首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Harris et al. [P.V. Harris, O.M. Mazina, E.A. Leonhardt, R.B. Case, J.B. Boyd, K.C. Burtis, Molecular cloning of Drosophila mus308, a gene involved in DNA cross-link repair with homology to prokaryotic DNA polymerase I genes, Mol. Cell. Biol., 16 (1996) 5764-5771.] reported the molecular cloning of Drosophila mus308 gene, and its nucleotide and protein sequences similar to DNA polymerase I. In the present study, we attempted to find and isolate the gene product by purifying a DNA polymerase fraction not present in mus308 flies. A new DNA polymerase with properties different from those of any known polymerase species was identified and partially purified from the wild-type fly embryos through ten column chromatographies. The enzyme was resistant to aphidicolin, but sensitive to ddTTP and NEM. Human proliferating cell nuclear antigen (PCNA) and Drosophila replication protein A (RP-A) did not affect the polymerase activity. It preferred poly(dA)/oligo(dT) as a template-primer. The molecular mass was about 230 kDa with a broad peak region of 200 to 300 kDa in HiPrep16/30 Sephacryl S-300 gel filtration. These properties a different from those of all reported Drosophila polymerase classes such as alpha, beta, gamma, delta, epsilon and zeta and closely resemble those of the gene product expected from the nucleotide sequence. The new polymerase species appears to have ATPase and 3'-5' exonuclease activities as shown by the chromatographies.  相似文献   

2.
3.
4.
ABSTRACT

We have previously found that Drosophila melanogaster only has one deoxyribonucleoside kinase, Dm-dNK, however, capable to phosphorylate all four natural deoxyribonucleosides. Dm-dNK was originally isolated from an embryonic cell line. We wanted to study the expression of Dm-dNK during development from embryonic cells to adult flies and found declining Dm-dNK activity during development and no activity in adult flies. Surprisingly, the extract from adult flies exhibited a strong inhibitory effect on deoxyribonucloside kinase activity. The dNK-inhibitor was precipitable with ammonium sulfate, and was purified to a high degree by gel-filtration as indicated by LC-MS/MS analysis. Since the inhibitor eluted from G-200 gel-filtration with a size of 10–13 kDa, we named it P12. We tested the purified fraction for specificity towards various enzymes and found that both mammalian and bacterial dNKs were inhibited, whereas there was no effect on hexokinase and pyruvate kinases and acidic phosphatase. However, when tested against cyclin B-dependent kinase, we found a strong inhibitory effect. Both with human Cdk1/CycB and S. pombe Cdc2/B-type cyclin the purified fraction from Superdex 200 that inhibited Dm-dNK, also inhibited the two protein kinases to the same degree. Furthermore, testing P12 in a DNA polymerase based assay we found that the 3′-5′-exonuclease part of the DNA polymerase (Klenow polymerase) was activated.  相似文献   

5.
6.
7.
In preparation for the isolation and biochemical characterization of putative RNA polymerase mutants, DNA-dependent RNA polymerases of Drosophila melanogaster adults were isolated and partially characterized. Approximately 70% of the female adult RNA polymerase is located in ovaries. Multiple forms of ovarian RNA polymerases I and II are separable by DEAE-Sephadex chromatography. The two forms of RNA polymerase II differ in ammonium sulfate optima. RNA polymerase IIA is more active with double-stranded DNA as template, whereas RNA polymerase IIB transcribes single-stranded DNA most efficiently. Rechromatography of RNA polymerase IIA on DEAE-Sephadex results in the loss of ability of this form to transcribed double-stranded DNA most efficiently. Ovariectomized carcasses have two forms of RNA polymerase I and one form of RNA polymerase II and each transcribes single-stranded DNA most efficiently. As judged by gel filtration chromatography, female adult extracts have forms of RNA polymerase II that differ in molecular weight and template preference.Supported by Grants GM23456 from the NIH and 11259 from the City University Research Foundation.  相似文献   

