首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

A field experiment was conducted to quantify annual nitrous oxide (N2O) fluxes from control and fertilized plots under open-air and greenhouse vegetable cropping systems in southeast China. We compiled the reported global field annual N2O flux measurements to estimate the emission factor of N fertilizer for N2O and its background emissions from vegetable fields.

Methods

Fluxes of N2O were measured using static chamber-GC techniques over the 2010–2011 annual cycle with multiple cropping seasons.

Results

The mean annual N2O fluxes from the controls were 46.1?±?2.3 μg N2O-N m?2 hr?1 and 68.3?±?4.1 μg N2O-N m?2 hr?1 in the open-air and greenhouse vegetable systems, respectively. For the plots receiving 900 kg?N?ha?1, annual N2O emissions averaged 90.6?±?8.9 μg N2O-N m?2 hr?1 and 106.4?±?6.6 μg N2O-N?m?2 hr?1 in the open-air and greenhouse vegetable systems, respectively. By pooling published field N2O flux measurements taken over or close to a full year, the N2O emission factor for N fertilizer averaged 0.63?±?0.09 %, with a background emission of 2.67?±?0.80 kg N2O-N ha?1 in Chinese vegetable fields. Annual N2O emissions from Chinese vegetable systems were estimated to be 84.7 Gg N2O-N yr?1, consisting of 72.5 Gg N2O-N yr?1 and 12.2 Gg N2O-N yr?1 in the open-air and greenhouse vegetable systems, respectively.

Conclusions

While N2O emissions from the greenhouse vegetable cropping system tended to be slightly higher compared to the open-air system in our experiment, the synthesis of literature data suggests that N2O emissions would be greater at low N-rates but smaller at high N-rates in greenhouse systems than in open-air vegetable cropping systems. The estimates of this study suggest that vegetable cropping systems covering 11.4 % in national total cropping area, contributed 21–25 % to the total N2O emission from Chinese croplands.  相似文献   

2.

Aims

Integrated weed management, which allows reducing the reliance of cropping systems on herbicides, is based on the use of specific combinations of innovative agricultural practices. However the impact of the introduction of these practices in cropping systems may influence soil functioning such as biogeochemical cycling. Here, we investigated N2O emissions and the abundances of N-cycling microorganisms in 11-year old cropping systems (i.e. conventional reference and integrated weed management) in order to estimate the environmental side-effects of long-term integrated weed management.

Methods

N2O emissions were continuously measured using automated chambers coupled with infrared analysers. Abundances of ammonia oxidizers and denitrifiers together with total bacteria and archaea were determined monthly from 0 to 10 and 10–30 cm soil layer samples by quantitative Polymerase Chain Reaction (qPCR). The relationship between N2O emissions and microbial abundances during the study were investigated as were their relationships with soil physicochemical parameters and climatic conditions.

Results

Over 7 months, the system with integrated weed management emitted significantly more N2O with cumulated measured emissions of 240 and 544 g N-N2O ha?1 for conventional and integrated systems, respectively. Abundances of microbial guilds varied slightly between systems, although ammonia-oxidizing bacteria were more abundant in the reference system (1.7 106 gene copies g?1 dry weight soil) compared to the integrated system (1.0 106 gene copies g?1 dry weight soil). These differences revealed both the long-term modification of soil biogeochemical background and the functioning of microbial processes due to 11 years of alternative field management, and the short-term impacts of the agricultural practices introduced as part of weed management during the cropping year.

Conclusions

The abundances of the different microbial communities involved in N cycling and the intensity of N2O emissions were not related, punctual high N2O emissions being more dependent on favourable soil conditions for nitrifying and denitrifying activities. Future studies will be performed to check these findings for other pedoclimatic conditions and to examine the impact of such cropping systems.  相似文献   

