首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The Xenopus cerberus gene encodes a secreted factor expressed in the Spemann organizer that can cause ectopic head formation when its mRNA is injected into Xenopus embryos. In mouse, the cerberus-related gene, Cerr1, is expressed in the anterior mesendoderm that underlies the presumptive anterior neural plate and its expression is downregulated in Lim1 headless embryos. To determine whether Cerr1 is required for head formation we generated a null mutation in Cerr1 by gene targeting in mouse embryonic stem cells. We found that head formation is normal in Cerr1(-/-) embryos and we detected no obvious phenotypic defects in adult Cerr1(-/-) mice. However, in embryonic tissue layer recombination assays, Cerr1(-/-) presomitic/somitic mesoderm, unlike Cerr1-expressing wild-type presomitic/somitic mesoderm, was unable to maintain expression of the anterior neural marker gene Otx2 in ectoderm explants. These findings suggest that establishment of anterior identity in the mouse may involve the action of multiple functionally redundant factors.  相似文献   

3.
Mouse cerberus-like (cer-l) is a member of the Cerberus/Dan family of secreted factors. As other members of this family of proteins, Cer-l functions in the extracellular space, inhibiting signaling molecules. Here we show that the neural-inducing and mesoderm-inhibiting activities of Cer-l result from specific binding to BMP and Nodal molecules, respectively. These properties resemble the ones from the related factor Xenopus Cerberus. However, Xenopus Cerberus in addition to BMP4 and Nodal also binds to and inhibits Wnt proteins. We show that Cer-l does not directly inhibit Wnt signals. A null allele of the mouse Cer-l gene was generated by targeted inactivation in ES cells. Homozygous embryos show no anterior patterning defects, are born alive, and are fertile. Since mouse Cer-l and Xenopus Cerberus differ in biochemical activities, we propose the existence of additional members of this family of inhibitors, which may compensate for the loss of cer-l.  相似文献   

4.
Sc1 is an extracellular matrix-associated protein whose function is unknown. During early embryonic development, Sc1 is widely expressed, and from embryonic day 12 (E12), Sc1 is expressed primarily in the developing nervous system. This switch in Sc1 expression at E12 suggests an importance for nervous-system development. To gain insight into Sc1 function, we used gene targeting to inactivate mouse Sc1. The Sc1-null mice showed no obvious deficits in any organs. These mice were born at the expected ratios, were fertile, and had no obvious histological abnormalities, and their long-term survival did not differ from littermate controls. Therefore, the function of Sc1 during development is not critical or, in its absence, is subserved by another protein.  相似文献   

5.
Ubiquinone (UQ) is a lipid found in most biological membranes and is a co-factor in many redox processes including the mitochondrial respiratory chain. UQ has been implicated in protection from oxidative stress and in the aging process. Consequently, it is used as a dietary supplement and to treat mitochondrial diseases. Mutants of the clk-1 gene of the nematode Caenorhabditis elegans are fertile and have an increased life span, although they do not produce UQ but instead accumulate a biosynthetic intermediate, demethoxyubiquinone (DMQ). DMQ appears capable to partially replace UQ for respiration in vivo and in vitro. We have produced a vertebrate model of cells and tissues devoid of UQ by generating a knockout mutation of the murine orthologue of clk-1 (mclk1). We find that mclk1-/- embryonic stem cells and embryos accumulate DMQ instead of UQ. As in the nematode mutant, the activity of the mitochondrial respiratory chain of -/- embryonic stem cells is only mildly affected (65% of wild-type oxygen consumption). However, mclk1-/- embryos arrest development at midgestation, although earlier developmental stages appear normal. These findings indicate that UQ is necessary for vertebrate embryonic development but suggest that mitochondrial respiration is not the function for which UQ is essential when DMQ is present.  相似文献   

6.
The heterotetrameric adaptor protein (AP) complexes AP-1, AP-2, AP-3, and AP-4 play key roles in transport vesicle formation and cargo sorting in post-Golgi trafficking pathways. Studies on cultured mammalian cells have shown that AP-2 mediates rapid endocytosis of a subset of plasma membrane receptors. To determine whether this function is essential in the context of a whole mammalian organism, we carried out targeted disruption of the gene encoding the mu2 subunit of AP-2 in the mouse. We found that mu2 heterozygous mutant mice were viable and had an apparently normal phenotype. In contrast, no mu2 homozygous mutant embryos were identified among blastocysts from intercrossed heterozygotes, indicating that mu2-deficient embryos die before day 3.5 postcoitus (E3.5). These results indicate that AP-2 is indispensable for early embryonic development, which might be due to its requirement for cell viability.  相似文献   

