首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and localization of chick acid α-glucosidase has been studied in chick erythrocyte-human fibroblast heterokaryons. Monospecific antibodies raised against purified chick liver acid α-glucosidase were used. It was found that the acid α-glucosidase in the heterokaryons is of chick origin, and is localized in the same lysosomes as the human lysosomal enzymes. It is concluded that chick erythrocyte-human fibroblast heterokaryons provide a useful model system for the study of lysosomal enzyme synthesis and routing.  相似文献   

2.
Pattern of chick gene activation in chick erythrocyte heterokaryons   总被引:1,自引:1,他引:0       下载免费PDF全文
The reactivation of chicken erythrocyte nuclei in chick-mammalian heterokaryons resulted in the activation of chick globin gene expression. However, the level of chick globin synthesis was dependent on the mammalian parental cell type. The level of globin synthesis was high in chick erythrocyte-rat L6 myoblast heterokaryons but was 10-fold lower in chick erythrocyte-mouse A9 cell heterokaryons. Heterokaryons between chick erythrocytes and a hybrid cell line between L6 and A9 expressed chick globin at a level similar to that of A9 heterokaryons. Erythrocyte nuclei reactivated in murine NA neuroblastoma, 3T3, BHK and NRK cells, or in chicken fibroblasts expressed less than 5% chick globin compared with the chick erythrocyte-L6 myoblast heterokaryons. The amount of globin expressed in heterokaryons correlated with globin mRNA levels. Hemin increased beta globin synthesis two- to threefold in chick erythrocyte-NA neuroblastoma heterokaryons; however, total globin synthesis was still less than 10% that of L6 heterokaryons. Distinct from the variability in globin expression, chick erythrocyte heterokaryons synthesized chick constitutive polypeptides in similar amounts independent of the mammalian parental cell type. Approximately 40 constitutive chick polypeptides were detected in heterokaryons after immunopurification and two-dimensional gel electrophoresis. The pattern of synthesis of these polypeptides was similar in heterokaryons formed by fusing chicken erythrocytes with rat L6 myoblasts, hamster BHK cells, or mouse neuroblastoma cells. Three polypeptides synthesized by non-erythroid chicken cells but less so by embryonic erythrocytes were conspicuous in heterokaryons. Two abundant erythrocyte polypeptides were insignificant in non-erythroid chicken cells and in heterokaryons.  相似文献   

3.
It is shown that infection of chick embryo fibroblasts with agents of paratrachoma and meningopneumonia Halprowiaceae (Chlamydiaceae) causes a sharp decrease of the activities of lysosomal enzymes, e.g. acidic alpha-glucosidase, beta-glucuronidase, beta-galactosidase, alpha-mannosidase, acid phosphatase, etc. The activity of cytosol enzymes (neutral alpha-glucosidase, amylo-1,6-glucosidase) does not change, however. A decrease in the activities of lysosomal enzymes in infected fibroblasts occurs some time later after inoculation and is due to a release of lysosomal enzymes from the fibroblasts into the culture medium, without loss of cell integrity. No changes in the activity of lysosomal enzymes in fibroblasts and culture medium is observed in the case of inoculation of cells with a killed agents, as well as after contact of cells with a suspension of normal chick embryo yolk sacs. The release of lysosomal enzymes from halprowiae-infected chick embryo fibroblasts probably occurs by the exocytosis.  相似文献   

