首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the heavily degraded ecosystem on the Chinese Loess Plateau, it would be of great significance if vegetation restoration could be accelerated anthropogenically. However, one major concern is that if the late successional species were planted or sown in degraded habitats, would they still be competitive in terms of some critical plant traits associated with specific habitats? Water use efficiency (WUE) is a major plant trait shaping the pattern of species turnover in vegetation secondary succession on the Loess Plateau. We hypothesized that if late successional stage plants could still hold a competitive advantage in terms of WUE, the prospects for an acceleration of succession by sowing these species in newly abandoned fields would be good. We tested this hypothesis by comparing the leaf C isotope ratio (δ13C) value (a surrogate of WUE) of dominant species from different successional stages at given soil C and N levels. Results indicated that leaf δ13C of the two dominant species that co-dominated in the second and third stages were significantly more positive than that of the dominant species from the first stage regardless of changing soil C and N. Yet the dominant species from the climax stage is a C4 grass assumed to have the highest WUE. In addition, increasing soil nutrition had no effects on leaf δ13C of two dominant species in the late successional stage, indicating that dominant species from the late successional stages could still have a competitive advantage in terms of WUE in soil C- and N-poor habitats. Therefore, from the perspective of plant WUE, there are great opportunities for ecosystem restoration by sowing both dominant species and other species that co-occur in late successional stages in newly abandoned fields, for the purpose of enhancing species diversity and optimising species composition.  相似文献   

2.
Li  Hailing  Li  Tingting  Sun  Wenjuan  Zhang  Wen  Zhang  Qing  Yu  Lijun  Qin  Zhangcai  Guo  Bin  Liu  Jia  Zha  Xingchu 《Plant and Soil》2021,467(1-2):253-265
Plant and Soil - Reveal the soil organic carbon (SOC) stock change in the Qinghai-Tibetan Plateau (QTP) alpine wetlands in the past fifty years. The Qinghai-Tibetan Plateau (QTP) has a large area...  相似文献   

3.
The Loess Plateau is a special natural–cultural unit in northern China. Intensive land use in the past has had, and forestation and grass planting at present will have inevitable impacts on plant biodiversity in the Loess Plateau. Based on the analysis of floristic features within three sampling sites with different land use practices and analysis of species richness among different land use types, we discuss impacts of land use on species richness and floristic features in the Northern Loess Plateau. The results drawn from this case study are as follows: (1) It appears that forestation and grass planting have had a positive influence on the local species diversity, but they have contributed little to the native vegetation in terms of conserving its floristic features. (2) Caragana intermedia shrubland, Pinus tabulaeformis forestland, and natural grassland have made important contributions to supporting indigenous species and maintaining local plant biodiversity. (3) There is a significant positive correlation between land use diversity and species richness. These results imply that practicing biodiversity conservation in situ is feasible and the suitable choice for the Loess Plateau. Concrete measures for biodiversity conservation in the area can include setting up small nature reserves and diversifying land use patterns to maintain as much habitat as possible for native vegetation. The artificial Hippophae rhamnoides shrubland should not be further promoted, considering its negative influence on biodiversity conservation.  相似文献   

4.
Plant Ecology - We tested the ‘enemy release hypothesis’ in relation to Lonicera japonica to determine the effects of soil microbes on plant growth. It was hypothesized that plant...  相似文献   