8.
9.
Poly(ADP-ribose) polymerase (PARP) may play important roles in nuclear events such as cell cycle, cell proliferation, and maintenance of chromosomal stability. However, the exact biological role played by PARP or how PARP is involved in these cellular functions is still unclear. To elucidate the biological functions of PARP in vivo, we have constructed transgenic flies that overexpress Drosophila PARP in the developing eye primordia. These flies showed mild roughening of the normally smooth ommatidial lattice and tissue polarity disruption caused by improper rotation and chirality of the ommatidia. To clarify how this phenotypical change was induced, here we analyzed transgenic flies overexpressing PARP in the developing eye, embryo, and adult in detail. PARP mRNA level and the phenotype were enhanced in flies carrying more copies of the transgene. Developing eyes from third instar larvae were analyzed by using the neural cell marker to examine the involvement of PARP in cell fate. Morphological disorder of non-neuronal accessory cells was observed in PARP transgenic flies. Interestingly, overexpression of PARP did not interfere with the cell cycle or apoptosis, but it did disrupt the organization of cytoskeletal F-actin, resulting in aberrant cell and tissue morphology. Furthermore, heat-induced PARP expression disrupted organization of cytoskeletal F-actin in embryos and tissue polarity in adult flies. Because these phenotypes closely resembled mutants or transgenic flies of the tissue polarity genes, genetic interaction of PARP with known tissue polarity genes was examined. Transgenic flies expressing either PARP or RhoA GTPase in the eye were crossed, and co-expression of PARP suppressed the effect of RhoA GTPase. Our results indicate that PARP may play a role in cytoskeletal or cytoplasmic events in developmental processes of Drosophila.  相似文献   

10.
11.
Chen X  Li Q  Fischer JA 《Genetics》2000,156(4):1787-1795
The Drosophila DNAprim gene encodes the large subunit (60 kD) of DNA primase, the part of DNA polymerase alpha that synthesizes RNA primers during DNA replication. The precise function of the 60-kD subunit is unknown. In a mutagenesis screen for suppressors of the fat facets (faf) mutant eye phenotype, we identified mutations in DNAprim. The faf gene encodes a deubiquitinating enzyme required specifically for patterning the compound eye. The DNA sequences of four DNAprim alleles were determined and these define essential protein domains. We show that while flies lacking DNAprim activity are lethal, flies with reduced DNAprim activity display morphological defects in their eyes, and unlike faf mutants, cell cycle abnormalities in larval eye discs. Mechanisms by which DNA primase levels might influence the faf-dependent cell communication pathway are discussed.  相似文献   

12.
We have phenotypically and molecularly analyzed the cutlet locus in Drosophila. Homozygous cutlet flies exhibit abnormal development of a subset of adult tissues, including the eye, wing, and ovary. We show that abnormal development of these tissues is due to a defect in normal cell growth. Surprisingly, cell growth is affected in all developing precursor tissues in cutlet mutant animals, including those that give rise to phenotypically wild-type adult structures. The cutlet gene encodes a Drosophila homologue of yeast CHL12 and has similarity to mammalian replication factor C. In addition, cutlet genetically interacts with multiple subunits of Drosophila replication factor C. Our results suggest that the cutlet gene product acts as an accessory factor for DNA replication and has different requirements for the formation of various adult structures during Drosophila development.  相似文献   

13.
14.
We measured the insertion fidelity of DNA polymerases alpha and beta and yeast DNA polymerase I at a template site that was previously observed to yield a high frequency of T----G transversions when copied by DNA polymerase beta but not by the other two polymerases. The results provide direct biochemical evidence that base substitution errors by DNA polymerase beta can result from a dislocation mechanism governed by DNA template-primer misalignment. In contrast to DNA polymerase beta, neither Drosophila DNA polymerase alpha nor yeast DNA polymerase I appear to misinsert nucleotides by a dislocation mechanism in either the genetic or kinetic fidelity assays. Dislocation errors by DNA polymerase beta are characterized primarily by a substantial reduction in the apparent Km for inserting a "correct," but ultimately errant, nucleotide compared to the apparent Km governing direct misinsertion. For synthesis by DNA polymerase beta, dislocation results in a 35-fold increase in dCMP incorporation opposite template T (T----G transversion) and a 20-35-fold increase in dTMP incorporation opposite T (T----A transversion); these results are consistent with parallel genetic fidelity measurements. DNA polymerase beta also produces base substitution errors by direct misinsertion. Here nucleotide insertion fidelity results from substantial differences in both Km and Vmax for correct versus incorrect substrates and is influenced strongly by local base sequence.  相似文献   