4.
The generation of enzymes located in lysosomes, in cytosol or in endoplasmatic reticulum/Golgi complex is studied in heterokaryons in which chick erythrocyte nuclei are reactivated. The lysosomal enzymes, alpha-glucosidase (alpha-glu) and beta-galactosidase (beta-gal), are synthesized in heterokaryons obtained after fusion of chick erythrocytes with human fibroblasts of patients with Pompe's disease (alpha-glu-deficient) and GM1-gangliosidosis (beta-gal-deficient), respectively. The enzymes appear to be of chick origin and their activities can be detected at first around 4 days after fusion, i.e., at a time when the nucleoli in the erythrocyte nuclei have been reactivated. Maximal activities are reached around 15 days after fusion. No generation of the lysosomal enzyme beta-hexosaminidase is detected in the heterokaryons up to 23 days after fusion of chick erythrocyte with either beta-hexosaminidase A- and B-deficient fibroblasts (Sandhoff's disease) or beta-hexosaminidase A-deficient fibroblasts (Tay-Sachs disease). Similarly no expression of the cytosol enzyme glucose-6-phosphate dehydrogenase (G6PD) is fond up to 30 days after fusion, when chick erythrocytes are fused with fibroblasts from two different G6PD-deficient cell strains (residual activities of 4 and 20% respectively). Indirectly we examined N-acetyl-glucosamine-1-phosphate transferase activity, an enzyme located in the endoplasmic reticulum/Golgi region. This enzyme is needed for the phosphorylation of the lysosomal hydrolases and absence of its activity is the cause of the multiple lysosomal enzyme deficiencies in patients with I-cell disease. The retention of both, chick and human beta-galactosidase in the experiments in which I-cell fibroblasts were fused with chick erythrocytes indicates a reactivation of the gene coding for this phosphorylating enzyme. It also implies that this step in the processing of human lysosomal enzymes is not species-specific.  相似文献   

5.
Fusion of chick erythrocytes with human primary fibroblasts results in the formation of heterokaryons in which the inactive chick nuclei become reactivated. The expression of chick DNA repair functions was investigated by the analysis of the DNA repair capacity after exposure to ultraviolet (UV) irradiation of such heterokaryons obtained after fusion of chick erythrocytes with normal human or xeroderma pigmentosum (XP) cells of complementation groups A, B, C and D. Unscheduled DNA synthesis (UDS) in normal human nuclei in these heterokaryons is suppressed during the first 2–4 days after fusion. The extent and duration of this suppression is positively correlated with the number of chick nuclei in the heterokaryons. Suppression is absent in heterokaryons obtained after fusion of chicken embryonic fibroblasts with XP cells (complementation group A and C).Restoration of DNA repair synthesis is found after fusion in XP nuclei of all complementation groups studied. It occurs rapidly in XP group A nuclei, starting one day after fusion and reaching near normal human levels after 5–8 days. In nuclei of the B, C and D group increased levels of UDS are found 5 days after fusion. At 8 days after fusion the UDS level is about 50% of that found in normal human nuclei. The pattern of UDS observed in the chick nuclei parallels that of the human counterpart in the fusion. A fast complementation pattern is also observed in chick fibroblast-XP group A heterokaryons resulting within 24 h in a UDS level comparable with that in chick fibroblast-normal human heterokaryons. In heterokaryons obtained after fusion of chick fibroblasts with XP group C cells UDS remains at the level of chick cells. These data suggest that reactivation of chick erythrocyte nuclei results in expression of repair functions which are able to complement the defects in the XP complementation groups A, B, C and D.  相似文献   

6.
7.
Two temperature-sensitive (ts) mutants of mammalian cell lines (AF8 and cs4D3) that arrest in G1 at the nonpermissive temperature were fused with chick erythrocytes and the induction of DNA synthesis was studied in the resulting heterokaryons. While both AF8 and cs4D3 could induce DNA synthesis in chick nuclei at the permissive temperature, they both failed to do so when arrested in G1 at the nonpermissive temperature. When S phase AF8 cells were fused with chick erythrocytes, chick nuclei were reactivated even if the heterokaryons were incubated at the temperature nonpermissive for AF8. A third ts mutant, ts111, that is blocked in cytokinesis but continues to synthesize DNA, reactivated chick nuclei at both permissive and nonpermissive temperature. It is concluded that chick erythrocyte reactivation depends on the presence of S phase-specific factors.  相似文献   