5.
The Neogene eolian deposits in the Chinese Loess Plateau (CLP) are one of the most useful continental deposits for understanding climatic changes. To decipher Late Neogene paleoclimatic changes in the CLP, we present a terrestrial mollusk record spanning the time interval between 7.1 and 3.5 Ma from the western CLP. The results indicate four stages of paleoclimatic evolution: From 7.1 to 6.2 Ma, cold and dry climatic conditions prevailed as evidenced by high values of the total number of cold-aridiphilous (CA) mollusk species and by low values of all of the thermo-humidiphilous (TH) mollusk indices. From 6.2 to 5.4 Ma, the climate remained cold and dry but was not quite as dry as during the preceding phase, as indicated by the dominance of CA mollusks and more TH species and individuals. From 5.4 to 4.4 Ma, a warm and moist climate prevailed, as indicated by high values of the TH species and individuals and by the sparsity of CA species and individuals. From 4.4 to 3.5 Ma, all of the CA indices increased significantly and maintained high values; all of the TH indices exhibit high values from 4.4 to 4.0 Ma, an abrupt decrease from 4.0 Ma and a further increase from 3.7 Ma. The CA species of Cathaica pulveraticula, Cathaica schensiensis, and Pupopsis retrodens are only identified in this stage, indicating that the CA species were diversified and that the climate was becoming drier. Moreover, the CA mollusk group exhibits considerable diversity from 7.1 to 5.4 Ma when a cold, dry climate prevailed; whereas the diversity of the TH group was high during the relatively warm, wet interval from 5.4 to 4.4 Ma. This indicates that variations in the diversity of the CA and TH mollusk groups were closely related to climatic changes during the Late Miocene to Pliocene.  相似文献   

6.
Bio-nanotechnology is a new interdisciplinary R&D area that integrates engineering and physical science with biology through the development of multifunctional devices and systems, focusing biology inspired processes or their applications, in particular in medical biotechnology. DNA based nanotechnology, in many ways, has been one of the most intensively studied fields in recent years that involves the use and the creation of bio-inspired materials and their technologies for highly selective biosensing, nanoarchitecture engineering and nanoelectronics. Increasing researches have been offered to a fundamental understanding how the interactions between the nanoparticles and DNA molecules could alter DNA molecular structure and its biochemical activities. This minor review describes the mechanisms of the nanoparticle–DNA binding and molecular interactions. We present recent discoveries and research progresses how the nanoparticle–DNA binding could vary DNA molecular structure, DNA detection, and gene therapy. We report a few case studies associated with the application of the nanoparticle–DNA binding devices in medical detection and biotechnology. The potential impacts of the nanoparticles via DNA binding on toxicity of the microorganisms are briefly discussed. The nanoparticle–DNA interactions and their impact on molecular and microbial functionalities have only drown attention in recent a few years. The information presented in this review can provide useful references for further studies on biomedical science and technology.  相似文献   

7.
The Devonian–Carboniferous (D–C) transition coincides with the Hangenberg Crisis, carbon isotope anomalies, and the enhanced preservation of organic matter associated with marine redox fluctuations. The proposed driving factors for the biotic extinction include variations in the eustatic sea level, paleoclimate fluctuation, climatic conditions, redox conditions, and the configuration of ocean basins. To investigate this phenomenon and obtain information on the paleo-ocean environment of different depositional facies, we studied a shallow-water carbonate section developed in the periplatform slope facies on the southern margin of South China, which includes a well-preserved succession spanning the D–C boundary. The integrated chemostratigraphic trends reveal distinct excursions in the isotopic compositions of bulk nitrogen, carbonate carbon, organic carbon, and total sulfur. A distinct negative δ15N excursion (~−3.1‰) is recorded throughout the Middle Si. praesulcata Zone and the Upper Si. praesulcata Zone, when the Hangenberg mass extinction occurred. We attribute the nitrogen cycle anomaly to enhanced microbial nitrogen fixation, which was likely a consequence of intensified seawater anoxia associated with increased denitrification, as well as upwelling of anoxic ammonium-bearing waters. Negative excursions in the δ13Ccarb and δ13Corg values were identified in the Middle Si. praesulcata Zone and likely resulted from intense deep ocean upwelling that amplified nutrient fluxes and delivered 13C-depleted anoxic water masses. Decreased δ34S values during the Middle Si. praesulcata Zone suggests an increasing contribution of water-column sulfate reduction under euxinic conditions. Contributions of organic matter produced by anaerobic metabolisms to the deposition of shallow carbonate in the Upper Si. praesulcata Zone is recorded by the nadir of δ13Corg values associated with maximal △13C. The integrated δ15N-δ13C-δ34S data suggest that significant ocean-redox variation was recorded in South China during the D–C transition; and that this prominent fluctuation was likely associated with intense upwelling of deep anoxic waters. The temporal synchrony between the development of euxinia/anoxia and the Hangenberg Event indicates that the redox oscillation was a key factor triggering manifestations of the biodiversity crisis.  相似文献   

