首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to examine the effects of a known inhibitor, transforming growth factor-beta1 (TGF-beta1) versus the known stimulators insulin-like growth factor-1 (IGF-1) and dexamethasone (DEX) on pig preadipocyte differentiation in serum and serum-free primary cultures. In cultures with serum, preadipocyte and nonpreadipocyte replication was increased (p < 0.02) by IGF-1 and by TGF-beta1 (p < 0.05; p < 0.001). IGF-1 (10 nM) enhanced preadipocyte differentiation (p < 0.05) in serum-supplemented (1% pig serum) cultures, whereas TGF-beta1 (15 pM) reduced preadipocyte differentiation (p < 0.01) in the presence and absence of IGF-1. Furthermore, GPDH (SN-glycerol-3-phosphate dehydrogenase) specific activity (marker that indicates differentiation) was decreased (p < 0.05) by adding TGF-beta1 to serum-free cultures, but TGF-beta1 had little effect in serum-supplemented cultures. DEX significantly enhanced GPDH activity and fat cell cluster number, whereas pretreatment with TGF-beta1 eliminated the DEX enhancement. We have shown for the first time that TGF-beta can decrease (p < 0.01) the cellular secretion of IGF-1 by pig adipose tissue cells and counter the effects of exogenous IGF-1. These studies indicate that TGF-beta1 may not inhibit adipocyte development in the initial growth phase, but may inhibit differentiation and/or hypertrophy (lipid filling) at a later stage of development.  相似文献   

2.
Previous studies have shown that cytosolic glycerol-3-phosphate dehydrogenase (GPDH; EC 1.1.1.8) can be induced by glucocorticoids in mammalian brain, mammary gland, and thymus, but it was thought that no induction occurred in liver. We report here that GPDH is induced by glucocorticoids in several lines of hepatoma cells and in rat hepatocytes cultured in vitro. When rat hepatoma cells of clone FU5AH were exposed to 3 μM hydrocortisone (HC) for 3 days, GPDH specific activity increased greater than sixfold over control. The rate and extent of induction were similar in exponentially growing and stationary-phase cultures of cells. Four other hepatoma cell lines were inducible to a lesser extent, and three lines were not inducible. GPDH was also induced by glucocorticoids in cultures of hepatocytes isolated from livers of 6-day-old rats. The enzyme was induced threeto fourfold by the synthetic glucocorticoid, dexamethasone, in the presence of 1 nM insulin, but the induction was not observed in the absence of insulin.  相似文献   

3.
The effects of dexamethasone (DEX) on adipose precursor cells from rat adipose tissue were studied in primary culture. When added from the beginning of culture in media containing untreated fetal calf serum (SM), serum treated with charcoal to remove steroid hormones (CSM), or serum-free medium (SFM), DEX inhibited cellular growth. Lipoprotein lipase (LPL) as well as glycerophosphate dehydrogenase (GPDH) activities, markers of cellular differentiation, were also inhibited, except in CSM where LPL was stimulated. When added after cellular confluence, however, DEX had opposite effects and now stimulated cellular differentiation. This effect was highly dependent on insulin. These studies demonstrate that DEX affects adipose precursor cells in several ways, depending on the type of culture medium, the time period of exposure, and the presence of insulin.  相似文献   

4.
The 3T3-F442A preadipocyte cell line was previously shown to possess specific glucocorticoid receptors whose number increased in the time course of differentiation. We have examined the effects of a three day dexamethasone treatment, added at confluence, on cells differentiated in the presence or absence of insulin. Triglyceride accumulation, polyamine content as well as glycerophosphate dehydrogenase and fatty acid synthetase activities were measured during the adipose conversion. We have also determined 2-deoxyglucose uptake in non-differentiated and differentiated cells. Dexamethasone was shown to decrease the adipose conversion by 3T3-F442A cells in the presence or absence of insulin. Intracellular spermidine content in differentiating cells was sensitive to dexamethasone and insulin in the same way as an enzymatic marker of terminal differentiation, glycerophosphate dehydrogenase. Dexamethasone decreases the 2 deoxyglucose uptake in non-differentiated and differentiated cells while insulin increases this uptake only in differentiated cells. This work shows that glucocorticoids inhibit adipocyte metabolism at distinct levels and suggests that these hormones might play an important role in the regulation of adipose tissue mass.Abbreviations DEX dexamethasone - FAS fatty acid synthetase - GPDH glycerophosphate dehydrogenase - MIX 1-methyl-3-isobutylxanthine  相似文献   