7.
The olfactory system provides an excellent model in which to study cell proliferation, migration, differentiation, axon guidance, dendritic morphogenesis, and synapse formation. We report here crucial roles of the Arx homeobox gene in the developing olfactory system by analyzing its mutant phenotypes. Arx protein was expressed strongly in the interneurons and weakly in the radial glia of the olfactory bulb, but in neither the olfactory sensory neurons nor bulbar projection neurons. Arx-deficient mice showed severe anatomical abnormalities in the developing olfactory system: (1) size reduction of the olfactory bulb, (2) reduced proliferation and impaired entry into the olfactory bulb of interneuron progenitors, (3) loss of tyrosine hydroxylase-positive periglomerular cells, (4) disorganization of the layer structure of the olfactory bulb, and (5) abnormal axonal termination of olfactory sensory neurons in an unusual axon-tangled structure, the fibrocellular mass. Thus, Arx is required for not only the proper developmental processes of Arx-expressing interneurons, but also the establishment of functional olfactory neural circuitry by affecting Arx-non-expressing sensory neurons and projection neurons. These findings suggest a likely role of Arx in regulating the expression of putative instructive signals produced in the olfactory bulb for the proper innervation of olfactory sensory axons.  相似文献   

8.
Fu X  Sun H  Klein WH  Mu X 《Developmental biology》2006,299(2):424-437
During vertebrate retinal development, the seven retinal cell types differentiate sequentially from a single population of retinal progenitor cells (RPCs) and organize themselves into a distinct laminar structure. The purpose of this study was to determine whether beta-catenin, which functions both as a nuclear effector for the canonical Wnt signaling pathway and as a regulator of cell adhesion, is required for retinal neurogenesis or lamination. We used the Cre-loxP system to either eliminate beta-catenin or to express a constitutively active form during retinal neurogenesis. Eliminating beta-catenin did not affect cell differentiation, but did result in the loss of the radial arrangement of RPCs and caused abnormal migration of differentiated neurons. As a result, the laminar structure was massively disrupted in beta-catenin-null retinas, although all retinal cell types still formed. In contrast to other neural tissues, eliminating beta-catenin did not significantly reduce the proliferation rate of RPCs; likewise, activating beta-catenin ectopically in RPCs did not result in overproliferation, but loss of neural retinal identity. These results indicate that beta-catenin is essential during retinal neurogenesis as a regulator of cell adhesion but not as a nuclear effector of the canonical Wnt signaling pathway. The results further imply that retinal lamination and retinal cell differentiation are genetically separable processes.  相似文献   

9.
10.
Vitamin E (alpha-tocopherol) was discovered 80 years ago to be an indispensable nutrient for reproduction in the female. However, it has not been clarified when or where vitamin E is required during pregnancy. We examined the role of alpha-tocopherol in pregnancy using alpha-tocopherol transfer protein (Ttpa)-deficient mice fed specific alpha-tocopherol diets that led to daily, measurable change in plasma alpha-tocopherol levels from nearly normal to almost undetectable levels. A dietary supplement of alpha-tocopherol to pregnant Ttpa-/- (homozygous null) mice was shown to be essential for maintenance of pregnancy from 6.5 to 13.5 days postcoitum but found not to be crucial before or after this time span, which corresponds to initial development and maturation of the placenta. In addition, exposure to a low alpha-tocopherol environment after initiation of placental formation might result in necrosis of placental syncytiotrophoblast cells, followed by necrosis of fetal blood vessel endothelial cells. When Ttpa(-/-)-fertilized eggs were transferred into Ttpa+/+ (wild-type) recipients, plasma alpha-tocopherol concentrations in the Ttpa-/- fetuses were below the detection limit but the fetuses grew normally. These results indicate that alpha-tocopherol is indispensable for the proliferation and/or function of the placenta but not necessary for development of the embryo itself.  相似文献   

11.
12.
13.
Paraxial protocadherin (PAPC) is a cell adhesion molecule that marks cells undergoing convergence-extension cell movements in Xenopus and zebrafish gastrulating embryos. Here a mouse homologue (mpapc) was identified and characterized. During early- to mid-gastrulation, mpapc is expressed in the primitive streak as the trunk mesoderm undergoes morphogenetic cell movements. At head-fold stage mpapc expression becomes localized to paraxial regions in which somites are formed in the segmental plate. At later stages, mpapc displays a complex expression pattern in cerebral cortex, olfactory bulb, inferior colliculus, and in longitudinal stripes in hindbrain. To analyze the effect of the loss of PAPC function during mouse development, a null allele of the mouse papc gene was generated. Homozygous animals show no defects in their skeleton and are viable and fertile.  相似文献   

14.
The stanniocalcin 1 (STC1) gene is expressed in a wide variety of tissues, including the kidney, prostate, thyroid, bone, and ovary. STC1 protein is considered to have roles in many physiological processes, including bone development, reproduction, wound healing, angiogenesis, and modulation of inflammatory response. In fish, STC1 is a hormone that is secreted by the corpuscles of Stannius and is involved in calcium and phosphate homeostasis. To determine the role of STC1 in mammals, we generated Stc1-null mice by gene targeting. The number of Stc1-/- mice obtained was in accordance with Mendelian ratios, and both males and females produced offspring normally. No anatomical or histological abnormalities were detected in any tissues. Our results demonstrated that Stc1 function is not essential for growth or reproduction in the mouse.  相似文献   

