首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structure and functions of tumor necrosis factor-alpha converting enzyme   总被引:1,自引:0,他引:1  
Tumor necrosis factor-alpha converting enzyme (TACE) is the first described and best characterized secretase. In this review the structure and the possible roles for TACE are summarized. The substrate specificity and the regulation of TACE activity as well as redundancy and possible cooperations of distinct secretases are also discussed.  相似文献   

2.
Fluorogenic peptide substrates with fluorophore/quencher-capped ends have found extensive use in monitoring protease activity in the screening of small-molecule libraries for protease inhibitors. We report here the identification and characterization of a fluorogenic substrate for tumor necrosis factor-alpha converting enzyme (TACE). This substrate is a 10-amino-acid peptide (LAQAVRSSSR) capped with an o-aminobenzoyl group on the N-terminal end and with a 3-(2,4-dinitrophenyl)-L-2,3-diaminopropionic amide group on the C-terminal end. Exhaustive enzymatic conversion of the substrate to products resulted in a fluorescence enhancement of -11-fold. A single cleavage occurred at the A-V scissile bond of the peptide. The validity of this fluorimetric assay for TACE was corroborated by an independent HPLC method. Interestingly, the hydrolysis of the substrate displayed positive cooperativity with a Hill coefficient of 1.5, while the hydrolysis of the corresponding uncapped peptide displayed Michaelis-Menten kinetics. A k(cat) value of 21.6 s(-1) and an S(0.5) value of 342 microM were obtained for the fluorogenic substrate. The addition of the two capping groups on the two ends of the peptide enhanced the k(cat) value by 64-fold. Nine additional decapeptides that contained the same capping groups on the two ends and substitutions at the P1 and P1' sites were also tested. TACE appears to slightly prefer the A-V scissile bond. The enzyme also cleaves scissile bonds such as F-V, A-I, and A-L efficiently.  相似文献   

3.
Tumor necrosis factor-alpha converting enzyme.   总被引:4,自引:0,他引:4  
Tumor necrosis factor-alpha converting enzyme (TACE/ADAM17/CD156q) is a member of the 'A Disintegrin And Metalloprotease', or ADAM, family. It is a multi-domain, type I transmembrane protein that includes an extracellular zinc-dependent protease domain. TACE expression is largely constitutive, but the surface pool is downregulated following cell activation. Cleavage by TACE generates the soluble forms of tumor necrosis factor, transforming growth factor-alpha, and other proteins from their membrane-bound precursors (a phenomenon termed 'shedding'). The recognition of substrates by TACE is poorly understood, but sites distal to the active site are probably involved, and in at least some cases both enzyme and substrate must be membrane-anchored. Cell-activators increase the rate of shedding. Activator-induced shedding is mediated by intracellular kinase cascades, but how these cascades affect the shedding machinery is unknown. The pharmaceutical industry is attempting to design specific TACE inhibitors to treat inflammatory diseases.  相似文献   

4.
TNF—α转换酶的结构特征及抑制剂   总被引:3,自引:0,他引:3  
Du ZY  Li XY  Ye QZ 《生理科学进展》1999,30(3):245-248
肿瘤环因子-α转换酶(tumor nrcrosis factor-α conve rting enzyme,TACE)将26kD膜结合型TNF-α前体水解为具有生物活性的可溶性17kD TNF-α。TACE基因克隆的成功,主宰其为金属水解蛋白(adamalysin)家族的膜结合型异整合素金属蛋白酶。发现许多金属蛋白酶抑制剂hydroxamate类化全物能抑制TACE活性阻断TNF-α释放,并保护脓毒  相似文献   