5.
The effects of physiological glucocorticoids such as cortisol and corticosterone, as well as dexamethasone, on proliferation and differentiation of rat fat cell precursors kept in primary culture were analyzed. In serum-containing medium (10%), glucocorticoids markedly decreased cell proliferation, either on subconfluent or on confluent cultures. This effect was independent of the presence of insulin. In contrast, acute amplification of adipose conversion was observed mainly when glucocorticoids and insulin were added simultaneously. Morphological quantification of lipid-containing cells confirmed acceleration of the maturation process, and an early and specific reorganization of the cytoskeleton was detected at the ultrastructural level. In the presence of insulin, glucocorticoids also enhanced the main marker enzymes, lipoprotein lipase, and glycerol phosphate dehydrogenase. Glucocorticoid effects on precursor proliferation and differentiation were clearly dose-dependent, dexamethasone being 10 times more potent than cortisol and corticosterone. Similar results were obtained in serum-free medium, as well as in preadipocyte cultures derived from different fat deposits. This study demonstrates that in addition to an acute inhibition of precursor growth, glucocorticoids exert a clear stimulation of adipose conversion, which depends mainly on the presence of insulin and the glucocorticoid concentration.  相似文献   

6.
Saturation analysis of the binding of [3H]dexamethasone [( 3H]DEX) to ammonium sulfate precipitates (ASPs) confirmed the presence of a limited-capacity, high-affinity binder in human adipose tissue cytosols. Various non-radioactive steroids competed with [3H]DEX for binding to the ASPs in the following sequence: dexamethasone (DEX) approximately equal to triamcinolone acetonide (TA) greater than progesterone (P) much greater than estradiol (E2). The steroid specificity of the binder precipitated by AS was consistent with the specificities reported for glucocorticoid receptors in a number of systems. In order to investigate possible regional differences, glucocorticoid binding to ASPs derived from adipose tissues removed from two different sites in the same subject was quantitated. ASPs of human omental adipose tissue bound significantly more [3H]DEX than did similar preparations of subcutaneous adipose tissue from the abdominal wall (116 +/- 32 vs. 50 +/- 22 fmol/mg protein; mean +/- SD; p less than 0.02). The findings are consistent with reports from other laboratories suggesting that intra-abdominal fat is more responsive to glucocorticoids than is subcutaneous adipose tissue.  相似文献   