8.
The Qinghai–Tibetan Plateau is biologically diverse, with 9556 species of vascular plants in the 2,500,000 km2 plateau area. We focused on seed plants from the Qinghai–Tibetan Plateau. A total of 9321 species in the Qinghai–Tibetan Plateau were recorded. Sixty-one of these genera are Chinese endemics. Our results suggested that the flora of the Qinghai–Tibetan Plateau was characterized by relatively few polyploids, and aneuploidy was also considered as relatively rare. We inferred that aneuploidy may be affected by environmental factors and the addition or loss of centromeres. Furthermore, the highest frequency of polyploids was found among perennial herbs. Annuals had low polyploidy, and perennials had high polyploidy. Species richness was correlated with the incidence of polyploids, environmental conditions, and reproductive isolation.  相似文献   

9.
Pressure–volume (P–V) curves are frequently used to analyze water relation properties of woody plants in response to transpiration-induced tissue water loss. In this study, P–V analyses were conducted on eight woody species growing in the semiarid Loess Plateau region of China during a relatively dry summer season using both the recently recommended instantaneous measurement and the traditional method with rehydration pretreatment. Generally, P–V-derived parameters in this study reflected conditions in a dry growth environment. Species-specific differences were also found among P–V parameters, suggesting each species uses different mechanisms to respond to drought. Based on the results from instantaneous measurements, a descending sequence for drought tolerance ranked by water potentials at the turgor loss point (Ψtlp) was Rosa hugonis > Syringa oblata = Armeniaca sibirica > Caragana microphylla > Pyrus betulaefolia > Acer stenolobum > Quercus liaotungensis > Robinia pseudoacacia. The first five species also showed lower levels of osmotic potential at full turgor (Ψ π sat ) and higher symplastic osmotic solute content per dry weight, suggesting they possess advantages in osmotic adjustment. Also, this study supports previous reports noting rehydration pretreatment resulted in shifts in P–V parameters. The magnitude of the shifts varied with species and water conditions. The effect of rehydration was stronger for species with higher drought tolerance or subjected to the influence of drought. Differences in the parameters among species were mitigated as a result of rehydration. Those with a lower Ψtlp or midday water potential were more deeply affected by rehydration. Application of instantaneous measurements was strongly recommended for proper analysis of P–V curves particularly in arid and semiarid areas.  相似文献   

10.
Resin tapping could affect water and nutrient transport processes in Chinese pine trees, rendering them more vulnerable to extreme climatic events, such as drought, and affecting the ecological function of forests in semi-arid regions. This study evaluated how resin tapping affects the tree-ring growth and climate sensitivity of Chinese pine in the Loess Plateau. We compared tree-ring growth patterns between the tapped and untapped faces of tapped trees, and investigated tree-ring growth and its response to climate between tapped and untapped trees in a forest stand during the 1967–2017 period. Tapped trees showed asymmetrical growth patterns after resin tapping, with narrower rings near the tapped face and wider ones near the untapped face. Furthermore, tapped trees had inter-annual variations consistent with those of untapped trees except for the years 2000 and 2001, with significantly lower values following resin tapping, and tree-ring growth then returning to normal. The climate response analysis indicated that the tree-ring growth of both tapped and untapped trees was negatively affected by monthly mean temperatures during the early growing season (May to July) in the post-resin-tapping period. Furthermore, tree-ring growth in tapped trees also revealed significant correlation with water vapour deficit and the Palmer drought index, which indicates that tapped trees are more vulnerable to drought. Further studies based on stable isotopes (i.e. δ13C, δ18O, and δ15N) could improve our understanding of the physiological mechanisms that regulate the effects of resin tapping on tree-ring growth.  相似文献   

11.
We investigated the spatial structures of soil properties and snow-bed vegetation, and their relationships, in southern Italy. We analyzed data on 26 plant species and 10 soil traits from adjacent 1 × 1 m plots in two snow-bed patches. Measures of spatial autocorrelation revealed striking spatial structures for plant cover and soil properties at both sites. Bivariate statistics and Mantel tests highlighted a significant correlation between spatial patterns of plants and soil in the study sites. Canonical correspondence analysis related such relationships to an ecological gradient connecting soil properties and plant assemblages in this unusual ecological context. Among the variables significantly related to plant patterns is the soil organic matter, which is recognized as being sensitive to global warming. Our analyses suggest that soil dynamics due to increasing temperature may promote the replacement of species typical of southern snow-bed ecosystems by more mesophilous plants.  相似文献   

12.

