首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the monitoring of dihydroetorphine hydrochloride, a powerful anaesthetic and analgesic drug, in biological fluids was developed, involving GC-MS with multiple selected-ion monitoring. Dihydroetorphine was extracted from human blood and urine with dichloromethane and then derivatized with N-heptafluorobutyrylimidazole after having been concentrated to dryness. A dihydroetorphine monoheptafluorobutyl derivative was formed, which showed good behaviour in GC-MS with electron impact ionization. Its molecular ion, m/z 609, and its main fragments, m/z 576, 534, 522 and 508, were selected as the ions for identification owing to their relative peak intensities and characteristics. The target drug was identified based on its retention time, its selected multiple ions and their relative intensities. This method was successfully used for the detection of dihydroetorphine in blood and urine from a dihydroetorphine addict and a poisoned patient, respectively.  相似文献   

2.
Albuterol is a β2-adrenergic agonist commonly used as a bronchdilator for the treatment of patients with asthma. We have developed an assay to determine plasma levels as low as 50 pg/ml of albuterol by gas chromatography-mass spectrometry (GC-MS). This assay utilizes isotopically labeled albuterol ([13C]albuterol) as an internal standard. In this assay albuterol and the internal standard are recovered from 1 ml of plasma using solid-phase extraction. The samples are then derivatized to trimethylsilyl ethers using N,O-bis(trimethylsilyl)trifluoro-acetamide with 1% trimethylchlorosilane. The samples are then analyzed by GC-MS with selected-ion monitoring (SIM) for the ions m/z 369.15 and 370.15. The method has been validated for a concentration range of 50–10000 pg/ml in plasma.  相似文献   

3.
The extraordinarily strong analgesic dihydroetorphine (DHE) was registered as one of the most strictly controlled narcotic drugs by the United Nations in 1999. However, an effective detection method for DHE in biological samples has not yet been established. We developed a quantitative method for assay of DHE in rat plasma and brain by liquid chromatography–tandem mass spectrometry equipped with an ionspray interface. A 0.5-ml volume of plasma and brain homogenate spiked with buprenorphine (internal standard) was purified by the solid-phase extraction column Bond Elute Certify. DHE produced numerous weak fragment ions by collision induced dissociation. Therefore, collision energy was utilized to decompose the interferences, and the protonated molecular ion was used for both precursor and product ion monitoring. As a result of the method validation, the dynamic concentration range was determined as 0.05–10 ng/ml. DHE in these samples was stable for 2 months at −4°C and for 24 h at ambient temperatures. Using the present method, DHE was detected in rat plasma and brain tissue after intravenous injection (0.5 μg/kg).  相似文献   

4.
A sensitive gas chromatographic assay using mass selective-detection has been developed for the simultaneous quantitation of the enantiomers of (±)-gacyclidine (a non competitive N-methyl-

-aspartate antagonist) in human plasma. Gacyclidine enantiomers and phencyclidine (PCP), the internal standard, were extracted using a single-step liquid–liquid extraction with hexane at pH 8.0. Each enantiomer was separated on a chiral gas chromatography capillary column and specifically detected by mass spectrometry (MS) in selected-ion monitoring (SIM) mode. Gacyclidine enantiomers and PCP were monitored using the fragment ions at m/z 206 and 200, respectively. No interference was observed from endogenous components. The limit of quantitation (LOQ) for each enantiomer of gacyclidine was 300 pg/ml by using plasma samples of 500 μl. The calibration curves were linear (r2=0.998) over a range of 0.3125 to 20 ng/ml. The extraction efficiency was higher than 95% for both enantiomers. Intra- and inter-day bias were less than 10% at every standard curve concentration. Intra-day precision was less than 19% for (−)-gacyclidine and 15% for (+)-gacyclidine. Inter-day precision was below 15% for both enantiomers. The assay was validated for an enantioselective pharmacokinetic study in healthy male volunteers.  相似文献   

