earthen pots filled with dune sand in screenhouse. At vegetative stage, i.e. 40 – 45 d after sowing, 10, 20 and 40 mM NO3 was applied through rooting medium. After 24 h of NO3 treatments an ethylene biosynthesis inhibitor, aminoethoxyvinylglycine (AVG) in concentration 5 M was given. A conspicuous increase in (5 – 9 fold) ethylene evolution in nodules was noticed after NO3 treatments. This rise was parallel to the increase in 1-aminocyclopropane-1-carboxylic acid (ACC) content and ACC oxidase activity. On the contrary, a sharp decline in ACC content, ACC oxidase activity and ethylene evolution was observed when AVG was given. A decrease of in acetylene reduction assay (ARA) with NO3 treatments was associated with decline in cytosolic pH (from 6.12 to 5.45), leghemoglobin (Lb) content, accumulation of H2O2 and with the loss of membrane integrity. The lipid peroxidation, followed as MDA production and electrolyte leakage increased with NO3 treatments, however, the level of MDA was brought down in AVG-treated nodules. Results confirm that ethylene might be involved in mechanism by which the functioning of nodules is adversely affected by NO3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号