首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

The objective of this study was to test the suitability of greenwaste biochar to aid nitrogen (N) retention in rehabilitated bauxite-processing residue sand (BRS).

Methods

Bauxite residue sand was collected from the Alcoa of Australia Pinjarra refinery. The pH of BRS was adjusted to values of 5, 7, 8 and 9 and subsequently amended with different rates (1, 5, 10 and 20 %, w/w) of greenwaste biochar. The loss of N via NH3 volatilization following addition of di-ammonium phosphate (DAP) was determined using an acid trapping method.

Results

At low pH (5), increasing pH rather than adsorption capacity, resulting from biochar addition, caused greater losses of N through volatilization from BRS. In BRS with medium pH (7, 8), increasing adsorption capacity, induced by biochar addition, played the more dominant role in enhancing adsorption of NH 4 + -N /NH3-N and lowering NH3 volatilization. In the BRS with high pH (9), the majority of NH 4 + -N /NH3-N pools was lost via NH3 volatilization due to the strong acid-base reaction at this pH.

Conclusions

It is concluded that the interaction of changes in pH and adsorption capacity induced by greenwaste biochar addition affects the availability and dynamics of NH 4 + -N/ NH3-N in BRS amended with DAP.  相似文献   

2.

Aims

In this study we identified the nature of the root-induced chemical processes controlling changes in phosphate (P) availability in a soil with two P loadings resulting from long-term fertilization treatments.

Methods

We used a set of mechanistic adsorption models (surface complexation and ion exchange) within the framework of the component additive approach to simulate the effect of durum wheat roots on P availability. We had to consider the influence of adsorption of other ions to ensure the goodness-of-fit of the simulations.

Results

We found that Ca2+ uptake, in addition to P uptake and root-induced alkalization, controlled P availability in the rhizosphere regardless of the fertilization level. The relative influence of these three processes depends primarily on the extractant used to estimate P availability. Calcium uptake was the most significant process in water extracts, whereas P uptake was the dominant root-induced chemical process in CaCl2 extracts. Under low Ca concentrations, Ca2+ uptake decreased the promoting influence of Ca2+ adsorption on P adsorption.

Conclusions

In addition to confirming the validity of our approach to model P availability, the present investigation indicated that root-induced processes markedly affect P availability irrespective of the fertilization level.  相似文献   

3.

Aims

The mechanisms by which rhizosphere bacteria increase the availability of mineral P precipitates for plant use are understudied. However, Paraburkholderia bryophila Ha185 is known to solubilize inorganic phosphate in vitro via a novel process. Therefore, this study aimed to demonstrate P solubilization by Ha185 in association with roots of perennial ryegrass (Lolium perenne L.).

Methods

We developed a gnotobiotic plant assay to assess P solubilization by Ha185 on ryegrass roots under various nutrient conditions. A green fluorescent protein (GFP)-tagged derivative of Ha185 was used in conjunction with fluorescent microscopy and confocal microscopy to visualize colonization of ryegrass roots.

Results

Ha185 solubilized mineral P (hydroxyapatite) in association with ryegrass roots and increased ryegrass growth by 20% under P-limited conditions. The GFP-tagged Ha185 strain colonized the rhizoplane and penetrated the primary root of ryegrass, possibly through “crack entry” at the point of lateral root emergence, but also by entering the epidermal cells via root hairs.

Conclusions

Ha185 supported ryegrass growth under P-limited conditions, indicating this strain may improve availability of soil P for uptake by ryegrass. Tools developed in this study have broad application in the study of rhizobacteria-plant interactions.
  相似文献   

4.

Background & Aims

Previous studies revealed that cotton plants grown on soils with low available-P were accessing significant non-fertilizer P sources. This suggests that cotton can access stable-P pools from soil. This study examined cotton??s ability to utilize sparingly soluble P sources in comparison with wheat and white lupin.

Methods

Plants were grown for 45 days in a Vertosol supplied with AlPO4 and hydroxyapatite, and NH4-N or NO3-N. A 32P dilution technique was used to determine the availability and plant uptake of P from these P sources.