7.
Expression of the endogenous human GH (hGH) gene in response to glucocorticoids, thyroid hormone, and insulin was studied in cultures of dispersed GH-secreting human pituitary adenomas. Results were compared to those obtained when the hGH gene was transfected into rat pituitary tumor cells (GC). In the human pituitary cells the glucocorticoid dexamethasone [(Dex) 10(-6) M] increased the release of GH and the levels of GH mRNA by 2 to 4-fold (P less than 0.05). T3 (10(-8) M) had no effect on GH mRNA but increased hGH release by 2- to 6-fold (P less than 0.01). Insulin (5 x 10(-9) M) alone had no significant effect on either hGH mRNA or protein, but blunted the effect of Dex. Among 11 of 18 GC cell clones transfected with the hGH gene with detectable hGH mRNA expression, Dex increased hGH mRNA levels in seven and T3 treatment reduced hGH mRNA levels in eight. Conversely, rat GH mRNA levels from the endogenous rat gene were increased by either Dex or T3 in all 18 clones. Insulin alone or in combination with T3 or Dex was found to increase hGH mRNA levels in some cell lines and to decrease hGH mRNA levels in others; these effects were correlated strongly (r = 0.88; P less than 0.001) with the influence of insulin on the endogenous rat GH gene, implying that individual cellular differences can simultaneously affect the insulin responsiveness of both genes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Stromal-vascular cells from the epididymal fat pad of 4-week-old rats, when cultured in a medium containing insulin or insulin-like growth factor, IGF-I, triiodothyronine and transferrin, were able to undergo adipose conversion. Over ninety percent of the cells accumulated lipid droplets and this proportion was reduced in serum-supplemented medium. The adipose conversion was assessed by the development of lipoprotein lipase (LPL) and glycerol-3-phosphate dehydrogenase (GPDH) activities, [14C]glucose incorporation into polar and neutral lipids, triacylglycerol accumulation and lipolysis in response to isoproterenol. Similar results were obtained with stromal-vascular cells from rat subcutaneous and retroperitoneal adipose tissues. Stromal-vascular cells required no adipogenic factors in addition to the components of the serum-free medium. Insulin was required within a physiological range of concentrations for the emergence of LPL and at higher concentrations for that of GPDH. When present at concentrations ranging from 2 to 50 nM, IGF-I was able to replace insulin for the expression of both LPL and GPDH. The development of a serum-free, chemically defined medium for the differentiation of diploid adipose precursor cells opens up the possibility of characterizing inhibitors or activators of the adipose conversion process.  相似文献   

9.
10.
KRAS, KRYSTYNA M., DOROTHY B. HAUSMAN, GARY J. HAUSMAN, AND ROY J. MARTIN. Adipocyte development is dependent upon stem cell recruitment and proliferation of preadipocytes. Obes Res. Objectives: The ability to acquire fat cells persists over the life spans of animals. It is unknown whether adipocyte acquisition is the result of preadipocyte proliferation or stem cell recruitment to become adipocytes. The purposes of these studies were 1) to characterize early differentiation of stromal vascular (S-V) cells to preadipocytes as it is influenced by insulin, dexamethasone (DEX), and insulin-like growth factor-I (IGF-I); and 2) to determine whether new fat cells arise from stem cell recruitment or preadipocyte proliferation. Research Methods and Procedures: Freshly isolated S-V cells from rat inguinal adipose tissues were plated for 24 hours then exposed to serum-free medium. Results: Approximately 15% of freshly plated S-V cells were preadipocytes as determined by a preadipocyte specific marker, AD3. Total cell number and proportion of preadipocytes were significantly greater with 100 nM insulin treatment than with 0, 0. 1, or 1. 0 nM, but IGF-I treatment at 10 nM resulted in preadipocyte development similar to that with 100 nM insulin treatment. The addition of 5 nM DEX to the 100 nM insulin treatment resulted in a 20% increase in preadipocyte number by day 2 when compared to either treatment alone. 5-Bromo-2′-deoxyuridine treatment suppressed the increased proportion of preadipocytes from days 0–2 in non-insulin treated cells and prevented the increase typically observed with insulin. A mitosis inhibitor also significantly reduced the proportion of preadipocytes. Discussion: These results show for the first time that S-V cells are recruited as preadipocytes and that proliferation of these preadipocytes and early differentiation occur simultaneously.  相似文献   