15.
Genetic and functional analysis of PARP, a DNA strand break-binding enzyme   总被引:1,自引:0,他引:1  
Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme activated by binding to a single- or double-strand break of DNA and is one of the death substrates for caspase-3 in apoptosis. The nuclear function of PARP is well studied and recent PARP-knockout studies indicate that PARP takes part in chromosomal stability. To analyze the effect of PARP overexpression, or loss of function, we have cloned PARP cDNA and the gene from Drosophila melanogaster and studied its function in developmental stages. Organization of exons corresponds to the functional domains of PARP. An alternatively spliced form of PARP lacking exon 5, which encodes the auto-modification domain, is found in Drosophila. Expression of the PARP gene is at high levels in embryos at 0-6h after egg laying and gradually decreased. In situ mRNA hybridization indicates localization of PARP mRNA in cells along the central nervous system at a late stage of embryogenesis. Overexpression of the gene in the developing eye primordia of D. melanogaster is an excellent experimental model to analyze the cell cycle and programmed cell death. We introduced PARP expression vector overexpresses PARP in the eye discs of Drosophila, and established the PARP transgenic flies by P element-mediated germ line transformation. These flies showed mild roughening of the normally smooth ommatidial lattice involving tissue polarity disruption characterized by missrotation and incorrect chirality of ommatidia. Possible mechanisms of involvement of PARP in the development are discussed.  相似文献   

16.
Role of oxidative stress in Drosophila aging.   总被引:2,自引:0,他引:2  
We review the role that oxidative damage plays in regulating the lifespan of the fruit fly, Drosophila melanogaster. Results from our laboratory show that the lifespan of Drosophila is inversely correlated to its metabolic rate. The consumption of oxygen by adult insects is related to the rate of damage induced by oxygen radicals, which are purported to be generated as by-products of respiration. Moreover, products of activated oxygen species such as hydrogen peroxide and lipofuscin are higher in animals kept under conditions of increased metabolic rate. In order to understand the in vivo relationship between oxidative damage and the production of the superoxide radical, we generated transgenic strains of Drosophila melanogaster that synthesize excess levels of enzymatically active superoxide dismutase. This was accomplished by P-element transformation of Drosophila melanogaster with the bovine cDNA for CuZn superoxide dismutase, an enzyme that catalyzes the dismutation of the superoxide radical to hydrogen peroxide and water. Adult flies that express the bovine SOD in addition to native Drosophila SOD are more resistant to oxidative stresses and have a slight but significant increase in their mean lifespan. Thus, resistance to oxidative stress and lifespan of Drosophila can be manipulated by molecular genetic intervention. In addition, we have examined the ability of adult flies to respond to various environmental stresses during senescence. Resistance to oxidative stress, such as that induced by heat shock, is drastically reduced in senescent flies. This loss of resistance is correlated with the increase in protein damage generated in old flies by thermal stress and by the insufficient protection from cellular defense systems which includes the heat shock proteins as well as the oxygen radical scavenging enzymes. Collectively, results from our laboratory demonstrate that oxidative damage plays a role in governing the lifespan of Drosophila during normal metabolism and under conditions of environmental stress.  相似文献   

17.
Ishimoto H  Kitamoto T 《Fly》2011,5(3):215-220
The molting hormone 20-hydroxyecdysone (20E) is an active metabolite of ecdysone and plays vital roles during ontogeny of the fruit fly Drosophila, coordinating critical developmental transitions such as molting and metamorphosis. Although 20E is known to exist throughout life in both male and female flies, its functions in adult physiology and behavior remain largely elusive. Notably, findings from previous studies suggest that this hormone may be involved in adult stress responses. Consistent with this possibility, we have found that ecdysone signaling in adult flies is activated by "stressful" social interactions and plays a role in the formation of long-term courtship memory [Ishimoto et al. (2009). Ecdysone signaling regulates the formation of long-term courtship memory in adult Drosophila melanogaster. PNAS 106, 6381-6386]. In addition, we recently reported that ecdysone signaling contributes to the regulation of sleep, affecting transitions between sleep and wakefulness [Ishimoto and Kitamoto. (2010). The steroid molting hormone ecdysone regulates sleep in adult Drosophila melanogaster. Genetics 185, 269-281]. Here in Extra Views, we first summarize our findings on the unconventional roles of 20E in regulating memory and sleep in adult flies. We then discuss speculative ideas concerning the stress hormone-like features of 20E, as well as the possibility that ecdysone signaling contributes to remodeling of the adult nervous system, at both the functional and structural levels, through epigenetic mechanisms.  相似文献   