Background and aims

SOC inventory and soil δ13C were widely used to access the size of soil C pool and to indicate the dynamics of C input and output. The effects of climatic factors and soil physical characteristics and plant litter input on SOC inventory and soil δ13C were analyzed to better understand the dynamics of carbon cycling across ecosystems on the Qinghai-Tibetan Plateau.

Methods

Field investigation was carried out along the two transects with a total of 1,875 km in length and 200 km in width. Sixty-two soil profiles, distributed in forest, meadow, steppe, and cropland, were stratified sampled every 10 cm from 0 to 40 cm.

Results

Our result showed that SOC density in forest and meadows were much higher than in steppe and highland barley. In contrast, δ13C in forest and meadow were lower than in steppe and highland barley. Soil δ13C tended to enrich with increasing soil depth but SOC decline. SOC and δ13C (0–40 cm) were correlated with different climatic factors in different ecosystems, such that SOC correlated negatively with MAT in meadow and positively with MAP in steppe; δ13C correlated positively with MAT in meadow and steppe; and δ13C also tended to increase with increasing MAT in forest. Of the variation of SOC, 55.15 % was explained by MAP, pH and silt content and 4.63 % was explained by the interaction between MAT and pH across all the ecosystems except for the cropland. Meanwhile, SOC density explained 27.40 % of variation of soil δ13C.

Conclusions

It is suggested that different climatic factors controlled the size of the soil C pool in different ecosystems on the Tibetan Plateau. SOC density is a key contributor to the variation of soil δ13C.  相似文献   

13.
14.
The Qinghai–Tibet Plateau (QTP) is the highest and largest plateau in the world. It covers correspondingly wide geological, topographical, and climatic gradients, and thus hosts greater biodiversity than surrounding lowlands and other high elevation regions. Due to its extreme environmental and biological diversity, the QTP is an ideal region for studying adaptations of plant species under harsh environmental conditions at multiple evolutionary levels. Many recent ecological studies have revealed functions of distinctive morphological features of various plants in the region that improve their reproductive success. Examples include large and showy bracts, hairy inflorescences, and drooping flowers. Numerous other investigations have examined QTP plants' sexual systems, patterns of biomass allocations, and biotic interactions. This paper summarizes recent advances in understanding of morphological adaptations, plant–plant interactions, plant–pollinator interactions, floral color patterns, pollination adaptations, and resource allocation patterns of alpine plants of the QTP. The overall aim is to synthesize current knowledge of the general mechanisms of plant survival and reproduction in this fascinating region.  相似文献   

15.
16.
Animals in captive or laboratory settings may outperform wild animals of the same species in both frequency and diversity of tool use, a phenomenon here termed ‘captivity bias’. Although speculative at this stage, a logical conclusion from this concept is that animals whose tool-use behaviour is observed solely under natural conditions may be judged cognitively or physically inferior than if they had also been tested or observed under controlled captive conditions. In turn, this situation creates a potential problem for studies of the behaviour of extinct members of the human family tree—the hominins—as hominin cognitive abilities are often judged on material evidence of tool-use behaviour left in the archaeological record. In this review, potential factors contributing to captivity bias in primates (including increased contact between individuals engaged in tool use, guidance or shaping of tool-use behaviour by other tool-users and increased free time and energy) are identified and assessed for their possible effects on the behaviour of the Late Pleistocene hominin Homo floresiensis. The captivity bias concept provides one way to uncouple hominin tool use from cognition, by considering hominins as subject to the same adaptive influences as other tool-using animals.  相似文献   

