首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1995,130(6):1359-1371
Cytokinesis in the green alga Spirogyra (Zygnemataceae) is characterized by centripetal growth of a septum, which impinges on a persistent, centrifugally expanding telophase spindle, leading to a phragmoplast-like structure of potential phylogenetic significance (Fowke, L. C., and J. D. Pickett-Heaps. 1969. J. Phycol. 5:273-281). Combining fluorescent tagging of the cytoskeleton in situ and video- enhanced differential interference contrast microscopy of live cells, the process of cytokinesis was investigated with emphasis on cytoskeletal reorganization and concomitant redistribution of organelles. Based on a sequence of cytoskeletal arrangements and the effects of cytoskeletal inhibitors thereon, cytokinetic progression could be divided into three functional stages with respect to the contribution of microfilaments (MFs) and microtubules (MTs): (1) Initiation: in early prophase, a cross wall initial was formed independently of MFs and MTs at the presumptive site of wall growth. (2) Septum ingrowth: numerous organelles accumulated at the cross wall initial concomitant with reorganization of the extensive peripheral interphase MF array into a distinct circumferential MF array. This array guided the ingrowing septum until it contacted the expanding interzonal MT array. (3) Cross wall closure: MFs at the growing edge of the septum coaligned with and extended along the interzonal MTs toward the daughter nuclei. Thus, actin-based transportation of small organelles during this third stage occurred, in part, along a scaffold previously deployed in space by MTs. Displacement of the nuclei- associated interzonal MT array by centrifugation and depolymerization of the phragmoplast-like structure showed that the success of cytokinesis at the third stage depends on the interaction of both MF and MT cytoskeletons. Important features of the phragmoplast-like structure in Spirogyra were different from the higher plant phragmoplast: in particular, MFs were responsible for the positioning of organelles at the fusion site, contrary to the proposed role of MTs in the higher plant phragmoplast.  相似文献   

2.
Summary.  Cultured suspension cells of Arabidopsis thaliana that stably express a green-fluorescent protein–α-tubulin 6 fusion protein were used to follow the development and disintegration of phragmoplasts. The development and disintegration of phragmoplasts in the living cultured cells could be successively observed by detecting the green-fluorescent protein fluorescence of the microtubules. In the early telophase spindle, where two kinetochore groups and two daughter chromosome groups had completely separated from one another, fluorescence appeared in the interzone between the two chromosome groups. The fluorescent region was gradually condensed at the previous equator and increased in fluorescence intensity, and finally it formed the initial phragmoplast. The initial phragmoplast moved from the cell center towards the cell periphery, and it lost fluorescence at its center and became double rings in shape. The expansion orientation of the phragmoplast was not always the same as that of the future new cell wall before it came in contact with the cell wall. The phragmoplast did not usually come in contact with the cell wall simultaneously with its entire length. A portion of the phragmoplast which was earlier in contact with the cell wall disappeared earlier than other portions of the phragmoplast. The duration of contact between any portions of the phragmoplast and the plasma membrane of the cell wall was 15–30 min. The fluorescence intensity of the cytoplasm did not seem to be elevated by the disintegration of the strongly fluorescent phragmoplast. Received August 8, 2002; accepted September 25, 2002; published online March 11, 2003  相似文献   

3.
Abstract

The process of cellularization of the endosperm was studied in Ipomoea purpurea Roth and Cytinus hypocistis L. In both the examined species normal cytochinesis, involving the formation of the phragmoplast, characterizes the change from the nuclear to cellular condition. Nevertheless, some ultrastructural aspects of the cell wall initiation seem to indicate that the modality of freely-growing walls cannot be excluded. The hypothesis of a unique method of wall initiation for the endosperm of the nuclear type, formulated by some Authors, is discussed.  相似文献   