3.
Rice is staple food of half of mankind and paddy soils account for the largest anthropogenic wetlands on earth. Ample of research is being done to find cultivation methods under which the integrative greenhouse effect caused by emitted CH4 and N2O would be mitigated. Whereas most of the research focuses on quantifying such emissions, there is a lack of studies on the biogeochemistry of paddy soils. In order to deepen our mechanistic understanding of N2O and CH4 fluxes in rice paddies, we also determined NO3 ? and N2O concentrations as well as N2O isotope abundances and presence of O2 along soil profiles of paddies which underwent three different water managements during the rice growing season(s) in (2010 and) 2011 in Korea. Largest amounts of N2O (2 mmol m?2) and CH4 (14.5 mol m?2) degassed from the continuously flooded paddy, while paddies with less flooding showed 30–60 % less CH4 emissions and very low to negative N2O balances. In accordance, the global warming potential (GWP) was lowest for the Intermittent Irrigation paddy and highest for the Traditional Irrigation paddy. The N2O emissions could the best be explained (*P < 0.05) with the δ15N values and N2O concentrations in 40–50 cm soil depth, implying that major N2O production/consumption occurs there. No significant effect of NO3 ? on N2O production has been found. Our study gives insight into the soil of a rice paddy and reveals areas along the soil profile where N2O is being produced. Thereby it contributes to our understanding of subsoil processes of paddy soils.  相似文献   

4.

Aims

Two pot experiments in a “walk-in” growth chamber with controlled day and night temperatures were conducted to investigate the influence of elevated temperatures along with rice straw incorporation on methane (CH4) and nitrous oxide (N2O) emissions as well as rice yield.

Methods

Three temperature regimes–29/25, 32/25, and 35/30 °C (Exp. I) and 29/22, 32/25, and 35/28 °C (Exp. II), representing daily maxima/minima were used in the study. Two amounts of rice straw (0 and 6 t ha?1) were applied with four replications in each temperature regime. CH4 and N2O emissions as well as soil redox potential (Eh) were monitored weekly throughout the rice-growing period.

Results

Elevated temperatures increased CH4 emission rates, with a more pronounced effect from flowering to maturity. The increase in emissions was further enhanced by incorporation of rice straw. A decrease in soil Eh to <?100 mV and CH4 emissions was observed early in rice straw–incorporated pots while the soil without straw did not reach negative Eh levels (Exp. I) or showed a delayed decrease (Exp. II). Moreover, soil with high organic C (Exp. II) had higher CH4 emissions. In contrast to CH4 emissions, N2O emissions were negligible during the rice-growing season. The global warming potential (GWP) was highest at high temperature with rice straw incorporation compared with low temperature without rice straw. On the other hand, the high temperature significantly increased spikelet sterility and reduced grain yield (p?<?0.05).

Conclusions

Elevated temperature increased GWP while decreased rice yield. This suggests that global warming may result in a double negative effect: higher emissions and lower yields.  相似文献   

5.

Background and aims

High nitrous oxide (N2O) emissions may occur during the non-rice growing season of Chinese rice-upland crop rotation systems. However, our understanding of N2O emission during this season is poor due to a scarcity of available field N2O measurements.

Methods

Using the static manual chamber-GC technique, seasonal N2O emissions during the non-rice growing season were simultaneously measured at two adjacent rice-wheat and rice-rapeseed fields in southwest China for three consecutive annual rotation cycles (May 2005 to May 2008).

Results

Compared to the control, N fertilizer applications significantly enhanced soil N2O emissions from both wheat and rapeseed systems. Seasonal cumulative N2O fluxes from wheat systems were on average 2.6 kg N ha?1 for the recommended practice (RP [150 kg N ha?1]) and 5.0 kg N ha?1 for the conventional practice (CP [250 kg N ha?1]). Lower N2O emissions were observed from the adjacent rapeseed systems. Average cumulative seasonal N2O fluxes from rapeseed were 1.5 and 2.2 kg N ha?1 for the RP and CP treatments, respectively. The first 3 weeks after N fertilization were the “hot moment” of N2O emissions for both the wheat and rapeseed systems. The lowest yield-scaled N2O fluxes for wheat were obtained at the RP treatment (mean: 0.81 kg N Mg?1) while for rapeseed the CP treatment produced the lowest yield-scaled fluxes (mean: 0.79 kg N Mg?1). On average, the direct N2O emission factors (EFd) for the wheat system (1.76 %) were over two times higher than for the rapeseed system (0.73 %).