5.
6.
Propofol (2,6-diisopropylphenol, I.C.I. 35 868) is a rapid-acting, intravenous anesthetic agent recently introduced for the induction and maintenance of general anesthesia. This paper describes a gas chromatographic—mass spectrometric procedure using selected-ion monitoring for the determination of plasma propofol levels. The drug and the internal standard (thymol) were extracted from plasma into diethyl ether—pentane, and derivatized to their trimethylsilyl derivatives before analysis. The reproducibility of the daily standard curves had coefficients of variation ranging from 2.7% to 10.2%. The precision of the assay yielded a coefficient of variation ranging from 4.5% to 5.6%, and the concentration means for the seeded control samples were found to be within −1.6% to +0.6% of the theoretical values for propofol. No interfering peaks have been observed in application of this procedure to either normal volunteer or patient samples. The minimum detectable level under the conditions described was 0.20 ng propofol/ml plasma. This assay and a high-performance liquid chromatographic assay with fluorescence detection were both used to measure plasma propofol concentrations in 89 human plasma samples, and the correlation between the two methods was excellent.  相似文献   

7.
A rapid screening procedure is described for the simultaneous determination of various acidic non-steroidal anti-inflammatory drugs (NSAIDs) at sub-nanogram levels. The procedure involves solid-phase extraction (SPE) of NSAIDs using Chromosorb P as the adsorbent in partition mode, with subsequent single-step conversion to tert.-butyldimethylsilyl (TBDMS) derivatives, followed by direct analysis by gas chromatography-mass spectrometry (GC-MS). The characteristic [M−57]+ high-mass ions constituting the base peaks in the electron-impact mass spectra of most TBDMS derivatives permitted sensitive detection of NSAIDs by GC-MS in selected-ion monitoring (SIM) mode, even in the presence of higher levels of coextracted urinary organic acids. The detection limit for SIM of each drug was in the range 0.03–0.9 pg. When applied to urine samples (250 μl) spiked with NSAIDs, the present GC-SIM-MS method allowed simultaneous screening for various NSAIDs with good overall precision and accuracy in the range of 10–40 ng.  相似文献   

8.
A method for the stereoselective determination of D- and L-enantiomers of selenomethionine in mouse plasma was developed using gas chromatography-mass spectrometry with selected-ion monitoring (GC-MS-SIM). DL-[(2)H(3,)(82)Se]selenomethionine was used as analytical internal standard to account for losses associated with the extraction, derivatization and chromatography. Selenomethionine enantiomers in mouse plasma were purified by cation-exchange chromatography using BondElut SCX cartridge and derivatized with HCl in methanol to form methyl ester followed by subsequent N-acylation with optically active (+)-α-methoxy-α-trifluoromethylphenylacetyl chloride to form diastereomeric amide. Quantification was performed by SIM of the molecular-related ions of the diastereomers on the chemical ionization mode. The intra- and inter-day precision for D- and L-selenomethionine spiked to mouse plasma gave good reproducibility with relative standard deviation of 3% and 3% for D-selenomethionine and 6% and 3% for L-selenomethionine, respectively. The estimated amounts were in good agreement with the actual amounts spiked, the intra- and inter-day relative error being 5% and 2% for D-selenomethionine and 2% and 1% for L-selenomethionine, respectively. The present method is sensitive enough to determine pharmacokinetics of selenomethionine enantiomers.  相似文献   

9.
We used gas chromatography-mass spectrometry to assay putrescine in minute regions of single rat brains. Acid extraction, partial purification on Amberlite CG 120, and derivatization with pentafluoropropionic anhydride preceded the gas chromatography-mass spectrometry. A moving-needle solventless system and a direct inlet system were also used to increase sensitivity. Putrescine was measured accurately at the picomole level; the mean concentration of this polyamine in five regions of rat brain found by this method was 2.7-3.8 times higher than reported by other researchers.  相似文献   

10.
Simultaneous determination of seven barbiturates in human whole blood and urine by combining direct immersion solid-phase microextraction (DI-SPME) with gas chromatography-mass spectrometry (GC-MS) is presented. The main parameters affecting the DI-SPME process, such as SPME fibers, salt additives, pHs, extraction temperatures and immersion times were optimized for simultaneous determination of the drugs. The extraction efficiencies were 0.0180-0.988 and 0.0156-2.76% for whole blood and urine, respectively. The regression equations of the drugs showed excellent linearity for both samples; the correlation coefficients (r(2)) were 0.994-0.999. The detection limits for whole blood were 0.05-1 microg x ml(-1), and those for urine 0.01-0.6 microg x ml(-1). Actual quantitation could be made for pentobarbital in whole blood and urine obtained from volunteers, who had been orally administered a therapeutic dose of the drug. The DI-SPME/GC-MS procedure for barbiturates established in this study is simple and sensitive enough to be adopted in the fields of clinical and forensic toxicology.  相似文献   

