首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synopsis We analyzed temporal changes in the dispersion of the rosyside dace,Clinostomus funduloides, (family Cyprinidae) in a headwater stream, to assess the role of habitat availability in promoting fish aggregation. The dace foraged alone and in groups of up to about 25 individuals, and dispersion varied significantly among monthly censuses conducted from May through December. In two of three study pools, dace aggregated during July, October and/or December, but spread out during other months, especially during September when dispersion did not differ significantly from random. Dispersion was not significantly correlated with the total amount of suitable habitat available to foraging dace, but during summer, corresponded to the availability of depositional areas adjacent to rapid currents. Foragers aggregated in eddies or depositional areas during high stream discharge in July, and shifted out of depositional areas when current velocities declined from July to September. During late autumn, however, aggregations formed independently of changes in habitat conditions, and dace dispersion did not vary significantly among months in a third pool. The study suggests that dace dispersion cannot be predicted from the overall availability of suitable habitat as estimated from point measurements of depth and velocity; both the occurrence of a specific habitat feature (i.e., eddies adjacent to high velocity currents) and seasonal differences in behavior more strongly influenced the spatial distribution of foragers.  相似文献   

2.
Aggressive interactions, foraging behaviour and microhabitat use were observed among four sympatric stream fishes inhabiting the water column: ayu (Plecoglossus altivelis), white-spotted charr (Salvelinus leucomaenis), masu salmon (Oncorhynchus masou) and Japanese dace (Tribolodon hakonensis), each species being categorised into five body-size classes (species-size groups; SSG's). Aggressive interactions were observed between most pairs of SSG's, an almost linear dominance order being apparent throughout the three-month study period. Ayu were relatively subordinate in June, but became the second most dominant in July and the most dominant in August, as a consequence of a reversal in dominance order with salmon. In contrast, smaller-sized dace, which continually suffered from intra- and interspecific aggression, occupied the most subordinate ranks throughout the study period. Intensive aggression was observed among various SSG's, exhibiting same microhabitat propensity throughout the three months. The direction and frequency of aggressive interactions varied month by month due to a reversal in dominance order between ayu and masu salmon, and/or changes in density, body size and resource use of the component members. Opponent selectivity was higher within SSG's, where resource use was assumed to be highly overlapping, rather than among SSG's throughout the study period. Correlation analysis indicated that opponent selectivity in aggressive interactions among SSG's was positively correlated with similarity in microhabitat selectivity in June, but not in other months or with that in foraging habits, suggesting that intensive aggressive behaviour reflected overlapping habitat use among assemblage members during a certain period.  相似文献   

3.
4.
1. We examined the response of a predatory benthic fish, the longnose dace ( Rhinichthys cataractae ), to patchiness in the distribution of benthic macroinvertebrates on cobbles at three hierarchical spatial scales during summer and autumn 1996, and spring 1997 in a southern Appalachian stream. 2. At the primary scale (four to five individual cobbles separated by <1 m), the intensity of foraging was not correlated with the biomass of benthic macroinvertebrates/cobble, regardless of season. 3. At the secondary scale (i.e. foraging patches <5 m in diameter) we found that benthic macroinvertebrates were patchily distributed in summer, but not in autumn or spring. Concomitantly, in summer, longnose dace foraged on cobbles with a significantly higher biomass of benthic macronvertebrates than nearby, randomly selected cobbles with similar physical conditions (i.e. longnose dace tended to avoid low-prey foraging patches). In contrast, when benthic macroinvertebrates were distributed homogeneously (spring and autumn), dace did not select patches with a significantly higher biomass of benthic macroinvertebrates than that available on randomly selected cobbles. 4. At the tertiary scale (i.e. stream reaches 11–19 m long), the biomass of benthic macroinvertebrates (per cobble per reach) was patchily distributed (i.e. differed significantly among reaches) in all seasons. Among reaches with physical characteristics preferred by longnose dace, (i.e. erosional reaches dominated by cobble/boulder substratum and high current velocity), we detected a significant, positive correlation between the biomass of benthic macroinvertebrates/cobble and longnose dace density in all seasons. 5. Our results demonstrated that both spatial and temporal patchiness in resource availability influenced significantly the use of both foraging patches and stream reaches by longnose dace.  相似文献   