Conclusions

Intercropping of rapeseed tends to result in lower N2O emissions than wheat for rice-upland crop rotation systems of southwest China, indicating that either the N fertilization or the cropping system need to be considered not only for improving the estimate of regional and/or national N2O fluxes but also for proposing the climate-smart agricultural management practice to reduce N2O emissions from agricultural soils.  相似文献   

6.
The impact of agricultural management on global warming potential (GWP) and greenhouse gas intensity (GHGI) is not well documented. A long‐term fertilizer experiment in Chinese double rice‐cropping systems initiated in 1990 was used in this study to gain an insight into a complete greenhouse gas accounting of GWP and GHGI. The six fertilizer treatments included inorganic fertilizer [nitrogen and phosphorus fertilizer (NP), nitrogen and potassium fertilizer (NK), and balanced inorganic fertilizer (NPK)], combined inorganic/organic fertilizers at full and reduced rate (FOM and ROM), and no fertilizer application as a control. Methane (CH4) and nitrous oxide (N2O) fluxes were measured using static chamber method from November 2006 through October 2009, and the net ecosystem carbon balance was estimated by the changes in topsoil (0–20 cm) organic carbon (SOC) density over the 10‐year period 1999–2009. Long‐term fertilizer application significantly increased grain yields, except for no difference between the NK and control plots. Annual topsoil SOC sequestration rate was estimated to be 0.96 t C ha?1 yr?1 for the control and 1.01–1.43 t C ha?1 yr?1 for the fertilizer plots. Long‐term inorganic fertilizer application tended to increase CH4 emissions during the flooded rice season and significantly increased N2O emissions from drained soils during the nonrice season. Annual mean CH4 emissions ranged from 621 kg CH4 ha?1 for the control to 1175 kg CH4 ha?1 for the FOM plots, 63–83% of which derived from the late‐rice season. Annual N2O emission averaged 1.15–4.11 kg N2O–N ha?1 in the double rice‐cropping systems. Compared with the control, inorganic fertilizer application slightly increased the net annual GWPs, while they were remarkably increased by combined inorganic/organic fertilizer application. The GHGI was lowest for the NP and NPK plots and highest for the FOM and ROM plots. The results of this study suggest that agricultural economic viability and GHGs mitigation can be simultaneously achieved by balanced fertilizer application.  相似文献   

7.

Aims

A pot study spanning four consecutive crop seasons was conducted to compare the effects of successive rice straw biochar/rice straw amendments on C sequestration and soil fertility in rice/wheat rotated paddy soil.

Methods

We adopted 4.5 t ha?1, 9.0 t ha?1 biochar and 3.75 t ha?1 straw for each crop season with an identical dose of NPK fertilizers.

Results

We found no major losses of biochar-C over the 2-year experimental period. Obvious reductions in CH4 emission were observed from rice seasons under the biochar application, despite the fact that the biochar brought more C into the soil than the straw. N2O emissions with biochar were similar to the controls without additives over the 2-year experimental period. Biochar application had positive effects on crop growth, along with positive effects on nutrient (N, P, K, Ca and Mg) uptake by crop plants and the availability of soil P, K, Ca and Mg. High levels of biochar application over the course of the crop rotation suppressed NH3 volatilization in the rice season, but stimulated it in the wheat season.

Conclusions

Converting straw to biochar followed by successive application to soil is viable for soil C sequestration, CH4 mitigation, improvements of soil and crop productivity. Biochar soil amendment influences NH3 volatilization differently in the flooded rice and upland wheat seasons, respectively.  相似文献   

8.

Aims

A 3-year field experiment (October 2004–October 2007) was conducted to quantify N2O fluxes and determine the regulating factors from rain-fed, N fertilized wheat-maize rotation in the Sichuan Basin, China.

Methods

Static chamber-GC techniques were used to measure soil N2O fluxes in three treatments (three replicates per treatment): CK (no fertilizer); N150 (300 kg N fertilizer ha?1 yr?1 or 150 kg N?ha?1 per crop); N250 (500 kg N fertilizer ha?1 yr?1 kg or 250 kg N?ha?1 per crop). Nitrate (NO 3 ? ) leaching losses were measured at nearby sites using free-drained lysimeters.