4.
Summary A new species and a new variety ofSpirogyra have been recorded.Spirogyra varshaii spec. nov. has been described and compared to two related species ofSpirogyra. This species has a very distinct subdenticulate to denticulate type of ornamentation of the zygospore wall and differs from the other two related speciesS. chakiense andS. verruculosa in having different dimensions of the zygospores and in the number of chloroplasts. A new variety,Spirogyra chakiense var.lucknowense var. nov. has been described. It differs from the speciesS. chakiense in possessing some differences in the dimensions of the cells and the zygospores from the type species.
Zusammenfassung Eine neue Spezies und eine neue ArtSpirogyra sind eingetragen worden.Spirogyra varshaii Spec. nov. ist beschrieben worden und mit zwei verwandten Spezies verglichen. Diese Spezies hat einen sehr deutlichen unterzahnigen bis zum zahnigen Typus der gestickten Zygosporeswand, und sie unterscheidet sich von den anderen zwei verwandten SpeziesS. chakiense undS. verruculosa daß sie verschiedene Ausdehnungen der Zygosporen und auch eine verschiedene Zahl der Kromatophoren hat. Eine neue ArtSpirogyra chakiense var.lucknowense var. nov. ist auch beschrieben worden. Sie unterscheidet sich von der SpeziesS. chakiense weil sie einigen Unterschieden in Ausdehnungen der Zellen und auch der Zygosporen hat im Vergleich mit der Typusspezies.
  相似文献   

5.
Summary The distribution of F-actin in the phragmoplast/cell plate complex of formaldehyde-fixedAllium root cells was visualized with rhodaminephalloidin (RP). Increased RP fluorescence appears in late anaphase in a broad zone between separating chromosomes. The fluorescence is mostly amorphous in appearance and does not resemble the distinct actin fibers seen in interphase cells. The actin becomes more concentrated near the midplane by telophase and takes the form of a relatively bright layer of fluorescence adjacent to the forming cell plate. This distribution differs markedly from that of phragmoplast microtubules (MTs) which extend back from the plate toward the daughter nuclei. F-actin continues to accumulate in new parts of the expanding phragmoplast, while RP fluorescence gradually decreases near older portions of the plate. It disappears completely near the new wall in most interphase cells. Treatment of root tips with cytochalasin B or D before fixation markedly reduces RP fluorescence, but phragmoplast MTs remain. Colchicine or oryzalin treatment leads to the disappearance of both phragmoplast actin and MTs. The possible function of actin in the phragmoplast/cell plate complex is discussed.Abbreviations CB cytochalasin B - CD cytochalasin D - CIPC isopropyl N-(3-chlorophenyl-)carbamate - DIC differential interference contrast - MT microtubule - PBS phosphate buffered saline - PM plasmalemma - RP rhodamine-phalloidin  相似文献   

6.
Growth responses of Pithophora oedogonia (Mont.) Wittr. and Spirogyra sp. to nine combinations of temperature (15°, 25°, and 35°C) and photon flux rate (50, 100, and 500 μmol·m?2·s?1) were determined using a three-factorial design. Maximum growth rates were measured at 35°C and 500 pmol·m?2·s?1 for P. oedogonia (0.247 d?1) and 25°C and 500 μmol·m?2·s?1 for Spirogyra sp. (0.224 d?1). Growth rates of P. oedogonia were strongly inhibited at 15°C (average decrease= 89%of maximum rate), indicating that this species is warm stenothermal. Growth rates of Spirogyra sp. were only moderately inhibited at 15° and 35°C (average decrease = 36 and 30%, respectively), suggesting that this species is eurythermal over the temperature range employed. Photon flux rate had a greater influence on growth of Spirogyra sp. (31% reduction at 50 pmol·m?2·s?1 and 25°C) than it did on growth of P. oedogonia (16% reduction at 50 μmol·m?2·s?1 and 35°C). Spirogyra sp. also exhibited much greater adjustments to its content of chlorophyll a (0.22–3.34 μg·mg fwt?1) than did P. oedogonia (1.35–3.08 μg·mg fwt?1). The chlorophyll a content of Spirogyra sp. increased in response to both reductions in photon flux rate and high temperatures (35°C). Observed species differences are discussed with respect to in situ patterns of seasonal abundance in Surrey Lake, Indiana, the effect of algal mat anatomy on the internal light environment, and the process of acclimation to changes in temperature and irradiance conditions.  相似文献   