Results

Three species differed substantially in P acquisition from the P sources. When averaged over N sources, the proportion of P in shoots sourced from AlPO4 was 89%, 54% and 19% for wheat, cotton and white lupin, respectively. When supplied hydroxyapatite, white lupin sourced 75% from the added P, in contrast to 36% for wheat and 17% for cotton. NH4-N nutrition increased the availability of hydroxyapatite to all the species and AlPO4 to cotton and white lupin.

Conclusion

Cotton is inefficient in utilizing sparingly soluble P while wheat is efficient in mobilising AlPO4 and white lupin is efficient in using hydroxyapatite. The superiority of wheat in AlPO4 utilization may be related with its high root length density.  相似文献   

5.

Background and aims

Incorporating soybean (Glycine max) genotypes with a high nitrogen fixation potential into cropping systems can sustainably improve the livelihoods of smallholder farmers in Western Kenya. Nitrogen fixation is, however, often constrained by low phosphorus (P) availability. The selection of soybean genotypes for increased P efficiency could help to overcome this problem. This study investigated the contribution of different root traits to variation in P efficiency among soybean genotypes.

Methods

Eight genotypes were grown in a Ferralsol amended with suboptimal (low P) and optimal (high P) amounts of soluble P. Root hair growth was visualized by growing plants in a novel agar system where P intensity was buffered by Al2O3 nanoparticles.

Results

In the pot trial, P uptake was unaffected among the genotypes at high P but differed about 2-fold at low P. The genotypes differed in P uptake efficiency but not in P utilization efficiency. Regression analysis and mechanistic modeling indicated that P uptake efficiencies were to a large extent related to root hair development (length and density) and, to a lower extent, to colonization by mycorrhizal fungi.

Conclusion

Breeding for improved root hair development is a promising way to increase P uptake efficiency in soybean.  相似文献   

6.
7.

Aims

This study explores soil nutrient cycling processes and microbial properties for two contrasting vegetation types along an elevational gradient in subarctic tundra to improve our understanding of how temperature influences nutrient availability in an ecosystem predicted to be sensitive to global warming.

Methods

We measured total amino acid (Amino-N), mineral nitrogen (N) and phosphorus (P) concentrations, in situ net N and P mineralization, net Amino-N consumption, and microbial biomass C, N and P in both heath and meadow soils across an elevational gradient near Abisko, Sweden.

Results

For the meadow, NH4 + concentrations and net N mineralization were highest at high elevations and microbial properties showed variable responses; these variables were largely unresponsive to elevation for the heath. Amino-N concentrations sometimes showed a tendency to increase with elevation and net Amino-N consumption was often unresponsive to elevation. Overall, PO4-P concentrations decreased with elevation and net P immobilization mostly occurred at lower elevations; these effects were strongest for the heath.

Conclusions

Our results reveal that elevation-associated changes in temperature can have contrasting effects on the cycling of N and P in subarctic soils, and that the strength and direction of these effects depend strongly on dominant vegetation type.  相似文献   

8.

Background and aims

Sufficient soil phosphorus (P) is important for achieving optimal crop production, but excessive soil P levels may create a risk of P losses and associated eutrophication of surface waters. The aim of this study was to determine critical soil P levels for achieving optimal crop yields and minimal P losses in common soil types and dominant cropping systems in China.

Methods

Four long-term experiment sites were selected in China. The critical level of soil Olsen-P for crop yield was determined using the linear-plateau model. The relationships between the soil total P, Olsen-P and CaCl2-P were evaluated using two-segment linear model to determine the soil P fertility rate and leaching change-point.

