首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Personality differences are a widespread phenomenon throughout the animal kingdom. Past research has focused on the characterization of such differences and a quest for their proximate and ultimate causation. However, the consequences of these differences for ecology and evolution received much less attention. Here, we strive to fill this gap by providing a comprehensive inventory of the potential implications of personality differences, ranging from population growth and persistence to species interactions and community dynamics, and covering issues such as social evolution, the speed of evolution, evolvability, and speciation. The emerging picture strongly suggests that personality differences matter for ecological and evolutionary processes (and their interaction) and, thus, should be considered a key dimension of ecologically and evolutionarily relevant intraspecific variation.  相似文献   

3.
4.
5.
6.
7.
8.
Trade-offs between behavioural traits promoting high life-history productivity and mortality may fuel the evolution of animal personalities. We propose that parasites, including pathogens, impose fitness costs comparable to those from predators, and influence the adaptiveness of personality traits associated with productivity (PAPs). Whether personality traits are adaptive or not may also depend on individual immunological capacity. We illustrate this using a conceptual example in which the optimal level of PAPs depends on predation, parasitism and host compensation (resistance and tolerance) of parasitism's negative effects. We assert that inherent differences in host immune function can produce positive feedback loops between resource intake and compensation of parasitism's costs, thereby providing variation underlying the evolution of stable personalities. Our approach acknowledges the condition dependence of immune function and co-evolutionary dynamics between hosts and parasites.  相似文献   

9.
Molluscan hemocyanin: structure,evolution, and physiology   总被引:1,自引:0,他引:1  
Most molluscs have blue blood because their respiratory molecule is hemocyanin, a type-3 copper-binding protein that turns blue upon oxygen binding. Molluscan hemocyanins are huge cylindrical multimeric glycoproteins that are found freely dissolved in the hemolymph. With molecular masses ranging from 3.3 to 13.5 MDa, molluscan hemocyanins are among the largest known proteins. They form decamers or multi-decamers of 330- to 550-kDa subunits comprising more than seven paralogous functional units. Based on the organization of functional domains, they assemble to form decamers, di-decamers, and tri-decamers. Their structure has been investigated using a combination of single particle electron cryo-microsopy of the entire structure and high-resolution X-ray crystallography of the functional unit, although, the one exception is squid hemocyanin for which a crystal structure analysis of the entire molecule has been carried out. In this review, we explain the molecular characteristics of molluscan hemocyanin mainly from the structural viewpoint, in which the structure of the functional unit, architecture of the huge cylindrical multimer, relationship between the composition of the functional unit and entire tertiary structure, and possible functions of the carbohydrates are introduced. We also discuss the evolutionary implications and physiological significance of molluscan hemocyanin.  相似文献   

10.
11.
Tang  Zhong-Hua  Fu  Shi-Jian 《Acta ethologica》2019,22(2):135-144
acta ethologica - Group-level behavior has important fitness consequences for group-living fish, which might be affected by the personalities of group members. However, the role of group...  相似文献   

12.
Cloning technology has potential to be a valuable tool in basic research, clinical medicine, and agriculture. However, it is critical to determine the consequences of this technique in resulting offspring before widespread use of the technology. Mammalian cloning using somatic cells was first demonstrated in sheep in 1997 and since then has been extended to a number of other species. We examined development, behavior, physiology, and longevity in B6C3F1 female mice cloned from adult cumulus cells. Control mice were naturally fertilized embryos subjected to the same in vitro manipulation and culture conditions as clone embryos. Clones attained developmental milestones similar to controls. Activity level, motor ability and coordination, and learning and memory skills of cloned mice were comparable with controls. Interestingly, clones gained more body weight than controls during adulthood. Increased body weight was attributable to higher body fat and was associated with hyperleptinemia and hyperinsulinemia indicating that cloned mice are obese. Cloned mice were not hyperphagic as adults and had hypersensitive leptin and melanocortin signaling systems. Longevity of cloned mice was comparable with that reported by the National Institute on Aging and the causes of death were typical for this strain of mouse. These studies represent the first comprehensive set of data to characterize cloned mice and provide critical information about the long-term effects of somatic cell cloning.  相似文献   

13.
<正>Animal reproduction and physiology is one of the traditional subjects in biology, and also one of the most rapidly developing fields because it is related to human food  相似文献   

14.
15.
Honey bee colonies consist of tens of thousands of workers and a single reproductive queen that produces a pheromone blend which maintains colony organization. Previous studies indicated that the insemination quantity and volume alter queen mandibular pheromone profiles. In our 11-month long field study we show that workers are more attracted to high-volume versus low-volume inseminated queens, however, there were no significant differences between treatments in the number of queen cells built by workers in preparation for supersedure. Workers exposed to low-volume inseminated queens initiated production of queen-like esters in their Dufour's glands, but there were no significant difference in the amount of methyl farnesoate and juvenile hormone in worker hemolymph. Lastly, queen overwintering survival was unexpectedly lower in high-volume inseminated queens. Our results suggest that the queen insemination volume could ultimately affect colony health and productivity.  相似文献   

16.
17.
Molecular cloning of GABA transporter-homologous cDNAs from aDrosophila melanogaster headspecific library was accomplished using a conserved oligomer from a highly conserved domain within the mammalian GABA transporters. Partial DNA sequencing of these cDNAs demonstrated homology with the mammalian transporters, indicating these are ancient, evolutionarily conserved molecules. Although theDrosophila cDNAs had distinct restriction enzyme patterns, they recognized the same locus inDrosophila genomic DNA, suggesting that the multiple isoforms might arise via alternative splicing. Antibodies specific for the mammalian GABA transporters GAT1, GAT2 and GAT3 recognized non-overlapping and developmentally distinct patterns of expression inDrosophila neuronal tissues. Treatment of larval instars with nipecotic acid, a generalized GABA reuptake inhibitor, revealed specific, dose-dependent alterations in behavior consistent with the presence of multiple transporter molecules with differing affinities for this drug. Synaptic current recordings revealed that nipecotic acid treated larvae have an increase in latency jitter of evoked quantal release, resulting in a broader average excitatory junctional current which was manifested in a broader EJP. These results imply that alterations in the development of the CNS occur if GABAergic neurotransmission is protentiated during development. The data suggest that, as in mammals, there are multiple GABA transporters inDrosophila whose expression is differentially regulated.  相似文献   

18.
19.
20.
Konopka G  Geschwind DH 《Neuron》2010,68(2):231-244
The evolution of the human brain has resulted in numerous specialized features including higher cognitive processes such as language. Knowledge of whole-genome sequence and structural variation via high-throughput sequencing technology provides an unprecedented opportunity to view human evolution at high resolution. However, phenotype discovery is a critical component of these endeavors and the use of nontraditional model organisms will also be critical for piecing together a complete picture. Ultimately, the union of developmental studies of the brain with studies of unique phenotypes in a myriad of species will result in a more thorough model of the groundwork the human brain was built upon. Furthermore, these integrative approaches should provide important insights into human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号