7.
Summary Caulonema tip cells ofFunaria deposit new oblique cross walls of specific morphology and placement by a highly defined reorientation mechanism. In the presence of the purported intracellular Ca2+ antagonist 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), these cross walls form in the proper place but exhibit a distorted morphology. Video microscopy indicates that the deformation takes place during the reorientation of the cell plate from a perpendicular to an oblique configuration. Electron micrographs of TMB-8 treated cells indicate a stabilization of phragmoplast microtubules and a greater amount of vesicles and membrane in the developing cell plate. TMB-8 treated cells also show intense chlortetracycline fluorescence from mitochondria, vesicles and endoplasmic reticulum as compared to untreated cells indicating that TMB-8 is blocking release of Ca2+ from intracellular stores. It is concluded that this may cause distortation of cross walls as they form by delaying vesicle fusion, stabilizing microtubules, and increasing the amount of new wall material in the developing cell plate.Abbreviations CTC chlortetracycline - OsFeCN osmium ferricyanide method - TMB-8 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate  相似文献   

8.
Rensing KH  Samuels AL  Savidge RA 《Protoplasma》2002,220(1-2):0039-0049
Summary.  Trees depend on the secondary vascular cambium to produce cells for new xylem and phloem. The fusiform cells of this lateral meristem are long and narrow, presenting special challenges for arranging the mitotic spindle and phragmoplast. Fusiform cambial cells of Pinus ponderosa and Pinus contorta were studied by cryofixation and cryosubstitution which preserved ultrastructure and phases of cytokinesis with a resolution not previously attained. Membranous structures including the plasma membrane, tonoplast, and those of other organelles were smooth and unbroken, indicating that they were preserved while the protoplasm was in a fully turgid state. Mitotic spindles separated daughter chromosomes diagonally across the radial width of the cells. The cell plate was initiated at an angle to the cell axis between the anaphase chromosomes by a microtubule array which organized vesicles at the phragmoplast midline. Within the phragmoplast, vesicles initially joined across thin tubular projections and then amalgamated into a tubulo-vesicular network. Axial expansion of the cell plate generated two opposing phragmoplasts connected by a thin, extended bridge of cell plate and cytoplasm that was oriented along the cell axis. In the cytoplasmic bridge trailing each phragmoplast, the callose-rich tubular network gradually consolidated into a fenestrated plate and then a complete cell wall. Where new membrane merged with old, the parent plasmalemma appeared to be loosened from the cell wall and the membranes joined via a short tubulo-vesicular network. These results have not been previously reported in cambial tissue, but the same phases of cytokinesis have been observed in cryofixed root tips and suspension-cultured cells of tobacco. Received February 11, 2002; accepted May 31, 2002; published online October 31, 2002 RID="*" ID="*" Correspondence and reprints: Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada. Abbreviations: CFS cryofixation and cryosubstitution; ER endoplasmic reticulum; HPF high-pressure freezing; PPB preprophase band.  相似文献   

9.
 The ultrastructure of periclinally dividing fusiform cells was studied in the vascular cambium of Robinia pseudoacacia. Fusiform cell division begins in April at Madison, Wisconsin, when the cambial cells still have many characteristics of a dormant cambium. Soon afterward, the cambial cells acquire the appearance typical of an active cambium. Sequential phases of the microtubule cycle were documented: cortical microtubules bordering the cell wall during interphase, perinuclear microtubules preceding formation of the mitotic spindle, spindle microtubules, and phragmoplast microtubules. A preprophase band of microtubules was not encountered. An extended phragmosome was not encountered in periclinally dividing fusiform cells. During cytokinesis, the phragmosome is represented by a broad cytoplasmic plate which precedes the developing phragmoplast and cell plate as they migrate toward the ends of the cell.  相似文献   