Results

The critical levels of soil Olsen-P for optimal crop yield ranged from 10.9 mg kg?1 to 21.4 mg kg?1, above which crop yield response less to the increasing of soil Olsen-P. The P leaching change-points of Olsen-P ranged from 39.9 mg kg?1 to 90.2 mg kg?1, above which soil CaCl2-P greatly increasing with increasing soil Olsen-P. Similar change-point was found between soil total P and Olsen-P. Overall, the change-point ranged from 4.6 mg kg?1 to 71.8 mg kg?1 among all the four sites. These change-points were highly affected by crop specie, soil type, pH and soil organic matter content.

Conclusions

The three response curves could be used to access the soil Olsen-P status for crop yield, soil P fertility rate and soil P leaching risk for a sustainable soil P management in field.  相似文献   

9.

Aim

Our aim was to improve the prediction of Zn bioavailability to wheat grown on low-Zn soils. The classical approach that directly relates Zn in a certain soil extract to Zn uptake has been shown to be inadequate in many cases. We tested a stepwise approach where the steps of the uptake process are characterized with, respectively, Zn solid-solution distribution, adsorption of Zn to root surface, Zn uptake into root and Zn translocation to shoot.

Methods

Two pot experiments were done with wheat grown on nine low-Zn soils varying widely in pH, clay and organic matter content. Soluble Zn concentrations in two soil extracts (DTPA and CaCl2) were measured. Free Zn ion concentrations in CaCl2 soil extracts were determined with the Donnan Membrane Technique. These Zn concentrations were then related to plant Zn uptake following both the direct and the stepwise approach.

Results

In the direct approach, Zn in the DTPA extract was a better predictor for shoot Zn uptake than Zn in the CaCl2 extract. In the stepwise approach, the relationship between Zn in CaCl2 extracts and the root surface adsorbed Zn was pH-dependent and nonlinear. Root surface adsorbed Zn was linearly related to root Zn uptake, and the latter was linearly related to the shoot Zn uptake. The stepwise approach improved the Zn uptake prediction compared to the direct approach and was also validated for different wheat cultivars.

Conclusions

The adsorption of Zn on the root surface is pH dependent and nonlinear with respect to the soil Zn concentration, and a useful proxy for bioavailable Zn over a wide range of soils.  相似文献   

10.

Background and Aims

Selenium (Se) is an essential nutrient for humans and animals. In order to ensure an optimal concentration of Se in crops, Se fertilisers are applied. Catch crops may be an alternative way to increase Se concentrations in vegetables.

Methods

Three experiments in Denmark between 2007–10 investigated the ability of catch crops (Italian ryegrass, fodder radish and hairy vetch) under different fertiliser regimes to reduce soil Se content in the autumn and to increase its availability in spring to the succeeding crop.

Results and Conclusions

The catch crops (Italian ryegrass and fodder radish) increased water-extractable Se content in the 0.25–0.75?m soil layer in only one of the experiments. Selenium uptake by the catch crops varied between 65 and 3263?mg?ha?1, depending on species, year and fertilisation treatment; this corresponded to 0.1–3.0% of the water-extractable soil Se content. The influence of catch crops on Se concentrations and uptake in onions and cabbage was low. There was a decrease in Se uptake and recovery of applied Se by onions following catch crops, which might indicate Se immobilisation during catch crop decomposition.  相似文献   

11.

Background and aims

Phosphorus (P) nutrition is very important during early maize seedling growth. Remobilization of endogenous seed P and uptake of exogenous P are therefore of prime importance during this period. Our objectives were to study the effect of the availability of endogenous and exogenous P on i) remobilization of endogenous seed P, ii) the beginning of exogenous P uptake and its intensity, iii) their interaction and effect on seedling development.

Methods

Seeds with high and low reserves of endogenous seed P were cultivated at three rates of availability of exogenous P (0, 100, 1,000?μM) over a growth period of 530 cumulated degree days after sowing. Exogenous P was labeled with radioactive P (32P) to distinguish the two fluxes of P in seedlings, one due to remobilization of seed P and the other to uptake of exogenous P.