5.
Many membrane-bound proteins, including cytokines, receptors, and growth factors, are proteolytically cleaved to release a soluble form of their extracellular domain. The tumor necrosis factor (TNF)-alpha converting enzyme (TACE/ADAM-17) is a transmembrane metalloproteinase responsible for the proteolytic release or "shedding" of several cell-surface proteins, including TNF and p75 TNFR. We established a TACE-reconstitution system using TACE-deficient cells co-transfected with TACE and substrate cDNAs to study TACE function and regulation. Using the TACE-reconstitution system, we identified two additional substrates of TACE, interleukin (IL)-1R-II and p55 TNFR. Using truncations and chimeric constructs of TACE and another ADAM family member, ADAM-10, we studied the function of the different domains of TACE in three shedding activities. We found that TACE must be expressed with its membrane-anchoring domain for phorbol ester-stimulated shedding of TNF, p75 TNFR, and IL-1R-II, but that the cytoplasmic domain is not required for the shedding of these substrates. The catalytic domain of ADAM-10 could not be functionally substituted for that of TACE. IL-1R-II shedding required the cysteine-rich domain of TACE as well as the catalytic domain, whereas TNF and p75 TNFR shedding required only the tethered TACE catalytic domain.  相似文献   

6.
Modification of the P(1)' substituent of macrocyclic matrix metalloproteinase (MMP) inhibitors provided compounds that are selective for inhibition of tumor necrosis factor-alpha converting enzyme (TACE) over MMP-1 and MMP-2. Several analogues potently inhibited the release of TNF-alpha in a THP-1 cellular assay. Compounds containing a trimethoxyphenyl group in the P(1)' substituent demonstrated TACE selectivity across several series of hydroxamate-based inhibitors.  相似文献   

7.
A novel series of phosphonamide-based inhibitors of tumor necrosis factor-alpha converting enzyme (TACE) was discovered by structural modification of tetrahydroisoquinoline derivative 1b, which was extremely weak inhibitor of TACE. (S)-Isomer at the phosphorus atom (7b) displayed potent inhibition for TACE, while selectivity sparing MMP-1, -3, and -9.  相似文献   

8.
9.
Using a pyrimidine-2,4,6-trione motif as a zinc-binding group, a series of selective inhibitors of tumor necrosis factor-alpha converting enzyme (TACE) was discovered. Optimization of initial lead 1 resulted in a potent inhibitor (51), with an IC(50) of 2 nM in a porcine TACE assay. To the best of our knowledge, compound 51 and related analogues represent first examples of non-hydroxamate-based inhibitors of TACE with single digit nanomolar potency.  相似文献   

10.
New inhibitors of tumor necrosis factor-alpha converting enzyme (TACE) were discovered with a pyrimidine-2,4,6-trione in place of the commonly used hydroxamic acid. These non-hydroxamate TACE inhibitors were developed by incorporating a 4-(2-methyl-4-quinolinylmethoxy)phenyl group, an optimized TACE selective P1' group. Several leads were identified with IC50 values around 100 nM in a porcine TACE assay and selective over MMP-1, -2, -9, -13, and aggrecanase.  相似文献   

11.
Tumor necrosis factor-alpha (TNF-α) converting enzyme (TACE), a member of the family of metalloproteinase disintegrin proteins, is responsible for the conversion of inactive TNF-α precursor form to active mature form. TNF-α is a pleiotropic cytokine that contributes to cellular immunity and inflammatory response in wide range of inflammatory pathologies. Although a large number of studies indicate the use of TACE inhibitors, which prevents processing of TNF-α as potential therapeutic drugs for the treatment of inflammatory diseases including rheumatoid arthritis, Crohn's disease and cancer, very few studies indicate its use in ocular pathologies. It is still not clearly understood how the TACE-mediated shedding of cytokines and growth factors in various ocular tissues plays a critical role in the cytotoxic signals causing tissue dysfunction and damage leading to blindness. Regulation of TACE activity is likely to have wide implications for ocular immunology and inflammatory diseases. Specifically, since anti-TNF-α therapies have been used to prevent ocular inflammatory complications, the use of TACE inhibitors could be a novel therapeutic approach for ocular inflammatory diseases especially uveitis.  相似文献   