Results

The annual N2O fluxes from the N fertilized treatments were in the range of 1.9 to 6.7 kg N?ha?1 yr?1 corresponding to an N2O emission factor ranging from 0.12 % to 1.06 % (mean value: 0.61 %). The relationship between monthly soil N2O fluxes and NO 3 - leaching losses can be described by a significant exponential decaying function.

Conclusions

The N2O emission factor obtained in our study was somewhat lower than the current IPCC default emission factor (1 %). Nitrate leaching, through removal of topsoil NO 3 ? , is an underrated regulating factor of soil N2O fluxes from cropland, especially in the regions where high NO 3 - leaching losses occur.  相似文献   

9.

Aims

Effects of different soil amendments were investigated on methane (CH4) emission, soil quality parameters and rice productivity in irrigated paddy field of Bangladesh.

Methods

The experiment was laid out in a randomized complete block design with five treatments and three replications. The experimental treatments were urea (220 kg ha?1) + rice straw compost (2 t ha?1) as a control, urea (170 kg ha?1) + rice straw compost (2 t ha?1) + silicate fertilizer, urea (170 kg ha?1) + sesbania biomass (2 t ha?1 ) + silicate fertilizer, urea (170 kg ha?1) + azolla biomass (2 t ha?1) + cyanobacterial mixture 15 kg ha?1 silicate fertilizer, urea (170 kg ha?1) + cattle manure compost (2 t ha?1) + silicate fertilizer.

Results

The average of two growing seasons CH4 flux 132 kg ha?1 was recorded from the conventional urea (220 kg ha?1) with rice straw compost incorporated field plot followed by 126.7 (4 % reduction), 130.7 (1.5 % reduction), 116 (12 % reduction) and 126 (5 % reduction) kg CH4 flux ha?1 respectively, with rice straw compost, sesbania biomass, azolla anabaena and cattle manure compost in combination urea and silicate fertilizer applied plots. Rice grain yield was increased by 15 % and 10 % over the control (4.95 Mg ha?1) with silicate plus composted cattle manure and silicate plus azolla anabaena, respectively. Soil quality parameters such as soil organic carbon, total nitrogen, microbial biomass carbon, soil redox status and cations exchange capacity were improved with the added organic materials and azolla biofertilizer amendments with silicate slag and optimum urea application (170 kg ha?1) in paddy field.

Conclusion

Integrated application of silicate fertilizer, well composted organic manures and azolla biofertilizer could be an effective strategy to minimize the use of conventional urea fertilizer, reducing CH4 emissions, improving soil quality parameters and increasing rice productivity in subtropical countries like Bangladesh.  相似文献   

10.

Purpose

We attempted to determine the contribution of entrapped gas bubbles to the soil methane (CH4) pool and their role in CH4 emissions in rice paddies open to the atmosphere.

Methods

We buried pots with soil and rice in four treatments comprising two atmospheric CO2 concentrations (ambient and ambient +200 μmol mol?1) and two soil temperatures (ambient and ambient +2 °C). Pots were retrieved for destructive measurements of rice growth and the gaseous CH4 pool in the soil at three stages of crop development: panicle formation, heading, and grain filling. Methane flux was measured before pot retrieval.

Results

Bubbles that contained CH4 accounted for a substantial fraction of the total CH4 pool in the soil: 26–45 % at panicle formation and 60–68 % at the heading and grain filling stages. At panicle formation, a higher CH4 mixing ratio in the bubbles was accompanied by a greater volume of bubbles, but at heading and grain filling, the volume of bubbles plateaued and contained ~35 % CH4. The bubble-borne CH4 pool was closely related to the putative rice-mediated CH4 emissions measured at each stage across the CO2 concentration and temperature treatments. However, much unexplained variation remained between the different growth stages, presumably because the CH4 transport capacity of rice plants also affected the emission rate.