8.
Attempts were made to reprogram chick erythrocyte nuclei to specify the synthesis of chick myosin. Chick erythrocytes were fused with rat myogenic cells with the aid of UV-inactivated Sendai virus. In the heterokaryons and hybrid myotubes which resulted from this fusion, the erythrocyte nuclei resumed RNA synthesis and formed nucleoli. Although some new chick antigens developed in those myotubes which contained fully reactivated chick erythrocyte nuclei, accumulation of chick myosin could not be detected by immunological methods. Neither small heterokaryons nor large hybrid myotubes which were actively synthesizing rat myosin reacted with antibodies directed against chick myosin. A small number of mononucleated cells, believed to be synkaryons formed by mitotic division of heterokaryons, did, however, react strongly with antibodies directed against chick myosin and showed a cross striation typical of skeletal muscle. The frequency of such cells was too low, however, to permit karyological analysis or further characterization of the antigen. Hybrids between chick myoblasts and rat myoblasts produced both chick and rat myosin thus indicating that simultaneous translation of chick and rat mRNA for myosin in a common cytoplasm was possible. In summary the evidence obtained suggested that reprogramming of chick erythrocyte nuclei, if it did occur in the present system, was a rare phenomenon.The possibility that hybrids between chick erythrocytes and rat myoblasts expressed markers typical of an erythroid phenotype was examined by immune staining with antibodies directed against chick haemoglobin. The results suggested that haemoglobin was introduced into hybrid cells by erythrocytes which failed to lyse before fusion. The intensity of this immune fluorescence decreased with increasing time after fusion. The rate at which this decrease occurred was not affected by inhibition of RNA synthesis. Thus, there was no evidence for the accumulation of haemoglobin in the hybrid cells.  相似文献   

9.
The chromatin of the dormant chick nucleus is dispersed in the heterokaryons made by Sendai virus fusion of phase II WI38 cells with chick erythrocyte nuclei. The erythrocyte nucleus resumes RNA synthesis and enters into DNA synthesis with the host nucleus. In the heterokaryons of phase III WI38 cells and chick erythrocytes, the nuclear chromatin is not dispersed and RNA synthesis occurs at a reduced rate. The differences in the physiological state of the young and senescent cells measured by [3H]uridine incorporation into nuclear RNA is reflected in the extent of reactivation of the chick erythrocyte nuclei in the cytoplasm of these cells. The reactivation of the chick nucleus in enucleated fibroblasts parallels the nucleated cells. The results of these studies are interpreted as evidence that there is a specific loss of nuclear function in the senescent cells.  相似文献   

10.
Suppression of unscheduled DNA synthesis (UDS) after exposure to ultraviolet (UV) light in the human nuclei results when diploid human fibroblasts are fused with chick erythrocytes. The suppression is positively correlated with the number of erythrocyte nuclei in the heterokaryons, with a maximal effect at 36 h after fusion. Evidence is presented that this suppression is due to lowered levels of the enzymes involved in UDS as a result of inhibition of the RNA synthesis by chick components. No suppression of UDS is detected in the human nuclei of the HeLa-chick erythrocyte heterokaryons. In HeLa cells the rate of RNA synthesis is about 10 times higher than the rate in the normal diploid fibroblasts, and the relatively small inhibitory influence of the chick components will therefore not lead to a limitation of the enzymes involved in UDS in the HeLa-chick erythrocyte heterokaryons.  相似文献   

11.
12.
A method for the isolation of reactivated chick erythrocyte nuclei from heterokaryons was developed. The heterokaryons were produced by fusing chick erythrocytes with HeLa or L cells in the presence of inactivated Sendai virus. At various time intervals after fusion nuclei were isolated directly from the monolayer by treatment with an acidic detergent solution. Chick erythrocyte nuclei were then separated from other nuclei (HeLa or L cell) by centrifugation on sucrose gradients. The purified preparation of reactivated chick erythrocyte nuclei was shown to be free from other nuclei and cytoplasmic contamination. By using L cells which had been labelled with 3H-leucine before fusion or heterokaryons labelled after fusion it was demonstrated that labelled mouse proteins migrate from the cytoplasm of the heterokaryons into the reactivating chick erythrocyte nuclei. 3H-uridine labelling of heterokaryons made by fusing UV-irradiated chick erythrocytes with L cells failed to reveal any significant migration of mouse RNA into the chick erythrocyte nuclei.  相似文献   

13.
Heterokaryons were formed by fusing differentiated chick skeletal myocytes to fibroblasts derived from skin, lung or heart cultures. The heterokaryons were analyzed for the synthesis of skeletal myosin light chains, acetylcholine receptor, total CPK activity and the ability to spontaneously fuse to form myotubes. Whereas all of the above myogenic functions were expressed in control heterokaryons formed between myocytes and myoblasts, all were extinguished in the crosses between myocytes and fibroblasts. These results confirm that the suppression of myogenic functions previously observed in cell hybrids involving fibroblastoid tumor cells also occurs in heterokaryons isolated using biochemical inhibitors between diploid fibroblasts and chick skeletal myocytes.  相似文献   