10.
The phragmoplast, a structure crucial for the completion of cytokinesis in plant cells, is composed of antiparallel microtubules (MTs) and actin filaments (AFs). However, how the parallel structure of phragmoplast MTs and AFs is maintained, especially during centrifugal phragmoplast expansion, remains elusive. Here, we analyzed a new Arabidopsis thaliana MT and AF crosslinking protein (AtMAC). When AtMAC was deleted, the phragmoplast showed disintegrity during centrifugal expansion, and the resulting phragmoplast fragmentation led to incomplete cell plates. Overexpression of AtMAC increased the resistance of phragmoplasts to depolymerization and caused the formation of additional phragmoplasts during cytokinesis. Biochemical experiments showed that AtMAC crosslinked MTs and AFs in vitro, and the truncated AtMAC protein, N-CC1, was the key domain controlling the ability of AtMAC. Further analysis showed that N-CC1(51–154) is the key domain for binding MTs, and N-CC1(51–125) for binding AFs. In conclusion, AtMAC is the novel MT and AF crosslinking protein found to be involved in regulation of phragmoplast organization during centrifugal phragmoplast expansion, which is required for complete cytokinesis.  相似文献   

11.
The actin cytoskeleton (microfilaments, MFs) accompanies the tubulin cytoskeleton (microtubules) during the meiotic division of the cell, but knowledge about the scope of their physiological competence and cooperation is insufficient. To cast more light on this issue, we analysed the F-actin distribution during the meiotic division of the Psilotum nudum sporocytes. Unfixed sporangia of P. nudum were stained with rhodamine-phalloidin and 4′,6-diamidino-2-phenylindole dihydrochloride, and we monitored the changes in the actin cytoskeleton and nuclear chromatin throughout sporogenesis. We observed that the actin cytoskeleton in meiotically dividing cells is not only part of the kariokinetic spindle and phragmoplast but it also forms a well-developed network in the cytoplasm present in all phases of meiosis. Moreover, in telophase I F-actin filaments formed short-lived phragmoplast, which was adjacent to the plasma membrane, exactly at the site of future cell wall formation. Additionally, the meiocytes were pre-treated with cytochalasin-B at a concentration that causes damage to the MFs. This facilitated observation of the effect of selective MFs damage on the course of meiosis and sporogenesis of P. nudum. Changes were observed that occurred in the cytochalasin-treated cells: the daughter nuclei were located abnormally close to each other, there was no formation of the equatorial plate of organelles and, consequently, meiosis did not occur normally. It seems possible that, if the actin cytoskeleton only is damaged, regular cytokinesis will not occur and, hence, no viable spores will be produced.  相似文献   

12.
Summary The aim of this study was to search for uncharacterized components of the plant cytoskeleton using monoclonal antibodies raised against spermatozoids of the fernPteridium (Marc et al. 1988). The cellular distribution of crossreacting immunoreactive material during the division cycle in wheat root tip cells was determined by immunofluorescence microscopy and compared to the fluorescence pattern obtained with antitubulin. Five antibodies are of special interest. Pas1D3 and Pas5F4 detect a diffuse cytoplasmic material, which, during mitosis, follows the distribution of microtubules (MTs) at the nuclear surface and in the preprophase band (PPB), spindle and phragmoplast. The immunoreactive material codistributes specifically with MT arrays of the mitotic apparatus and does not associate with interphase cortical MTs. Pas5D8 is relevant to the PPB and spatial control of cytokinesis. It binds in a thin layer at the cytoplasmic surface throughout the cell cycle, except when its coverage is transiently interrupted by an exclusion zone at the PPB site and later at the same site when the phragmoplast fuses with the parental cell wall.Pas2G6 reacts with a component of basal bodies and the flagellar band in thePteridium spermatozoid and recognizes irregularly shaped cytoplasmic vesicles in wheat cells. During interphase these particles form a cortical network.Pas6D7 binds to dictyosomes and dictyosome vesicles. At anaphase the vesicles accumulate at the equator and subsequently condense into the cell plate.Abbreviations MT microtubule - PPB preprophase band  相似文献   