12.
A series of novel hydantoins was designed and synthesized as structural alternatives to hydroxamate inhibitors of TACE. 5-Mono- and di-substituted hydantoins exhibited activity with IC50 values of 11-60 nM against porcine TACE in vitro and excellent selectivity against other MMPs.  相似文献   

13.
Chronic hypoxia and inflammatory cytokines are hallmarks of inflammatory joint diseases like rheumatoid arthritis (RA), suggesting a link between this microenvironment and central pathological events. Because TACE/ADAM17 is the predominant protease catalyzing the release of tumor necrosis factor alpha (TNFalpha), a cytokine that triggers a cascade of events leading to RA, we examined the regulation of this metalloprotease in response to hypoxia and TNFalpha itself. We report that low oxygen concentrations and TNFalpha enhance TACE mRNA levels in synovial cells through direct binding of hypoxia-inducible factor-1 (HIF-1) to the 5' promoter region. This is associated with elevated TACE activity as shown by the increase in TNFalpha shedding rate. By the use of HIF-1-deficient cells and by obliterating NF-kappaB activation, it was determined that the hypoxic TACE response is mediated by HIF-1 signaling, whereas the regulation by TNFalpha also requires NF-kappaB activation. As a support for the in vivo relevance of the HIF-1 axis for TACE regulation, immunohistological analysis of TACE and HIF-1 expression in RA synovium indicates that TACE is up-regulated in both fibroblast- and macrophage-like synovial cells where it localizes with elevated expression of both HIF-1 and TNFalpha. These findings suggest a mechanism by which TACE is increased in RA-affected joints. They also provide novel mechanistic clues on the influence of the hypoxic and inflammatory microenvironment on joint diseases.  相似文献   

14.
Tumor necrosis factor-alpha converting enzyme (TACE) is a prototype member of the adamalysin family of transmembrane metalloproteases that effects ectodomain cleavage and release of many transmembrane proteins, including transforming growth factor-alpha. Growth factors that act through tyrosine kinase receptors, as well as other stimuli, induce shedding through activation of the Erk mitogen-activated protein (MAP) kinase pathway without the need of new protein synthesis. How MAP kinase regulates shedding by TACE is not known. We now report that the cytoplasmic domain of TACE is phosphorylated in response to growth factor stimulation. We also identified a naturally expressed smaller polypeptide corresponding to most of the cytoplasmic domain of TACE. This protein, which we named SPRACT, is derived through alternative translation of the TACE-coding sequence and is, similarly to TACE, phosphorylated in response to growth factor and phorbol 12-myristate 13-acetate stimulation. Phosphoamino acid analysis revealed that growth factor-induced phosphorylation of TACE occurs only on serine and not on threonine or tyrosine. Tryptic mapping experiments coupled with site-directed mutagenesis identified Ser(819) as the major target of growth factor-induced phosphorylation, whereas Ser(791) undergoes dephosphorylation in response to growth factor stimulation. The phosphorylation of Ser(819), but not the dephosphorylation of Ser(791), depends on activation of the Erk MAP kinase pathway. Increased SPRACT expression or mutation of the TACE cytoplasmic domain to inactivate growth factor-induced phosphorylation did not detectably affect growth factor-induced shedding of transmembrane transforming growth factor-alpha by TACE. The roles of SPRACT and the cytoplasmic phosphorylation of TACE remain to be defined.  相似文献   