14.
The reactivation of the chick erythrocyte nucleus was studied after erythrocytes were induced to fuse with rat epithelial cells in the presence of Sendai virus. The chick nucleus swells, shows an increase in dry mass and protein content and resumes RNA synthesis. Nucleoplasmic antigens characteristic of the rat cell are found to migrate into the erythrocyte nucleus. The rate of uptake of these molecules, which are believed to be proteins, appears to be directly related to increases in nuclear size, 3H-uridine incorporation and RNA polymerase activity. The polymerase activity which increases during the first days after cell fusion is sensitive to α-amanitin but relatively resistant to actinomycin D. At later time points there is an increase in α-amanitin resistant polymerase activity which probably reflects the appearance of ribosomal RNA synthesis.When heterokaryons containing different proportions of rat: chick nuclei are compared, reactivation is found to proceed most rapidly in those containing a high rat: chick nuclear ratio. As the number of erythrocyte nuclei in heterokaryons increases, the rate of reactivation in the individual nuclei is progressively reduced suggesting that the erythrocyte nuclei compete with each other for macromolecules of specific importance for the activation process.  相似文献   

15.
Chinese hamster cell line K12 is temperature-sensitive for the initiation of DNA synthesis. K12 cells synchronized by serum deprivation were collected in early G1(G0). Heterokaryons were formed by fusing chick erythrocytes with serum-starved K12 cells through the use of UV-irradiated Sendai virus. At the permissive temperature (36.5 degrees C), erythrocyte nuclei in heterokaryons enlarged, the chromatin dispersed, and erythrocyte nuclei synthesized DNA at about the same time as the K12 nuclei. At the restrictive temperature (41 degrees C), erythrocyte nuclei enlarged, but neither erythrocyte nor K12 nuclei initiated DNA synthesis. When erythrocyte nuclei were fused with Wg-1A cells, the wild-type parent for ts K12 cells, both kinds of nuclei synthesized DNA at 36.5 degrees C and 41 degrees C. Activation of erythrocyte nuclei was inefficient in heterokaryons incubated in low-serum medium. The results indicate that serum factors and a cellular function defined by the K12 mutation are required for activation of chick erythrocyte nuclear DNA synthesis.  相似文献   

16.
17.
From fibroblasts of two cases of Pompe's disease (acid alpha-glucosidase deficiency), one of the childhood type (RH-SF-1) and one of the adult type (RH-SF-2), and normal fibroblasts, antigenically cross-reactive material and acid alpha-glucosidase were immunoprecipitated and analysed by immunoelectrotransfer blotting. The acid alpha-glucosidase and antigenically cross-reactive material (which reacts with antibody raised against normal acid alpha-glucosidase) revealed a precursor form of molecular weight 97,000 and two major components of 79,000 and 76,000. When monensin was added to the fibroblast culture, the two major components of normal acid alpha-glucosidase were decreased, whereas the large molecular weight precursor was increased. On the other hand, the 97,000 molecular weight component of cross-reactive material in the Pompe's fibroblasts (RH-SF-1 and RH-SF-2) was only slightly increased on monensin treatment. The fibroblasts were pulse-chase labelled with [2-H3] mannose and 32Pi. The cross-reactive material and acid alpha-glucosidase were precipitated with anti acid alpha-glucosidase antibody, and after sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), fluorography was performed. The radiolabel of 3H in the cross-reactive material of RH-SF-1 and -2 was weak, and 32P in the cross-reactive material of both fibroblasts was very weak when compared with those of the acid alpha-glucosidase. The radiolabel of 32P in the cross-reactive material of RH-SF-1 was extremely weak. Immunofluorescence histochemistry revealed a granular localization of acid alpha-glucosidase in the normal fibroblast cytoplasm, and a diffuse distribution of cross-reactive material in the cytoplasm of RH-SF-1 and -2. Immuno-electron microscopic examinations showed a normal acid alpha-glucosidase localization on the inner side of the lysosomal membrane and also diffusely in the lysosome; when treated with monensin, it was present on the trans part of the Golgi apparatus. Antigenically cross-reactive material, however, was found in the cytoplasm and endoplasmic reticulum. Some lysosomal localization was observed sporadically. Even after monensin treatment, it was not demonstrated on the Golgi apparatus.  相似文献   