13.
The cellulose system of the cell wall ofMicrasterias denticulataandMicrasterias rotatawas analyzed by diffraction contrast transmission electron microscopy, electron diffraction, and X-ray analysis. The studies, achieved on disencrusted cell ghosts, confirmed that the cellulose microfibrils occurred in crisscrossed bands consisting of a number of parallel ribbon-like microfibrils. The individual microfibrils had thicknesses of 5 nm for a width of around 20 nm, but in some instances, two or three microfibrils merged into one another to yield larger monocrystalline domains reaching up to 60 nm in lateral size. The orientation of the cellulose ofMicrasteriasis very unusual, as it was found that in the cell wall, the equatorial crystallographic planes of cellulose having ad-spacing of 0.60 nm [(110) in the Iβ cellulose unit cell defined by Sugiyamaet al.,1991,Macromolecules24, 4168–4175] were oriented perpendicular to the cell wall surface. Up to now, such orientation has been found only inSpirogyra,another member of the Zygnemataceae group. The unusual structure of the secondary wall cellulose ofMicrasteriasmay be tentatively correlated with the unique organization of the terminal complexes, which in this alga occur as hexagonal arrays of rosettes.  相似文献   

14.
Pan R  Lee YR  Liu B 《Planta》2004,220(1):156-164
During plant cytokinesis, kinesin-related motor proteins are believed to play critical roles in microtubule organization and vesicle transport in the phragmoplast. Previously, we reported that the motor AtPAKRP1 was associated with the plus end of phragmoplast microtubules in Arabidopsis thaliana [Lee Y-RJ, Liu B (2000) Curr Biol 10:797–800]. In this paper, we report a full-length cDNA from the same organism, which encodes a polypeptide 74% identical to AtPAKRP1. This AtPAKRP1-like protein—AtPAKRP1L—and AtPAKRP1 share similar domain structures along the polypeptides. Peptide antibodies were raised and purified to distinguish the two polypeptides in vitro and in vivo. When monospecific anti-AtPAKRP1 and anti-AtPAKRP1L antibodies were used in immunofluorescence, they both decorated the plus end of phragmoplast microtubules at all stages of phragmoplast development. Their localization patterns were indistinguishable from each other. By using bacterially expressed fusion proteins of motor-less versions of both polypeptides, it was revealed that AtPAKRP1 and AtPAKRP1L were able to interact with themselves and with each other. Using T-DNA insertional mutants, it was also demonstrated that AtPAKRP1 and AtPAKRP1L were not required for each others localization. Our results therefore indicate that AtPAKRP1 and AtPAKRP1L are both expressed in the same cells, and likely have identical functions in the phragmoplast by forming either homodimers or heterodimers.Abbreviations AtPAKRP1 Arabidopsis thaliana phragmoplast-associated kinesin-related protein 1 - AtPAKRP1L A. thaliana phragmoplast-associated kinesin-related protein 1-like - GST Glutathione S-transferase - KRP Kinesin-related protein - 6×His Six-histidine tag  相似文献   

15.
Ophioglossum petiolatum . Unlike Angiopteris (Marattiales), which is monoplastidic, Ophioglossum undergoes polyplastidic meiosis like members of the fern-seed plant clade. The meiotic spindle is distinctly multipolar in origin and is consolidated into a bipolar spindle that is variously twisted and curved to accommodate the large number of chromosomes. Although a phragmoplast forms after first meiosis, no wall is deposited. Instead, an organelle band consisting of intermingled plastids and mitochondria is formed in the equatorial region between the dyad domains. Following second meiosis, a complex of phragmoplasts forms among sister and non-sister nuclei. Cell plates are deposited first between sister nuclei and then in the region of the organelle band resulting in a tetrad of spores each with a equal allotment of organelles. Received 30 January 2001/ Accepted in revised form 24 April 2001  相似文献   