15.
MUC1 clearance from the uterine epithelial cell surface is a prerequisite for the creation of an environment conducive to embryo implantation. In some species, reduced mRNA levels along with metabolic turnover account for loss of MUC1 during the receptive phase throughout the uterine epithelium. In other species, MUC1 is rapidly lost solely at the site of blastocyst attachment, suggesting the action of a protease. Correlative studies also indicate the presence of soluble forms of MUC1 in cell culture supernatants in vitro and in bodily fluids in vivo. To characterize the proteolytic activity mediating MUC1 release, shedding of MUC1 was analyzed in a human uterine epithelial cell line (HES) that abundantly expresses and readily sheds MUC1. MUC1 release was stimulated by phorbol 12-myristate 13-acetate and was markedly inhibited by the synthetic peptide hydroxamate metalloprotease inhibitor, tumor necrosis factor-alpha protease inhibitor (TAPI), as well as by an endogenous inhibitor of matrix metalloproteases, tissue inhibitor of metalloproteases (TIMP)-3. These characteristics along with studies conducted with cell lines genetically deficient in various ADAMs (for a disintegrin and metalloprotease) identified tumor necrosis factor-alpha converting enzyme (TACE)/ADAM 17 as a MUC1 sheddase. Furthermore, both TACE and MUC1 were expressed in human uterine epithelia during the receptive phase, and co-immunoprecipitation experiments revealed a physical interaction between TACE and MUC1 in HES cells. These studies establish a proteolytic mechanism for MUC1 clearance from a human uterine epithelial cell line and identify TACE as a MUC1 sheddase.  相似文献   

16.
Cyclooxygenase-2 is often highly expressed in epithelial malignancies and likely has an active role in tumor development. But how it promotes tumorigenesis is not clearly defined. Recent evidence suggests that this may involve transactivation of the epidermal growth factor receptor through E-prostanoid receptors, but reports differ about the mechanism by which this occurs. We found that E-prostanoid receptors 2-4, but not 1, transactivated the epidermal growth factor receptor. This required metalloproteinase activity, leading to release of growth factors from the cell surface. Both transforming growth factor-alpha and amphiregulin were released in response to over-expression of cyclooxygenase-2, but betacellulin and heparin-binding EGF-like growth factor were not. The metalloproteinase tumor necrosis factor-alpha converting enzyme was required for proteolytic release of transforming growth factor-alpha. We also found that addition of epidermal growth factor receptor ligands to HEK293 cells induced cyclooxygenase-2 expression, suggesting that by activating epidermal growth factor receptor signaling, cyclooxygenase-2 potentially creates a self-perpetuating cycle of cell growth. Consistent with this, inhibition of cyclooxygenase-2 reduced growth of epidermal growth factor receptor over-expressing MCF-10A breast epithelial cells in three-dimensional culture.  相似文献   

17.
18.
TNF alpha converting enzyme (TACE) processes precursor TNF alpha between Ala76 and Val77, yielding a correctly processed bioactive 17 kDa protein. Genetic evidence indicates that TACE may also be involved in the shedding of other ectodomains. Here we show that native and recombinant forms of TACE efficiently processed a synthetic substrate corresponding to the TNF alpha cleavage site only. For all other substrates, conversion occurred only at high enzyme concentrations and prolonged reaction times. Often, cleavage under those conditions was accompanied by nonspecific reactions. We also compared TNF alpha cleavage by TACE to cleavage by those members of the matrix metalloproteinase (MMP) family previously implied in TNF alpha release. The specificity constants for TNF alpha cleavage by the MMPs were approximately 100-1000-fold slower relative to TACE. MMP 7 also processed precursor TNF alpha at the correct cleavage site but did so with a 30-fold lower specificity constant relative to TACE. In contrast, MMP 1 processed precursor TNF alpha between Ala74 and Gln75, in addition to between Ala76 and Val77, while MMP 9 cleaved this natural substrate solely between Ala74 and Gln75. Additionally, the MMP substrate Dnp-PChaGC(Me)HK(NMA)-NH(2) was not cleaved at all by TACE, while collagenase (MMP 1), gelatinase (MMP 9), stromelysin 1 (MMP 3), and matrilysin (MMP 7) all processed this substrate efficiently. All of these results indicate that TACE is unique in terms of its specificity requirements for substrate cleavage.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号