5.
Saithe Pollachius virens , tracked diurnally with a split-beam echosounder, showed no relationship between size and swimming speed. The average and the median swimming speeds were 1·05 m s−1(±0·09 m s−1) and 0·93 m s−1, respectively. However, ping-to-ping speeds up to 3·34 m s−1 were measured for 25–29 cm fish, whose swimming speeds were significantly higher at night (1·08 m s−1) than during the day (0·72 m s−1). The high average swimming speed could be related to the foraging or streaming part of the population and not to potential weakness of the methodology. However, the uncertainty of target location increased with depth and resulted in calculated average swimming speeds of 0·15 m s−1 even for a stationary target. With increasing swimming speed the average error decreased to 0 m s−1 for speeds >0·34 m s−1. Species identity was verified by trawling in a pelagic layer and on the bottom.  相似文献   

6.
Delta smelt Hypomesus transpacificus infected with Mycobacterium spp. swam significantly more slowly (mean ± s.e ., 24±5 ± 1·2 cm s −1) than uninfected fish (30·0 ± 1·7 cm s −1). Differences in swimming performance were not attributable to differences in fish size ( L s or wet mass), condition factor or laboratory holding duration. Similar proportions of non-fatigue-related swimming failure among the uninfected and infected fish indicated that mycobacteriosis did not affect the willingness of delta smelt to swim in the flume. Level of infection, measured for the dominant M. chelonae pathogen using enzyme-linked immunosorbent assay (ELISA), did not affect critical swimming velocity.  相似文献   

7.
1.  Habitat degradation and biological invasions are important threats to fish diversity worldwide. We experimentally examined the effects of turbidity, velocity and intra- and interspecific competition on prey capture location, reactive distance and prey capture success of native rosyside dace ( Clinostomus funduloides ) and invasive yellowfin shiners ( Notropis lutipinnis ) in Coweeta Creek, North Carolina, U.S.A.
2.  Increased turbidity and velocity produced significant decreases in the number of prey captured forward of the fish's location. It is possible that this represents an increase in the amount of energy expended per prey captured.
3.  We used Akaike's Information Criterion (AIC) to evaluate competing explanatory models for reactive distance (10 generalised linear models, GLM) and prey capture success (9 generalised linear mixed models, GLMM).
4.  Reactive distance decreased by 12% with an increase from 2 to 4 conspecifics, whereas a 10 NTU increase in turbidity reduced reactive distance by 9%. Capture success was affected by velocity, dominance and competition, and varied among species. A 6 cm s−1 increase in velocity produced a 28% decline in capture probability; however, dominant fish were 3.2 times more likely to capture a prey item than non-dominant fish. Yellowfin shiners only were 0.62 times as likely to capture a prey item as rosyside dace. Both intra- and interspecific competition reduced capture probability, and fish in high density intraspecific or interspecific trials were 0.46 times and 0.44 times as likely to capture prey, respectively, as fish in two fish intraspecific trials.
5.  These results suggest behavioural variables are as important as physical factors in determining reactive distance and capture probability by these minnows.  相似文献   

8.
The effect of recovery media and incubation temperature on the apparent heat resistance of three ATCC strains (4342, 7004 and 9818) of Bacillus cereus spores were studied. Nutrient Agar (NA), Tryptic Soy Agar (TSA), Plate Count Agar (PCA) and Milk Agar (MA) as the media and temperatures in the range of 15–40°C were used to recover heated spores. Higher counts of heat injured spores were obtained on PCA and NA. The optimum subculture temperature was about 5°C below the optimum temperature for unheated spores. No significant differences in heat resistance were observed with the different recovery conditions except for strains 4342 and 9818 when MA was used as plating medium.
Large differences in D -values were found among the strains ( D 100=0·28 min for 7004; D 100=0·99 min for 4342; D 100= 4·57 min for 9818). The 7004 strain showed a sub-population with a greater heat resistance. The z values obtained for the three strains studied under the different recovery conditions were similar (7·64°C 0·25).  相似文献   

9.
Seasonal variations in the energy density of fishes in the North Sea   总被引:2,自引:0,他引:2  
The energy density ( E D, kJ g-1 wet mass) of saithe Pollachius virens , haddock Melanogrammus aeglefinus , whiting Merlangius merlangus , Norway pout Trisopterus esmarki , herring Clupea harengus , sprat Sprattus sprattus , sandeel Ammodytes marinus and pearlsides Maurolicus Muelleri , from the North Sea, increased with total length, L T. However, there was not always a significant ( P> 0·05) linear relationship between L T and E D. Seasonal differences in E D were obvious in mature fish, while geographical differences were insignificant. For all species there was a highly significant correlation ( P< 0·0001) between the percent dry mass of the fish ( D S) and E D. A general relationship was established for gadoids and sandeel E D=–3·1492+0·3459 D S and herring E D=–4·6395+0·4170 D S. Thus seasonal and size-specific data on E D needed for bioenergetics and gastric evacuation models can be determined simply from D S, which is considerably less costly and time consuming than calorimetry or proximate analysis.  相似文献   