Results

Initially, 86% of endogenous seed P was localized in the scutellum, mainly in the form of phytate, regardless of initial endogenous seed P. At 89 cumulated degree days after sowing (base temperature: 10°C), 98% of seed phytate was hydrolyzed in all treatments. In treatments with available exogenous P, significant uptake of exogenous P started at 71 cumulated degree days after sowing. Efficient uptake of exogenous P depended on its availability, but was independent of phytate hydrolysis and seedling P status. Significant loss of P from germinating seeds due to efflux was observed and was also independent of the availability of exogenous P.

Conclusions

Our results show that hydrolysis of seed P was not influenced by the availability of exogenous P, and conversely, that uptake of exogenous P was not influenced by endogenous P in the seed. This suggests that remobilization of endogenous seed P and uptake of exogenous P by seedling roots are controlled independently.  相似文献   

12.
13.

Background and Aims

Global change will likely express itself in southwestern United States arid lands through changes in amounts and timing of precipitation in response to elevated CO2 concentrations. In addition, increased nitrogen (N) deposition may occur due to increased urban development. This study addressed the effects of water and N availability on C allocation in arid land soil-plant systems.

Methods

Columns filled with Mojave Desert topsoil containing Larrea tridentata seedlings with two treatment levels each of N and soil moisture were labeled by exposure to 13C-enriched CO2.

Results

Increased soil moisture increased plant biomass, total 13C uptake, 13C levels in leaves, soil organic matter, and soil respiration, decreased relative C allocation to stems but increased allocation to soil organic matter. Increased soil N availability increased N uptake but decreased C allocation to soil respiration presumably due to decreased substrate supply for microbes. There was no detectable label in carbonate C, suggesting that this pool does not significantly contribute to ecosystem C fluxes.

Conclusions

Our study indicates that increased water availability causes increased C uptake with increased C allocation to soil organic matter in Larrea tridentata-dominated communities while increased N deposition will have a minimal impact on C sequestration.  相似文献   

14.

Background and aims

Spatial distribution of soil nutrients (soil heterogeneity) and availability have strong effects on above- and belowground plant functional traits. Although there is ample evidence on the tight links between functional traits and ecosystem functioning, the role played by soil heterogeneity and availability as modulators of such relationship is poorly known.

Methods

We conducted a factorial experiment in microcosms containing grasses, legumes and non-legume forbs communities differing in composition to evaluate how soil heterogeneity and availability (50 and 100 mg N) affect the links between traits and ecosystem functioning. Community-aggregated specific leaf area (SLAagg) and specific root length (SRLagg) were measured as both relevant response traits to soil heterogeneity and availability, and significant effect traits affecting ecosystem functioning (i.e., belowground biomass, β-glucosidase and acid phosphatase activities, and in situ N availability rate).

Results

SRLagg was negatively and significantly associated to β-glucosidase, phosphatase and N availability rate in the high nutrient availability and heterogeneous distribution scenario. We found a significant negative relationship between SLAagg and availability rate of mineral-N under low nutrient availability conditions.

Conclusions

Soil heterogeneity modulated the effects of both traits and nutrient availability on ecosystem functioning. Specific root length was the key trait associated with soil nutrient cycling and belowground biomass in contrasted heterogeneous soil conditions. The inclusion of soil heterogeneity into the trait-based response-effect framework may help to scale from plant communities to the ecosystem level.  相似文献   

15.

Background and aims

Accurate predictions of nutrient acquisition by plant roots and mycorrhizas are critical in modelling plant responses to climate change.

Methods

We conducted a field experiment with the aim to investigate root nutrient uptake in a future climate and studied root production by ingrowth cores, mycorrhizal colonization, and fine root N and P uptake by root assay of Deschampsia flexuosa and Calluna vulgaris.

Results

Net root growth increased under elevated CO2, warming and drought, with additive effects among the factors. Arbuscular mycorrhizal colonization increased in response to elevated CO2, while ericoid mycorrhizal colonization was unchanged. The uptake of N and P was not increased proportionally with root growth after 5 years of treatment.