11.
This paper presents a GC-MS confirmation method, based on large-volume programmed-temperature vaporisation (PTV) injection, for the determination of cannabinoids in plasma samples (or whole blood) with deuterium-labelled internal standards using only 25 microl of biological fluid. The analytes, Delta(9)-tetrahydrocannabinol (THC), 11-hydroxy-Delta(9)-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-Delta 9-tetrahydrocannabinol (THC-COOH), were enriched by means of solid-phase extraction cartridges containing octadecyl-bonded silica and were, subsequently, methylated. A 20 microl aliquot of an extract in hexane was injected into a PTV in solvent split mode. Method development and the results of the analyses of standard reference material and real samples are presented and discussed. This micro-method is precise and sensitive enough to assess relevant cannabinoid levels in human blood for forensic investigations as well as for clinical applications.  相似文献   

12.
A high-performance liquid chromatographic method using liquid-liquid extraction was developed for the determination of 1-(3-fluoro-4-hydroxy-5-mercaptomethyl-tetrahydrofuran-2-yl)-5-methyl-1H-pyrimidine-2,4-dione (l-FMAUS; I) in rat plasma and urine. A 100 microl aliquot of distilled water containing l-cysteine (100 mg/ml) was added to a 100 microl aliquot of biological sample. l-Cysteine was employed to protect binding between the 5'-thiol of I and protein in the biological sample. After vortex-mixing for 30s and adding a 50 microl aliquot of the mobile phase containing the internal standard (10 microg/ml of 3-aminophenyl sulfone), 1 ml of ethyl acetate was used for extraction. After vortex-mixing, centrifugation, and evaporating the ethyl acetate, the residue was reconstituted with a 100 microl aliquot of the mobile phase. A 50 microl aliquot was injected onto a C(18) reversed-phase column. The mobile phases, 50 mM KH(2)PO(4) (pH = 2.5):acetonitrile (85:15, v/v) for rat plasma and 50 mM KH(2)PO(4) (pH 2.5):acetonitrile:methanol (85:10:5, v/v/v) for urine samples, were run at a flow-rate of 1.2 ml/min. The column effluent was monitored by an ultraviolet detector set at 265 nm. The retention times for I and the internal standard were approximately 9.7 and 12.5 min, respectively, in plasma samples and the corresponding values in urine samples were 16.8 and 14.9 min. The quantitation limits of I in rat plasma and urine were 0.1 and 0.5 microg/ml, respectively.  相似文献   

13.
A gas chromatographic-mass spectrometric method was developed for the determination of ergosterol in organic dust. Samples were hydrolyzed under alkaline conditions, and the hydrolysate was extracted, purified on a silica-gel column, and subjected to derivatization. The limit of detection of the trimethylsilyl ether derivative of ergosterol was approximately 10 pg and that of the tert.-butyldimethylsilyl ether derivative was approximately 20 pg (injected amounts). House dust contained 6–45 μg ergosterol/g and iar from a pig barn contained 0.2–0.3 ng ergosterol/ liter. The proposed method can be used as a complement or alternative to microscopy and culturing for measuring fungal biomass in air-borne organic dust.  相似文献   

14.
A gas chromatography-mass spectrometry (GC-MS) method was developed for measuring 1,2-dihydroxynaphthalene (1,2-DHN) and 1,4-dihydroxynaphthalene (1,4-DHN) in urine. The method involves enzymatic digestion of urinary conjugates to release the DHNs which were then analyzed as trimethylsilyl derivatives by GC-MS. For 1,2-DHN and 1,4-DHN, respectively, the assay limits of detection were 0.21 and 0.15 microg/l, the assay limits of quantitation were 0.69 and 0.44 microg/l, and the coefficients of variation were 14.7 and 10.9%. This method was successfully applied to determine urinary levels of 1,2-DHN and 1,4-DHN in coke workers (14 top workers and 13 side-bottom workers) and 21 matching control workers from the steel industry of northern China. The geometric mean (GM) levels of 1,2-DHN were approximately 100 and 30 times higher than those of 1,4-DHN in exposed and control subjects, respectively. The GM levels 1,2-DHN and 1,4-DHN were significantly higher for coke workers (1,2-DHN: top workers--552 microg/l, side-bottom workers--260 microg/l; 1,4-DHN: top workers--3.42 microg/l, side-bottom workers--3.56 microg/l) than for controls (1,2-DHN: 38.8 microg/l; 1,4-DHN: 1.21 microg/l) (por=0.623; p<0.0001). Also, levels of 1,2-DHN were significantly correlated with those of serum albumin adducts of l,2-naphthoquinone (rs=0.492, p=0.0004). These results indicate that 1,2- and 1,4-DHN are good biomarkers for assessment of naphthalene exposure in coke workers. Since the DHNs are precursors of the naphthoquinones, which have been implicated as toxic products of naphthalene metabolism, measurements of urinary DHNs may have toxicological significance.  相似文献   