11.
IGF-I- and IGFBP-3-expression in cultured human preadipocytes and adipocytes.   总被引:18,自引:0,他引:18  
The expression and secretion of IGF-I and IGFBP-3 were investigated in cultured human preadipocytes and in in vitro differentiated adipocytes derived from human subcutaneous adipose tissue under chemically defined culture conditions. Human preadipocytes expressed mRNAs for IGF-I and IGFBP-3 and secreted the corresponding proteins into the culture medium as measured by sensitive radioimmunoassays. In human adipocytes; specific mRNA-expression was comparable to that found in preadipocytes, but IGF-I secretion was increased 10-fold (3.87 +/- 0.69 vs. 0.41 +/- 0.11 ng/ml/10(6) cells/48 hrs, p < 0.05) and IGFBP-3 secretion 2.5-fold (7.34+/-1.15 vs. 3.27+/-0.38 ng/ml/10(6) cells/48 hrs, p<0.05) in the presence of adipogenic medium probably resulting in an increase of unbound IGF-I. Under serum-free, chemically defined conditions human growth hormone (hGH) and insulin were found to be positive regulators and cortisol was found to be a negative regulator of IGF-I and IGFBP-3 secretion in preadipocytes. In cultured human adipocytes, hGH showed no effect on IGF-I and IGFBP-3 secretion, whereas insulin stimulated and cortisol inhibited the secretion of both proteins. We conclude that IGF-I and IGFBP-3 may not only exert their actions in human adipose tissue via circulation, but also in an auto/paracrine way.  相似文献   

12.
The amino-terminal portion of human growth hormone, residues 1-43 (hGH1-43), has insulin-potentiating action, while a hyperglycemic pituitary peptide (HP), which co-purifies with human growth hormone (hGH), is antagonistic to the action of insulin. The effects of hGH, hGH1-43, and HP on glucose metabolism were assessed in young (4-5 weeks) and adult (6-8 months) hypophysectomized yellow Avy/A mice which lacked any interfering endogenous pituitary hormones, and compared with age-matched intact obese yellow Avy/A and lean agouti A/a mice. Treatment with hGH1-43 or HP did not promote body growth in hypophysectomized yellow mice; but after 2 weeks of treatment with hGH, there was a significant increase in body weight (P less than 0.05). Treatment with HP raised blood glucose and lowered insulin concentrations in obese yellow mice, but not in agouti or hypophysectomized yellow mice. The severely impaired glucose tolerance of the hypophysectomized yellow mice was improved by acute (60 min) and chronic (3 days) treatment with hGH1-43 as well as by 2 weeks of treatment with hGH; in contrast, HP had no effect. Glucose oxidation in adipose tissue from obese yellow mice was low and showed essentially no response to stimulation by insulin at doses lower than 1000 microunits/ml. Basal glucose oxidation rates in adipose tissue taken from agouti and hypophysectomized yellow mice were significantly higher (P less than 0.001) than those in tissue from obese yellow mice, and the rates responded significantly (P less than 0.05) to 100 microunits/ml insulin. The insulin binding affinities in liver membranes from agouti mice were higher than those from either obese or hypophysectomized yellow mice. The insulin receptor densities were similar in both agouti and obese yellow mice, but higher in hypophysectomized yellow mice (P less than 0.05). Treatment with hGH1-43 slightly increased, although not significantly, the insulin receptor density in yellow obese mice while hGH showed essentially no change. Therefore, hypophysectomy appeared to increase tissue response and decrease insulin resistance by increasing receptor numbers and lowering the circulating insulin levels. Furthermore, the insulin-like action of hGH was elicited directly in vivo by hGH1-43 in hypophysectomized yellow mice.  相似文献   

13.
The stroma-vascular fraction (SVF) of inguinal and epididymal fat pads of 4 week-old rats was studied by electron microscopy. Among the various cell types, endothelial cells and preadipocytes were found in both SVF, while mesothelial cells were only detected in the epididymal SVF. The resulting heterogeneity of primary culture and the adipoconversion of the fat cell precursors were studied in a serum-supplemented medium enriched with insulin (14.5 nM) and exogenous triglycerides. Despite the heterogeneity of the inoculum, the primary cultures were rather homogeneous, fat cell precursors being the main cell type. Distinctive contaminant fibroblast-like cells were observed in both cultures, whereas epithelial-like cells, which correspond most probably to mesothelial cells, were only found in epididymal cultures. Differentiation of fat cell precursors was assessed by the appearance of lipoprotein lipase (LPL) and glycerol-3-phosphate dehydrogenase (GPDH). LPL activity was found in the same level in cells of both deposits while GPDH activity was elevated in inguinal vs epididymal derived stroma-vascular cells. The different adipose conversion pattern of both cultures was confirmed by morphological quantification: the maturation of epididymal fat cell precursors was faster but less extensive. These differences could be related mainly to regional localization rather than to different maturation of the two fat deposits.  相似文献   