Conclusions

While aboveground biomass was unchanged, the root growth was increased under elevated CO2. The results suggest that plant production may be limited by N (but not P) when exposed to elevated CO2. The species-specific response to the treatments suggests different sensitivity to global change factors, which could result in changed plant competitive interactions and belowground nutrient pool sizes in response to future climate change.  相似文献   

16.

Background and Aims

Water solubility of zinc (Zn) fertilisers affects their plant availability. Further, simultaneous application of Zn and phosphorus (P) fertiliser can have antagonistic effects on plant Zn uptake. Arbuscular mycorrhizas (AM) can improve plant Zn and P uptake. We conducted a glasshouse experiment to test the effect of different Zn fertiliser materials, in conjunction with P fertiliser application, and colonisation by AM, on plant nutrition and biomass.

Methods

We grew a mycorrhiza-defective tomato genotype (rmc) and its mycorrhizal wild-type progenitor (76R) in soil with six different Zn fertilisers ranging in water solubility (Zn sulphate, Zn oxide, Zn oxide (nano), Zn phosphate, Zn carbonate, Zn phosphate carbonate), and supplemental P. We measured plant biomass, Zn and P contents, mycorrhizal colonisation and water use efficiency.

Results

Whereas water solubility of the Zn fertilisers was not correlated with plant biomass or Zn uptake, plant Zn and P contents differed among Zn fertiliser treatments. Plant Zn and P uptake was enhanced when supplied as Zn phosphate carbonate. Mycorrhizal plants took up more P than non-mycorrhizal plants; the reverse was true for Zn.

Conclusions

Zinc fertiliser composition and AM have a profound effect on plant Zn and P uptake.  相似文献   

17.

Aims

The study aimed to find soil parameters that are best related to Se plant uptake for low Se soils with predominantly organic Se, and to explore the mechanisms that control Se bioavailability in the soils under study.

Methods

A pot experiment using nineteen soil samples taken from different fields of arable land (potato fields) in the Netherlands was conducted on summer wheat (Triticum aestivum L.). Selenium in wheat shoots and soil parameters, including basic soil properties, C:N ratio, inorganic selenite content, and Se and organic C in different soil extractions (0.01 M CaCl2, 0.43 M HNO3, hot water, ammonium oxalate, aqua regia) were analysed. Regression analysis was performed to identify soil parameters that determine Se content in wheat shoots.

Results

The regression model shows that Se:DOC ratio in 0.01 M CaCl2 soil extraction explained about 88 % of the variability of Se uptake in wheat shoots. Selenium uptake increased with Se:DOC ratio in CaCl2 extraction, which can be interpreted as a measure of the content of soluble Se-rich organic molecules. Selenium:DOC ratio in CaCl2 extraction and Se uptake increased towards higher soil pH and lower soil C:N ratio. The soil C:N ratio is also negatively correlated to Se:organic C ratio in other extractions (0.43 M HNO3, hot water, ammonium oxalate, aqua regia), indicating that at low soil C:N ratio soil organic matter is richer in Se. Contrarily, the soil pH is positively and strongly correlated to Se:organic C ratio in CaCl2 and hot water extractions, but only weakly correlated to Se:organic C ratio in other extractions.

Conclusions

Selenium-rich dissolved organic matter is the source of bioavailable Se in low Se soils with predominantly organic Se. The soil pH and quality of soil organic matter (i.e. soil C:N ratio) are the main soil properties determining Se bioavailability in these soil types.
  相似文献   

18.
Toufiq Iqbal 《Plant and Soil》2014,384(1-2):21-36

Background and aims

My previous experimental findings suggested that phosphorus (P) enhances aluminium (Al) tolerance in both Al-tolerant and Al-sensitive wheat seedlings. However, the role of P in the amelioration of Al toxicity within plant tissue is still unclear. Therefore, a soil culture horizontal split-root system was used to quantify whether or not translocated P alleviates Al toxicity within the plant tissue.

Methods

Different level of Al and P were added in two compartments in various combinations for separate root halves. Constrasting Al-tolerant (ET8) and Al-sensitive (ES8) wheat genotypes were used as a testing plant.