15.
16.
17.
Global demethylation of DNA which marks the onset of development occurs asynchronously in the mouse; paternal DNA is demethylated at the the zygote stage, whereas maternal DNA is demethylated later in development. The biological function of such asymmetry and its underlying mechanisms are currently unknown. To test the hypothesis that the early demethylation of male DNA may be associated with protamine-histone exchange, we ,used round spermatids, whose DNA is still associated with histones, for artificial fertilization (round spermatid injection or ROSI), and compared the level of methylation of metaphase chromosomes in the resulting zygotes with the level of methylation in zygotes obtained after fertilization using mature sperm heads (intracytoplasmic sperm injection or ICSI). In contrast to ICSI-derived zygotes, ROSI-derived zygotes possessed only slightly demethylated paternal DNA. Both types of zygotes developed to term with similar rates which shows that hypomethylation of paternal DNA at the zygotic metaphase is not essential for full development in mice. Incorporation of exogenously expressed histone H2BYFP into paternal pronuclei was significantly higher in ICSI-derived zygotes than in ROSI-derived zygotes. Surprisingly, in the latter the incorporation of histone H2BYFP into the paternal pronucleus was still significantly higher than into the maternal pronucleus, suggesting that some exchange of chromatin-associated proteins occurs not only after ICSI but also after ROSI. This may explain why after ROSI, some transient demethylation of paternal DNA occurs early after fertilization, thus providing support for the hypothesis regarding the link between paternal DNA demethylation and protamine/histone exchange.  相似文献   

18.
In mammals, the three classical ras genes encode four highly homologous proteins, N-Ras, H-Ras, and the isoforms K-Ras 4A and 4B. Previous studies have shown that K-ras is essential for mouse development and that while K-ras 4A and 4B are expressed during development, K-ras 4A expression is regulated temporally and spatially and occurs in adult kidney, intestine, stomach, and liver. In the present study, the pattern of K-ras 4A expression was examined in a wide range of wild-type adult mouse tissues, and gene targeting was used to generate K-ras 4A-deficient mice to examine its role in development. It was found that K-ras 4A is also expressed in uterus, lung, pancreas, salivary glands, seminal vesicles, bone marrow cells, and cecum, where it was the major K-Ras isoform expressed. Mating between K-ras(tmDelta4A/+) mice produced viable K-ras(tmDelta4A/tmDelta4A) offspring with the expected Mendelian ratios of inheritance, and these mice expressed the K-ras 4B splice variant only. K-ras(tmDelta4A/tmDelta4A) mice were fertile and showed no histopathological abnormalities on inbred (129/Ola) or crossbred (129/Ola x C57BL/6) genetic backgrounds. The results demonstrate that K-Ras 4A, like H- and N-Ras, is dispensable for normal mouse development, at least in the presence of functional K-Ras 4B.  相似文献   

19.
A20, a tumor suppressor in several types of lymphomas, has been suggested to be an nuclear factor kappa B (NF-κB) target gene; conversely, the deubiquitylation activity of A20 is required for inhibition of Bcl10-mediated activation of NF-κB. BCL10, which is activated in a recurrent chromosomal translocation that causes human mucosa-associated lymphoid tissue lymphomas, is known to be essential for NF-κB activation in B cells. We report here that Bcl10 upregulates endogenous A20 gene expression in B lymphocytes upon B-cell receptor engagement of anti-IgM. Transient transfection assays in HEK 293 cells indicate that Bcl10 can activate the A20 promoter, which contains NF-κB-binding sites. We also construct a theoretical structure of mouse Bcl10 and analyze the structure by molecular modeling and molecular dynamics simulation. Lastly, we found that marginal zone B cells from BCL10-transgenic mice proliferate more readily than wild-type B cells, whereas, surprisingly, the transgenic follicular B cells from these mice proliferate comparably to wild-type cells. Collectively, our results indicate that Bcl10 is an essential regulator of A20 gene expression and B-cell proliferation mediated by B-cell receptor signaling.  相似文献   

20.
Khan  Ranjha  Ye  Jingwei  Yousaf  Ayesha  Shah  Wasim  Aftab  Ayesha  Shah  Basit  Zaman  Qamar  Zubair  Muhammad  Shi  Qinghua  Jiang  Xiaohua 《Molecular biology reports》2020,47(7):5207-5213
Molecular Biology Reports - Thousands of genes are involved in spermatogenesis, however, the functional roles of most these genes for male fertility remain to be discovered. This research focused...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号