18.
In vitro development of the hamster and chick secondary palate   总被引:1,自引:0,他引:1  
A series of experiments were undertaken to compare the in vitro behaviour of the medial edge epithelium (MEE) of hamster, in which palatal shelves normally fuse, and chick, in which they do not fuse. Homotypic pairs of hamster and chick embryo palatal processes, single palatal processes, and heterotypic palatal shelves of both animals were grown in vitro. The results indicated that contact between palatal shelves may not be crucial for MEE differentiation in mammals. The ability to acquire pre-fusion characteristics may be present in mammalian palatal tissue from their early development and may be expressed by cessation of DNA synthesis in the MEE, elevation of cAMP, and MEE cell death. Isolated chick palatal shelf cultured under identical conditions did not express these mammalian pre-fusion characteristics. When MEE of hamster and chick palatal shelves were placed in contact with one another, the intervening epithelia underwent cytolysis. This could be due to either the destruction of chick MEE by lysosomal enzymes liberated from adjacent degenerating hamster MEE cells, or by induction of cell death in chick MEE by hamster mesenchyme. Heterotypic palatal tissue combinations also suggest that release of lysosomal enzymes in the hamster MEE, which leads to its dissolution, may be the terminal event in epithelial differentiation prior to the establishment of mesenchymal continuity. It is suggested that an inverse relationship exists between DNA synthesis and cAMP levels during palatogenesis: when palate closes (as in mammals) the MEE is eliminated by increasing cAMP levels, whereas when palate remains open (as in birds) low level of cAMP preserve the integrity of MEE by supporting DNA synthesis.  相似文献   

19.
The control of gene expression during terminal myogenesis was explored in heterokaryons between differentiated and undifferentiated myogenic cells by analyzing the formation of species specific myosin light chains of chick and rat skeletal muscle. Dividing L6 rat myoblasts served as the biochemically undifferentiated parent. The differentiated parental cells were mononucleated muscle cells (myocytes) that were obtained from primary cultures of embryonic chick thigh muscle by blocking myotube formation with EGTA and later incubating the postimitotic cells in cytochalasin B. Heterokaryons were isolated by the selective rescue of fusion products between cells previously treated with lethal doses of different cell poisons. 95-99% pure populations of heterokaryons formed between undifferentiated rat myoblasts and differentiated chick myocytes were obtained. The cells were labeled with [35S]methionine, and whole cell extracts were analyzed on two-dimensional polyacrylamide gels. These heterokaryons synthesize the light chain of chick myosin and both embryonic and adult light chains of rat skeletal myosin. Control homokaryons formed by fusing undifferentiated cells to themselves did not synthesize skeletal myosin light chains. Control heterokaryons formed between undifferentiated rat myoblasts and chick fibroblasts also failed to synthesize myosin light chains. These results indicate that differentiated chick muscle cells provide some factor that induces L6 myoblasts to synthesize rat myosin light chains. This system provides a model for investigating the processes by which differentiated cell functions are induced.  相似文献   

20.
Genetic determinants of metabolic cooperation were studied by fusing chick erythrocytes to HGPRT- mammalian cells. Heterokaryons were then tested for their ability to incorporate [3H]hypoxanthine and to transfer radioactive material to HGPRT- recipient cells. Chick erythrocytes (CE) have nuclei which are inactive but contain the HGPRT gene and some cytoplasmic HGPRT enzyme activity. They are unable, however, to cooperate with HGPRT- cells. Of the two mammalian cell lines used, the human GM29 line is HGPRT- and capable of functioning as a receptor cell in cooperation experiments with HGPRT+ cells. The HGPRT- mouse A9 line on the other hand is unable to cooperate. Immediately after fusion, both types of heterokaryons incorporated [3H]hypoxanthine, indicating the presence of some chick HGPRT enzyme contributed by the erythrocyte partner at the time of fusion. While the CE-GM29 heterokaryons participated in metabolic cooperation shortly after fusion, the CE-A9 heterokaryons did not. However, four days after fusion, i.e., at a time when the erythrocyte nucleus had been reactivated, the CE-A9 heterokaryons did cooperate. This suggests that in CE-A9 heterokaryons the genes required for metabolic cooperation are expressed by the previously dormant chick erythrocyte nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号