10.
Temporal variation in foraging group structure of a fish assemblage was examined in a flood-prone stream in southern Hokkaido, Japan. Foraging behaviour was observed underwater for four species which inhabit the water column: ayu, Plecoglossus altivelis, white-spotted charr, Salvelinus leucomaenis, masu salmon, Oncorhynchus masou, and Japanese dace, Tribolodon hakonensis, with each species being categorized into five size classes (species-size group; SSG). Based on foraging behaviour, each SSG of the fish assemblage was classified into one of four foraging groups: algae grazers, drift foragers, benthos-drift foragers, and omnivores, defined as SSG exhibiting similar foraging behaviour. All size classes of ayu, and of charr and salmon were categorized as algae grazers and drift foragers, respectively, throughout the study period. In contrast, size classes of dace were categorized as drift foragers, benthos-drift foragers, or omnivores with the same size classes often assigned to different foraging groups from month to month. Digestive tract contents of the fishes in the four foraging groups reflected their observed foraging behaviour, and foraging groups were therefore regarded as representing trophic groups. Abundance and membership of each foraging group varied in accordance with changes in abundance of SSG due to their growth, immigration, emigration, and/or mortality. Moreover, due to numerical dominance within the assemblage, plasticity in foraging behaviour of small- and medium-sized dace also played a key role in determining variability in the foraging group structure. Relative frequencies of two types of foraging behaviour, algae nipping and benthos foraging, of the small-sized dace were significantly correlated with the level of each resource, whereas no significant relationship was detected between foraging frequencies of the medium-sized dace and either resource. Fluctuations in foraging group structure within this assemblage occurred through niche shifts of some component members and by changes in SSG composition.  相似文献   

11.
Juvenile big bellied seahorse Hippocampus abdominalis were exposed acutely and chronically to elevated ammonia and nitrite {24 h exposure: 0·01, 5·0, 10·1, 14·8 and 19·9 mg l−1 total ammonia-nitrogen [TA-N] and <0·001, 74·4, 99·2 and 123·6 mg l−1 [NO2-N] nitrite-nitrogen and 35 days exposure: 0·11, 0·55, 1·67 and 3·07 mg l−1 TAN and <0·001, 0·92, 4·67 and 9·10 mg NO2-N l−1}. Significant ( P <0·001) increases in oxygen consumption rate and ventilation frequency occurred at 14·8, 19·9 mg l−1 TA-N and 99·2, 123·6 mg l−1 NO2-N for acutely exposed fish. Oxygen consumption rate was significantly ( P <0·05) elevated at 1·67 and 3·07 mg l−1 TA-N in chronically treated fish and ventilation frequency increased significantly ( P <0·05) at 0·55, 1·67, 3·07 mg l−1 TA-N and 4·59, 9·10 mg l−1 NO2-N. There were no significant differences in growth between controls and ammonia exposed fish. Mortalities occurred at 14·8, 19·9 mg l−1 TA-N.  相似文献   

12.
Electrophoretic data were analysed from 49 species of freshwater fish, 57 species of marine fish, and seven anadromous species. For each species, at least 15 individuals had been assayed for at least 15 loci in two or more subpopulations. The results showed that while average total heterozygosity ( T ) was approximately equal in freshwater and marine species (0·062 and 0·064 respectively), subpopulation heterozygosity ( s ) was significantly less in the former group (0·046 and 0·059 respectively). Consequently the average degree of genetic subpopulation differentiation ( ST ) was significantly greater for freshwater species (0·222 v. 0·062). On average, it is likely that marine subpopulations exchange between 10 and 100 times more migrants per generation than freshwater subpopulations, presumably because of the relative absence of barriers to dispersal in the marine environment. The reduced values of Hs in freshwater species are likely to reflect reduced effective subpopulation sizes relative to marine species. The few andromous species that have been analysed show intermediate levels of GST .  相似文献   