Results

The limitation of root growth was independent to Al-toxicity in one root half. However, root proliferation occurred as a compensatory growth on the other root half that has no Al-toxicity. Where half of the roots were given 60 mg P/kg, plant did not translocated P in the other part of the root system that grown in Al toxic soil. When 40 mg P/kg were mixed with 60 mg AlCl3/kg within one root half combinations, root dry weight of both ET8 and ES8 increased markedly in that root half. In contrast, root dry weight of both ET8 and ES8 decreased noticeably only 60 mg AlCl3/kg treated root half. The shoot P and Al uptake in both ET8 and ES8 was lower in combined 40 mg P/kg and 60 mg AlCl3/kg addition as compared to other combination with same P and Al level.

Conclusions

Result from this study confirm that addition of P to Al toxic acid soil played dual role like amelioration of Al-toxicity in soil and utilize P as nutrition for plant growth and development. Findings also attributed that added P was reduced by precipitation with added Al. However, evidence found that translocated P was not able to alleviate Al toxicity within plant tissue of both ES8 and ET8.  相似文献   

19.

Aims

Winter oilseed-rape production is characterized by a low N efficiency, due to low N uptake and insufficient N remobilisation to the seeds. In particular, a reduction of leaf N losses might be one way to improve N efficiency of this crop. It was tested if variations in leaf N losses and in stem residual N amounts at maturity exist between cultivars differing in N efficiency.

Methods

In a 3-year field experiment, four oilseed rape cultivars were cultivated at limiting, medium, and high N supply.

Results

N harvest indices in this study were comparatively high (around 0.79) and leaf N losses amounted to at most 13 kg N ha?1. 86 % of the leaf N present at the beginning of flowering was remobilised, irrespective of N rate or cultivar. Nevertheless, genotypic variation in leaf N loss existed. They were mainly due to differences in leaf N accumulation until flowering. Residual N in stems (up to 33 kg N ha?1) was higher than leaf N losses and varied more between treatments but was not related to genotypic variation in yield.

Conclusions

N uptake after flowering was more important than N remobilisation from vegetative biomass for genotypic variation in seed yield both at low and high N supply.  相似文献   

20.

Background and aims

Knowledge about the effects of water and fertilizer on soil CO2 efflux (SCE) and Q 10 is essential for understanding carbon (C) cycles and for evaluating future global C balance. A two-year field experiment was conducted to determine the effects of water, fertilizer, and temperature on SCE in semiarid grassland in northern China.

Methods

SCE, as well as environmental factors was measured in two grasslands, one with bunge needlegrass (BNE, Stipa bungeana) and one with purple alfalfa (ALF, Medicago sativa), with four treatments: CK (unwatered and unfertilized); W (50 mm water addition yr?1); F (50 kg phosphorus (P) fertilizer ha?1 yr?1 for ALF, 100 kg nitrogen (N)?+?50 kg P fertilizer ha?1 yr?1 for BNE); and W + F.

Results

During the 11-month experimental period from July 2010 to October 2011, the addition of water consistently stimulated mean SCE in BNE and ALF, and the positive effects were relatively stronger during dry seasons. P fertilization consistently enhanced SCE in ALF, and the positive effect was strongly dependent on the availability of soil water. The effects of N plus P fertilization on SCE in BNE varied seasonally from significant increases to small reductions to no response. Water addition increased the Q 10 of SCE in ALF by 11 % but had no effect in BNE. Fertilization, however, reduced the Q 10 of SCE by 21 % and 13 % for BNE and ALF, respectively. Models that rely only on Q 10 underestimated the emissions of soil CO2 by 8–15 % at the study site, which was mediated by species and treatment.

Conclusions

Responses of SCE and its temperature sensitivity to water and fertilizer may vary with species and depend on the period of measurement. Models of SCE need to incorporate the availability of ecosystemic water and nutrients, as well as species, and incorporate different environmental factors when determining the impact of water, nutrients, and species on SCE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号