16.
Summary Endosperm cellularization in Ranunculus sceleratus was studied in terms of the initiation of cell-wall formation in the coenocytic endosperm. The first endosperm cell walls were in an anticlinal position relative to the cell wall of the embryo sac and originated from the cell plates and not from wall ingrowths from the embryo-sac wall itself. Alveolar endosperm was formed 3 days after pollination. Microtubules were associated with the freely growing wall ends of the anticlinal walls and were observed in various orientations that generally ranged from angles of 45 ° to 90 ° to the plane of the wall. They were absent in the regions where vesicles had already fused. These microtubules may function in maintaining the growth and the direction of growth of the anticlinal wall until cellularization is completed. At the site where three neighbouring alveoli share their freely growing wall ends, remarkable configurations of microtubules were observed: in each alveolus, microtubules ran predominantly parallel to the bisector of the angle formed by the common walls. These microtubules may form a physically stable framework and maintain the direction of growth of the wall edges. It is concluded that the growing edge of the anticlinal endosperm wall and its associated microtubules are a special continuum of the original phragmoplast that gave rise to the anticlinal wall.  相似文献   

17.
Cytokinesis in plants involves the formation of unique cellular structures such as the phragmoplast and the cell plate, both of which are required to divide the cell after nuclear division. In order to isolate genes that are involved in de novo cell wall formation, we performed a large-scale, microscope-based screen for Arabidopsis mutants that severely impair cytokinesis in the embryo. We recovered 35 mutations that form abnormally enlarged cells with multiple, often polyploid nuclei and incomplete cell walls. These mutants represent seven genes, four of which have previously been implicated in phragmoplast or cell plate function. Mutations in two loci show strongly reduced transmission through the haploid gametophytic generation. Molecular cloning of both corresponding genes reveals that one is represented by hypomorphic alleles of the kinesin-5 gene RADIALLY SWOLLEN 7 (homologous to tobacco kinesin-related protein TKRP125), and that the other gene corresponds to the Arabidopsis FUSED ortholog TWO-IN-ONE (originally identified based on its function in pollen development). No mutations that completely abolish the formation of cross walls in diploid cells were found. Our results support the idea that cytokinesis in the diploid and haploid generations involve similar mechanisms.  相似文献   

18.
Large-scale collections of Zygnemataceae in the continental United States of America were made between March and August in 1982, 1983, and 1984. Collections were made on a 31000-km transect through 35 states. Zygnemataceae were found at 318 sites was inspected. Temperature average 19°C and pH averaged 6.1 over all sites. Algal strains in collections were identified to genus, characterized for filament width, chloroplast number, and end wall type, then photographed and isolated into unialgal culture. Spirogyra was the most common genus collected(632 strains), followed in abundance by Zygnema (174 Strains) and Mougeotia (135 strains). These three genera contained 95% of the strains collected and were equally widely distributed. Strains of the three genera frequently occurred together; no genus displayed evidence of habitat specialization among the three habitat types: flowing water, permanent ponds or lakes, and temporary pools. In Spirogyra, strains with plane (flat) end walls were four times more abundant than those with replicate (interlocking) end walls. Spirogyra with plane end walls showed more variation in filament width than Zygnema, Mougeotia, or Spirogyra with replicate end walls. In Spirogyra with plane end walls, filament width was correlted with nuclear DNA content and number of strains found per collection site was twice that of other genera or Spirogyra, with replicate end walls. Spirogyra strains wider than 70 μm were more frequent on the northern part of the transect. It is proposed that polyploidy may be of widespread occurrence in Spirogyra with plane end walls and that associated morphological plasticity may account for the high apparent specied diversity and survival of the genus in a wider variety of microhabitats than occupied by other Zygnemataceae.  相似文献   