13.
Sibling cannibalism among vundu Heterobranchus longifilis larvae started at the age of 4 days, with the prey caught tail-first then swallowed up to the head, which was eventually discarded (type I cannibalism). At 17 days old, this type of cannibalism vanished and was replaced by the ingestion of the whole prey (type II cannibalism), which could only be exerted by predators six times as heavy as their prey. Type II cannibalism consisted of a seemingly opportunistic ambush attack by a formerly passive predator towards a disorientated prey. It required no preliminary aggression or chase, or even contact with the prey, suggesting that the attack was not mediated by the tactile sense, and that cannibalism was independent of aggressive behaviour. When alternative food resources (formulated feed, live tilapia prey) were available, the intensity of cannibalism decreased but pellet-eaters or tilapia predators always achieved lower growth rates than those feeding on conspecifics, suggesting that cannibalism was the most advantageous foraging tactic. Losses to cannibalism among populations of 30-day old juvenile vundu with an initial ratio of 4% of cannibals were as high as 75·5–79·9% over 15 days. Predation peaked during the first days (up to 2·8 prey C−1 day−1), then vanished progressively as surviving prey grew faster than cannibals and escaped their predation. Cannibals preferred consuming the largest prey available with respect to the logistics of cannibalism (body weight ratio of 6·0). This preference for large prey was interpreted both as a foraging tactic aiming to maximize the energetic return, and as foraging strategy enabling the cannibals to exploit their prey as long as possible. Based on these data, comprehensive models of the impact of cannibalism on vundu populations were developed.  相似文献   

14.
1. Marine Iguanas ( Amblyrhynchus cristatus ) inhabiting the rocky shores of the Galápagos Islands apply two foraging strategies, intertidal and subtidal foraging, in a seasonal climate. Effects of both foraging strategy and seasonality on the daily energy expenditure (DEE) were measured using doubly labelled water.
2. Difference in foraging mode did not result in significant differences in DEE.
3. On Santa Fé the DEE in the warm season was significantly higher than in the cool season (67·8 ± 21·8 kJ kg–0·8 day–1 vs 38·0 kJ kg–0·8 day–1). This difference can be explained by body temperature. A model estimate of the body temperature was used to predict monthly DEE figures, giving a year round budget. On average a 1-kg iguana would need only 47 kJ day–1, or 17 mJ year –1. This is lower than previous estimates in which body temperatures were not taken into account.
4. The water flux of the Marine Iguana increases with increasing foraging time. The linear rise per minute foraging is roughly two times as high for subtidally foraging animals as for intertidal foragers.  相似文献   

15.
The von Bertalanffy growth parameters for common wolf–fish Anarhichas lupus in the North Sea were: male: L ∞=111·2 cm, t 0=–0·43 and K =0·12; and female: L ∞=115·1 cm, t 0=–0·39 and K =0·11, making this the fastest growing stock reported. Resting metabolic rates (RMR±S.E.) and maximum metabolic rates (MMR±S.E.) for six adult common wolf–fish (mean weight, 1·39 kg) at 5° C were 12·18±1·6 mg O2 kg–1 h–1 and 70·65±7·63 mg O2 kg–1 h–1 respectively, and at 10° C were 25·43±1·31 mg O2 kg–1 h–1 and 113·84±16·26 mg O2 kg–1 h–1. Absolute metabolic scope was 53% greater at 10° C than at 5° C. The diet was dominated by Decapoda (39% overall by relative occurrence), Bivalvia (20%) and Gastropoda (12%). Sea urchins, typically of low energy value, occupied only 7% of the diet. The fast growth probably resulted from summer temperatures approximating to the optimum for food processing and growth, but may have been influenced by diet, and reduced competition following high fishing intensity.  相似文献   

16.
Ontogenetic changes in temperature preference of Atlantic cod   总被引:4,自引:0,他引:4  
Final thermal preferendum ( T ) experiments were conducted in a horizontal thermal gradient tank from the beginning of August 2001 to mid‐November 2001 using Atlantic cod Gadus morhua from 6·5 to 79·0 cm fork length ( L F). The value of T varied significantly ( P  < 0·005) with L F( T  = 7·23–0·054 L F), with smaller (younger) fish choosing higher temperatures than larger (older) fish. The preferendum varied from 6·9° C for fish of 6·5 cm to 3·0° C for those of 79·0 cm. Experiments comparing fish positions in the gradient tank between thermal gradients of 0·5–11·0 and 4·5–14·5° C demonstrated that fish positions were determined by temperature selection instead of undesirable tank effects. This study is the first to demonstrate the effect of ontogeny on temperature preferences of a marine fish species.  相似文献   