14.
Serum leptin levels are upregulated in proportion to body fat and also increase over the short term in response to meals or insulin. To understand the mechanisms involved, we assessed leptin synthesis and secretion in samples of adipose tissue from subjects with a wide range of BMI. Tissue leptin content and relative rates of leptin biosynthesis, as determined by metabolic labeling, were highly correlated with each other and with BMI and fat cell size. To understand mechanisms regulating leptin synthesis in obesity, we used biosynthetic labeling to directly assess the effects of insulin and glucocorticoids (dexamethasone) on leptin synthesis and secretion in human adipose tissue. Chronic treatment (1-2 days in organ culture) with insulin increased relative rates of leptin biosynthesis without affecting leptin mRNA levels. In contrast, dexamethasone increased leptin mRNA and biosynthesis in parallel. Acute treatment with insulin or dexamethasone (added during 1-h preincubation and 45-min pulse labeling) did not affect relative rates of leptin biosynthesis, but pulse-chase studies showed that addition of insulin nearly doubled the release of [35S]leptin after a 1-h chase. We conclude that the higher leptin stores in adipose tissue of obese humans are maintained by chronic effects of insulin and glucocorticoids acting at pre- and posttranslational levels and that the ability of insulin to increase the release of preformed leptin may contribute to short-term variations in circulating leptin levels.  相似文献   

15.
Glucocorticoids inhibit protein synthesis in muscle. In contrast, insulin and amino acids exert anabolic actions that arise in part from their ability to phosphorylate ribosomal p70 S6-kinase (p70(S6k)) and eukaryotic initiation factor (eIF)4E binding protein (BP)1 (PHAS-I), proteins that regulate translation initiation. Whether glucocorticoids interfere with this action was examined by giving rats either dexamethasone (DEX, 300 microg. kg(-1). day(-1), n = 10) or saline (n = 10) for 5 days. We then measured the phosphorylation of PHAS-I and p70(S6k) in rectus muscle biopsies taken before and at the end of a 180-min infusion of either insulin (10 mU. min(-1). kg(-1) euglycemic insulin clamp, n = 5 for both DEX- and saline-treated groups) or a balanced amino acid mixture (n = 5 for each group also). Protein synthesis was also measured during the infusion period. The results were that DEX-treated rats had higher fasting insulin, slower glucose disposal, less lean body mass, and decreased protein synthetic rates during insulin or amino acid infusion (P < 0.05 each). DEX did not affect basal PHAS-I or p70(S6k) phosphorylation but blocked insulin-stimulated phosphorylation of PHAS-I- and amino acid-stimulated phosphorylation of both PHAS-I and p70(S6k) (P < 0.01, for each). DEX also increased muscle PHAS-I concentration. These effects can, in part, explain glucocorticoid-induced muscle wasting.  相似文献   

16.
Immunoreactive glucocorticoid receptors (GR) have previously been demonstrated in neuropeptide Y (NPY) neurones of the rat hypothalamus. To determine whether NPY synthesis is influenced by glucocorticoids, the effect of dexamethasone (DEX) on the levels of immunoreactive NPY in rat hypothalamic neurones was investigated in vivo and in vitro. Daily injections of DEX (0.1 mg/day) for 5 days increased the NPY content of the mediobasal hypothalamus in female rats by 117% (p less than 0.002). Primary cultures of hypothalamic neurones were also sensitive to the effect of glucocorticoids. Intracellular NPY levels were significantly increased (p less than 0.001) compared to control values by 151%, 222% and 268% when cultures were maintained in a defined serum free medium containing DEX 10(-9), 10(-8) and 10(-7) M respectively.  相似文献   