18.
We have shown that DNA polymerase beta, the only nuclear DNA polymerase present in adult neurons, cannot discriminate between dTTP and dUTP, having the same Km for both substrates. This fact suggests that during reparative DNA synthesis, in adult neurons, dUMP residues can be incorporated into DNA. Since uracil DNA-glycosylase functions to prevent the mutagenic effects of uracil in DNA coming as a product of deamination of cytosine residues or as a result of dUMP incorporation by DNA polymerase, we have studied the perinatal activity of uracil DNA-glycosylase and of 2 enzymes (nucleoside diphosphokinase and dUTPase) involved in dUTP metabolism. Our data indicate that during neuronal development there is a rapid decrease in uracil DNA-glycosylase which could impair the removal of uracil present in DNA in adult neurons. However, misincorporation of dUMP into DNA might be kept to a low frequency by the action of dUTPase present at all developmental stages.  相似文献   

19.
An earlier described CK2(beta)tes gene of Drosophila melanogaster is shown to encode a male germline specific isoform of regulatory beta subunit of casein kinase 2. Western-analysis using anti-CK2(beta)tes Ig revealed CK2(beta)tes protein in Drosophila testes extract. Expression of a CK2(beta)tes-beta-galactosidase fusion protein driven by the CK2(beta)tes promoter was found in transgenic flies at postmitotic stages of spermatogenesis. Examination of biochemical characteristics of a recombinant CK2(beta)tes protein expressed in Escherichia coli revealed properties similar to those of CK2beta: (a) CK2(beta)tes protein stimulates CK2alpha catalytic activity toward synthetic peptide; (b) it inhibits phosphorylation of calmodulin and mediates stimulation of CK2alpha by polylysine; (c) it is able to form (CK2(beta)tes)2 dimers, as well as (CK2alpha)2(CK2(beta)tes)2 tetramers. Using the yeast two-hybrid system and coimmunoprecipitation analysis of protein extract from Drosophila testes, we demonstrated an association between CK2(beta)tes and CK2alpha. Northern-analysis has shown that another regulatory (beta') subunit found recently in D. melanogaster genome is also testis-specific. Thus, we describe the first example of two tissue-specific regulatory subunits of CK2 which might serve to provide CK2 substrate recognition during spermatogenesis.  相似文献   

20.
UDP-GlcNAc:alpha3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I (encoded by Mgat1) controls the synthesis of hybrid, complex, and paucimannose N-glycans. Mice make hybrid and complex N-glycans but little or no paucimannose N-glycans. In contrast, Drosophila melanogaster and Caenorhabditis elegans make paucimannose N-glycans but little or no hybrid or complex N-glycans. To determine the functional requirement for beta1,2-N-acetylglucosaminyltransferase I in Drosophila, we generated null mutations by imprecise excision of a nearby transposable element. Extracts from Mgat1(1)/Mgat1(1) null mutants showed no beta1,2-N-acetylglucosaminyltransferase I enzyme activity. Moreover, mass spectrometric analysis of these extracts showed dramatic changes in N-glycans compatible with lack of beta1,2-N-acetylglucosaminyltransferase I activity. Interestingly, Mgat1(1)/Mgat1(1) null mutants are viable but exhibit pronounced defects in adult locomotory activity when compared with Mgat1(1)/CyO-GFP heterozygotes or wild type flies. In addition, in null mutants males are sterile and have a severely reduced mean and maximum life span. Microscopic examination of mutant adult fly brains showed the presence of fused beta lobes. The removal of both maternal and zygotic Mgat1 also gave rise to embryos that no longer express the horseradish peroxidase antigen within the central nervous system. Taken together, the data indicate that beta1,2-N-acetylglucosaminyltransferase I-dependent N-glycans are required for locomotory activity, life span, and brain development in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号