19.
The unique cytokinetic apparatus of higher plant cells comprises two cytoskeletal systems: a predictive preprophase band of microtubules (MTs), which defines the future division site, and the phragmoplast, which mediates crosswall formation after mitosis. We review features of plant cell division in an evolutionary context and from the viewpoint that the cell is a domain of cytoplasm (cytoplast) organized around the nucleus by a cytoskeleton consisting of a single "tensegral" unit. The term "tensegrity" is a contraction of "tensional integrity" and the concept proposes that the whole cell is organized by an integrated cytoskeleton of tension elements (e.g., actin fibers) extended over compression-resistant elements (e.g., MTs).During cell division, a primary role of the spindle is seen as generating two cytoplasts from one with separation of chromosomes a later, derived function. The telophase spindle separates the newly forming cytoplasts and the overlap between half spindles (the shared edge of two new domains) dictates the position at which cytokinesis occurs. Wall MTs of higher plant cells, like the MT cytoskeleton in animal and protistan cells, spatially define the interphase cytoplast. Redeployment of actin and MTs into the preprophase band (PPB) is the overt signal that the boundary between two nascent cytoplasts has been delineated. The "actin-depleted zone" that marks the site of the PPB throughout mitosis may be a more persistent manifestation of this delineation of two domains of cortical actin. The growth of the phragmoplast is controlled by these domains, not just by the spindle. These domains play a major role in controlling the path of phragmoplast expansion. Primitive land plants show different morphological changes that reveal that the plane of division, with or without the PPB, has been determined well in advance of mitosis.The green alga Spirogyra suggests how the phragmoplast system might have evolved: cytokinesis starts with cleavage and then actin-related determinants stimulate and positionally control cell-plate formation in a phragmoplast arising from interzonal MTs from the spindle. Actin in the PPB of higher plants may be assembling into a potential furrow, imprinting a cleavage site whose persistent determinants (perhaps actin) align the outgrowing edge of the phragmoplast, as in Spirogyra. Cytochalasin spatially disrupts polarized mitosis and positioning of the phragmoplast. Thus, the tensegral interaction of actin with MTs (at the spindle pole and in the phragmoplast) is critical to morphogenesis, just as they seem to be during division of animal cells. In advanced green plants, intercalary expansion driven by turgor is controlled by MTs, which in conjunction with actin, may act as stress detectors, thereby affecting the plane of division (a response clearly evident after wounding of tissue). The PPB might be one manifestation of this strain detection apparatus.  相似文献   

20.
Summary The cytokinetic apparatus in microsporogenesis lacks a preprophase band of microtubules and the selection of cytokinetic planes is dependent upon disposition of nuclei which define cytoplasmic domains via post-meiotic radial systems of microtubules. Meiotic cytokinesis was investigated in hybrid moth orchids (Phalaenopsis) exhibiting irregular patterns of cytokinesis. In these polliniate orchids, spindle orientation is imprecise, and the tetrad nuclei (therefore the microspores) may be in rhomboidal, tetrahedral or linear arrangement. The hybrid Sabine Queen (section Phalaenopsis) regularly undergoes simultaneous cytokinesis, as is common in orchids. The hybrid Vista Rainbow (section Amboinenses) produces either a complete dyad wall, a partial wall, or no wall after first nuclear division. In all cases, a first division phragmoplast is initiated in the interzonal region and expands centrifugally into the peripheral cytoplasm. Fluorescence microscopy shows that the phragmoplast consists of fusiform bundles of microtubules and Factin bisected by a non-fluorescent zone. If a cell plate fails to form, a band of organelles polarized in the equatorial region effectively divides the cell into two domains. The organelles disperse when a dyad wall is complete, but tend to remain polarized around an incomplete wall. In four-nucleate coenocytes, the usual interzonal microtubules between sister nuclei (primary) form slightly in advance of secondary arrays between non-sister nuclei. Phragmoplasts are initiated in sites defined by the post-meiotic microtubule arrays.Abbreviations CLSM confocal laser scanning microscope/microscopy - DMSO dimethylsulfoxide - FITC fluorescein isothiocyanate - PPB preprophase band of microtubules - TEM transmission electron microscope/microscopy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号