15.
We developed a novel method for analyzing d-limonene levels in adipose tissue. Fat samples were subjected to saponification followed by solvent extraction. d-Limonene in the sample extract was analyzed using gas chromatography-mass spectrometry (GC-MS) with selected ion monitoring. Linear calibration curves were established over the mass range of 79.0-2529 ng d-limonene per 0.1g of adipose tissue. Satisfactory within-day precision (R.S.D. 6.7-9.6%) and accuracy (%difference of -2.7 to 3.8%) and between-day precision (R.S.D. 6.0-10.7%) and accuracy (%difference of 1.8-2.6%) were achieved. The assay was successfully applied to human fat biopsy samples from a d-limonene feeding trial.  相似文献   

16.
A method for the determination of hexahydrophthalic acid, a metabolite of hexahydrophthalic anhydride, in human urine has been developed. The urine was worked-up by liquid—solid extraction, esterified with boron trifluoride—methanol, and analysed by capillary gas chromatography and selected-ion monitoring. Hexadeuterium-labelled hexahydrophthalic acid was used as the internal standard. The precision was 4% at 0.7 μg/ml and 5% at 0.07 μg/ml. The recovery of the acid for the overall method was 101% at 0.07 μg/ml of urine (with a coefficient of variation of 4%) and 95% at 0.7 μg/ml (coefficient of variation 2%). The limit of detection was 20 ng/ml urine.  相似文献   

17.
18.
Gas chromatography—high-resolution selected-ion monitoring mass spectrometry was used to analyze catecholamine metabolites in rat brain microdialysate. Dialysate samples were collected in vials containing stable isotope analogues of homovanillic acid (HVA), 3-methoxy-4-hydroxyphenylglycol (MHPG) and 5-hydroxyindoleacetic acid (5HIAA) and analyzed as their trimethylsilyl derivatives. The metabolite levels were monitored at 20-min intervals throughout the time course of the experiment, beginning immediately after surgery and implantation of the dialysis probe and ending 4 h after amphetamine treatment. The levels of HVA were observed to decrease after amphetamine treatment, while those of MHPG and 5HIAA did not change significantly.  相似文献   

19.
The dioxopiperazine metabolites of quinapril in plasma and urine were extracted with hexane—dichloroethane (1:1) under acidic conditions. Following derivatization with pentafluorobenzyl bromide and purification of the desired reaction products using a column packed with silica gel, the metabolites were analysed separately by capillary column gas chromatography—electron-impact mass spectrometry with selected-ion monitoring. The limits of quantitation for the metabolites were 0.2 ng/ml in plasma and 1 ng/ml in urine. The limits of detection were 0.1 ng/ml in plasma and 0.5 ng/ml in urine, at a signal-to-noise ratio of > 3 and > 5, respectively. The proposed method is applicable to pharmacokinetic studies.  相似文献   

20.
A method is described for the quantitation of muramic acid, a marker of bacterial peptidoglycan, in organic dust. House dust samples were hydrolysed in hydrochloric acid and then extracted with hexane to remove hydrophobic compounds. The aqueous phase was evaporated, heated in a silylation reagent to form trimethylsilyl derivatives, and analysed by gas chromatography-mass spectrometry. The muramic acid derivative gave two peaks upon injection into the gas chromatograph-mass spectrometer. Injection of 10 pg of the derivative gave a signal-to-noise ratio of 17 for the dominating peak when using selected ion monitoring in the electron impact mode, and a linear calibration curve was achieved upon analysis of samples containing 5–1500 ng of muramic acid. In a house dust sample, 40 ng of muramic acid was found per mg of dust; the coefficient of variation was 8.2% (n = 6, 1.2 mg of dust analysed). The described method is rapid and simple to apply, and should therefore become widely used for measuring peptidoglycan in many types of environmental samples, including organic dust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号