17.
A reproducible cell culture system is described that allows the study of adipose conversion in fibroblast-like cells isolated by collagenase digestion of epididymal and perirenal adipose tissue from male rats weighing 70-200 g. Adipose conversion as measured by lipid accumulation and increase in glycerophosphate dehydrogenase (GPDH) activity during differentiation strongly depends on the density at which cells are inoculated and starts only when cells are confluent and when physiological amounts of corticosterone and insulin are added. beta-Estradiol, testosterone, thyroxine, triiodothyronine, and growth hormone do not affect the differentiation process. Methylisobutylxanthine added during the first 2 days after confluence, added with insulin and corticosterone, potentiates the effect of insulin on GPDH activity and accelerates triglyceride accumulation. The effect of methyl-isobutylxanthine seems to be mediated by increased cyclic AMP concentrations, inasmuch as it may be replaced by forskolin.  相似文献   

18.
The hormonal regulation of leptin mRNA expression and the association between leptin expression and adipocyte differentiation were examined in primary cultures of porcine S-V cells with Northern blot and immunocytochemical analysis. Seeding for 3 days with fetal bovine serum (FBS) with varying levels of dexamethasone (Dex) increased levels of leptin mRNA in a dosedependent manner in parallel with increases in the proportion of preadipocytes (AD-3 positive cells; AD-3, a preadipocyte marker). Six-day treatment with 10 or 850 nM insulin after FBS+Dex treatment resulted in a similar increase in leptin mRNA expression and morphological differentiation. However, significantly lower levels of leptin mRNA and smaller fat cells were observed in cultures treated with 1 nM insulin or 10 nM insulin-like growth factor-I (IGF-I). Dex-induced increases in leptin mRNA levels and AD-3 cell numbers were blocked completely by the addition of transforming growth factor-β (TGF-β) to FBS+Dex-treated cultures. However TGF-β significantly increased fat cell size and leptin mRNA expression when added to ITS (insulin, 850 nM; transferrin, 5 μg/ml; and selenium, 5 ug/mL) treated cultures during the lipid-filling stage. When added with FBS+DEX for the first 3 days, growth hormone (GH) did not influence the Dex-induced increase in AD-3 cells and leptin mRNA expression, but GH reduced leptin mRNA levels when added with insulin for 6 days after FBS+Dex. These results demonstrated that regulation of leptin mRNA expression by Dex, insulin, IGF-I, TGF-β, and GH may be associated with changes in preadipocyte number and fat cell size.  相似文献   

19.
20.
We examined the effect of glucose concentration on insulin-induced 3T3-L1 adipose cell differentiation. Oil Red O staining of neutral lipid, cellular triglyceride mass, and glycerol phosphate dehydrogenase (GPDH) activity, were greater in 3T3-L1 cells cultured at 5 mM vs. 25 mM glucose. GPDH activity was 2- to 4-fold higher at 5 mM vs. 25 mM glucose over a range of insulin concentrations (0. 1 to 100 nM). Insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) was 1. 7-fold greater, and insulinstimulated phosphoinositide 3-kinase association with IRS-1 was 2. 3-fold higher, at 5 mM vs. 25 mM glucose. These effects of glucose were not caused by alterations in IRS-1 mass or cell-surface insulin binding. In preadipose cells at 5 mM glucose, expression of the leukocyte antigen-related (LAR) protein tyrosine phosphatase (negative regulator of insulin signaling) was 63% of the level at 25 mM glucose. Our data demonstrate that glucose concentration affects insulin-induced 3T3-L1 adipose cell differentiation as well as differentiation-directed insulin signaling pathways. Alterations in LAR expression potentially may be involved in modulating these responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号