17.
Rates of maximum food consumption and growth were determined for immature mandarin fish Siniperca chuatsi (47·2—540·2 g) and Chinese snakehead Channa argus (45·0—546·2 g) at 10, 15, 20, 25, 30 and 35) C. The relationship between maximum rate of food consumption ( C max), body weight ( W ) and temperature ( T ) was described by the multiple regression equations: In C max=−4·880+0·597 In W +0·284 T −0·0048 T 2 for the mandarin fish, and In C max=−6·718+ 0·522 In W +0·440 T −0·0077 T 2 for the Chinese snakehead. The optimum temperature for consumption was 29·6) C for the mandarin fish and 28·6) C for the Chinese snakehead. The relationship between growth rate ( G ), body weight and temperature was ln( G +0·25)=−0·439−0·500 ln W +0·270 T −0·0046 T 2 for the mandarin fish, and ln( G +0·25)=−6·150+ (0·175−0·026 T ) ln W +0·571 T −0·0078 T 2 for the Chinese snakehead. The weight exponent in the growth–weight relationship was −0·83 for the mandarin fish, but decreased with increasing temperature for the Chinese snakehead. The optimum temperature for growth was 29·3) C for the mandarin fish, but tended to decrease with increasing weight for the Chinese snakehead, being 30·3) C for a 45-g fish, and 26·1°C for a 550-g fish.  相似文献   

18.
We determined whether defense by individual bees against non-nestmates in honey bees (Apis mellifera) is correlated with their juvenile hormone (JH) titers, which are known to vary developmentally and seasonally. We bioassayed winter and summer bees for aggressive and non-aggressive individuals. Bees in winter could not be distinguished by task group, but bees in summer were segregated into nurses and guards. JH titers were correlated with aggressive behavior at two levels. First, winter bees and summer nurses, known to have lower JH titers, both showed less aggression toward foreign bees than did summer guards. Second, aggressive individuals had significantly higher JH titers than did non-aggressive bees within each colony. Inter-colonial variation in aggressiveness was maintained during summer and winter, suggesting a genetic basis for these differences. An alarm pheromone test further substantiated the existence of inter-colonial differences. We found significant variation in JH titers among different colonies, but this variation was not significantly associated with colony-level aggressiveness. The correlation between JH and levels of aggressiveness within a colony suggests a regulatory role for JH, but variation among colonies involves factors other than JH.  相似文献   

19.
Energy contents of immature parr and smolts, and mature resident and anadromous brown trout Salmo trutta sampled from a small stream in southern Norway were estimated from lipid, protein and carbohydrate concentrations. In immatures the lipid concentrations were highest in parr in the autumn. Mean lipid concentrations increased significantly with age in parr sampled in autumn (1·3% in age 0+ to 3·4% in age 3+), whereas they did not in smolts. The lipid concentrations of parr in spring were not significantly different from those of similarly aged smolts. By contrast, the relative water content (%) decreased with age in parr in the autumn and increased with age in smolts, mean values being slightly higher in smolts (78%) than in parr (77%). Protein and carbohydrate concentrations did not vary with age in the immature fish, mean protein concentrations being 18·0, 17·5 and 16·8% in parr in the autumn and spring, and in smolts, respectively. In residents, the concentrations of lipids were lower and of water higher, in age group 1 than in older fish, whereas there was no significant variation with age amongst anadromous trout. The energy concentration of 2+ smolts (349 kJ 100 g-1) was similar to that of 0+ parr in the autumn. Mean somatic energy density in autumn was 1·1 times higher in freshwater residents than in parr at age 1+ (407 and 387 kJ 100 g-1) and marginally different at age 2+ (462 and 426 kJ 100 g-1, respectively). The energy contents per unit mass of residents were 1·3–1·6 times that of similar aged smolts. Mean somatic energy density of anadromous trout (504 kJ 100 g-1) was higher than that of residents (455 kJ 100 g-1). Somatic energy, lipid and protein concentrations were correlated highly with water contents of all life stages, age and sex groups.  相似文献   

20.
Physiological energetics of cobia Rachycentron canadum were quantified for 18 to 82 days post-hatch (dph) hatchery-reared juveniles to better understand energy transformation and its implications in growth and survival. Mean oxygen consumption rates ( ; mg O2 h−1) of fish fed ad libitum and fish that were starved significantly increased with increasing wet mass (M; g), = 1·4291 M 0·8119 and = 1·1784 M 0·7833, respectively, with a significant reduction in mean metabolic rates of starved fish (19 to 27% specific dynamic action; SDA). Total ammonia nitrogen excretion rates ( A MM, μmol h−1) also scaled with M and significantly decreased after starvation. Mean mass-specific A MM and urea excretion rates are the highest reported in the literature, with urea accounting for approximately half the total nitrogen excretion measured in both fed and starved fish. Relatively high energetic rates may allow cobia to develop rapidly into pre-juveniles and be less susceptible to predation and starvation at a comparatively early age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号