17.
Research in the soil of the tropics mostly has demonstrated the decline of soil organic carbon (SOC) after conversion of primary forest to plantation and cultivated lands. This paper illustrates the dynamics of SOC on the island of Java, Indonesia, from 1930 to 2010. We used 2002 soil profile observations containing organic carbon (C) analysis in the topsoil, which were collected by the Indonesian Center for Agricultural Land Resources Research & Development from 1923 to 2007. Results show the obvious decline of SOC values from around 2% in 1930–1940 to 0.8% in 1960–1970. However, there has been an increase of SOC content since 1970, with a median level of 1.1% in the year 2000. Our analysis suggests that the human influence and agricultural practices on SOC in Java have been a stronger influence than the environmental factors. SOC for the top 10 cm has shown a net accumulation rate of 0.2–0.3 Mg C ha?1 yr?1 during the period 1990–2000. These findings give rise to optimism for increased soil C sequestration in the tropics.  相似文献   

18.
The functioning and structure of terrestrial ecosystems are shaped and maintained by plant–decomposer interactions. The food and habitat of animal populations are biogenic and are mainly of plant origin (plant litter) in terrestrial ecosystems. Primary resources of the food-habitat template for the organization of soil animals are provided by the primary production of plants, and are then modified through decomposition processes by microbial populations. In the microbial decomposition system, the efficiency of carbon utilization by microbial decomposers characterizes the decomposition processes between tropical and temperate forest ecosystems. Tropical forests show poor development of soil reservoir systems because of the high efficiency of lignin decomposition by microbial populations. The decomposition processes of leaf litter are described briefly for the understanding of organization of soil animal communities in tropical and temperate forests. A comparison of decomposition processes shows qualitative differences in decomposition between temperate and tropical forests. The composition of functional groups of soil animals is well explained by the decomposition processes in both forests.  相似文献   

19.
Aims Our objectives were to study the spatial distribution of soil organic carbon (SOC) density and its influencing factors in the main forest ecosystems in Guangxi. Methods A total of 345 sample plots were established in Guangxi, and the size of each plot was 50 m × 20 m. Based on the forest resource inventory data and field investigation, the SOC storage of the main forests in Guangxi was estimated. Geostatistics was applied to analyze the spatial pattern of SOC density and the main influencing factors on SOC density were also explored by principal component analysis and stepwise regression. Important findings The total SOC storage in the main forests in Guangxi was 1 686.88 Tg, and the mean SOC density was 124.70 Mg•hm2, which is lower than that of China. The best fitted semivariogram model of SOC density was exponential model, and the spatial autocorrelation was medium. The contour map based on Kriging indicated that northeastern Guangxi had high SOC density and northwestern Guangxi had low SOC density, which corresponded to high SOC density in non-karst region and low SOC density in karst region. The SOC density followed the sequence of bamboo forest > deciduous broadleaf forest > warm coniferous forest > mixed evergreen and deciduous broadleaf forest > evergreen broadleaf forest, and yellow soil > red soil >lateritic red soil > limestone soil. The dominant environment factors affecting SOC density included soil depth, longitude, latitude, and altitude. Soil depth was the most influential factor, which was mainly attributed to the karst landscape.  相似文献   

20.
The immobilization of lipases within sol–gel derived silica, using multi-walled carbon nanotubes (MWNTs) as additives in order to protect the inactivation of lipase during sol–gel process and to enhance the stability of lipase, was investigated. Three sol–gel immobilized lipases (Candida rugosa, Candida antarctica type B, Thermomyces lanuginosus) with 0.33% (w/w) MWNT showed much higher activities than lipase immobilized without MWNT. The influence of MWNT content and MWNT shortened by acid treatment in the sol–gel process on the activity and stability of immobilized C. rugosa lipase was also studied. In hydrolysis reaction, immobilized lipase containing 1.1% pristine MWNT showed 7 times higher activity than lipase immobilized without MWNT. The lipase coimmobilized with 2.7% shortened MWNT showed 10 times higher activity in esterification reaction, compared with lipase immobilized without MWNT. The lipase coimmobilized with 2.7% shortened MWNT retained 96% of initial activity after 5 times reuse, while the lipase immobilized without MWNT was fully inactivated under the same condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号