Conclusions

The gas phase needs to be considered for accurate quantification of the soil CH4 pool. Not only ebullition but also plant-mediated emission depends on the gaseous-CH4 pool and the transport capacity of the rice plants.  相似文献   

11.

Purpose

Adoption of the carbon (C)-friendly and cleaner technology is an effective solution to offset some of the anthropogenic emissions. Conservation tillage is widely considered as an important sustainable technology and for the development of conservation agriculture (CA). Thus, the objective of this study was to assess the C sustainability of different tillage systems in a double rice (Oryza sativa L.) cropping system in southern China.

Methods

The experiment was established with no-till (NT), rotary tillage (RT), and conventional tillage (CT) treatments since 2005. Emission of greenhouse gasses (GHG), C footprint (CF), and ecosystem service through C sequestration in different tillage systems were compared.

Result and discussion

Emission of GHG from agricultural inputs (Mg CO2-eq ha?1 year?1) ranged from 1.81 to 1.97 for the early rice, 1.82 to 1.98 for the late rice, and 3.63 to 3.95 for the whole growing season, respectively. The CF (kg CO2-eq kg?1 of rice year?1) in the whole growing seasons were 1.27, 1.85, and 1.40 [excluding soil organic carbon (SOC) storage] and 0.54, 1.20, and 0.72 (including SOC storage) for NT, RT, and CT, respectively. The value of ecosystem services on C sequestration for the whole growing seasons ranged from ¥3,353 to 4,948 ha?1 year?1 and followed the order of NT > CT > RT. The C sustainability under NT was better than that under RT for the late, but reversed for the early rice. However, NT system had better C sustainability for the whole cropping system compared with CT.

Conclusions

Therefore, NT is a preferred technology to reduce GHG emissions, increase ecosystem service functions of C sequestration, and improve C sustainability in a double rice cropping region of Southern China.  相似文献   

12.

Background and aims

Winter cover crop cultivation during the fallow season has been strongly recommended in mono-rice paddy soil to improve soil quality, but its impact in increasing the greenhouse gases (GHGs) emissions during rice cultivation when applied as green manure has not been extensively studied. In order to recommend a preferable cover crop which can increase soil productivity and suppress GHG emission impact in paddy soil, the effect of winter cover crop addition on rice yield and total global warming potential (GWP) was studied during rice cultivation.

Methods

Two cover crops (Chinese milk vetch, Astragalus sinicus L., hereafter vetch, and rye, Secale cerealis) having different carbon/nitrogen (C/N) ratios were cultivated during the rice fallow season. The fresh above-ground biomasses of vetch [25 Mg fresh weight (FW) ha?1, moisture content (MC) 86.9 %, C/N ratio 14.8] and rye (29 Mg rye FW ha?1, MC 78.0 %, C/N ratio 64.3) were incorporated as green manure 1 week before rice transplanting (NPK + vetch, and NPK + rye). The NPK treatment was installed for comparison as the control. During the rice cultivation, methane (CH4) and nitrous oxide (N2O) gases were collected simultaneously once a week using the closed-chamber method, and carbon dioxide (CO2) flux was estimated using the soil C balance analysis. Total GWP impact was calculated as CO2 equivalents by multiplying the seasonal CH4, CO2, and N2O fluxes by 25, 1, and 298, respectively.

Results

Methane mainly covered 79–81 % of the total GWP, followed by CO2 (14–17 %), but the N2O contribution was very small (2–5 %) regardless of the treatment. Seasonal CH4 fluxes significantly increased to 61 and 122 % by vetch and rye additions, respectively, compared to that of the NPK treatment. Similarly, the estimated seasonal CO2 fluxes increased at about 197 and 266 % in the vetch and rye treatments, respectively, compared with the NPK control plots. Based on these results, the total GWP increased to 163 and 221 % with vetch and rye applications, respectively, over the control treatment. Rice productivity was significantly increased with the application of green manure due to nutrient supply; however, vetch was more effective. Total GWP per grain yield was similar with the vetch (low C/N ratio) and NPK treatments, but significantly increased with the rye (high C/N ratio) application, mainly due to its higher CH4 emission characteristic and lower rice productivity increase.

Conclusions

A low C/N ratio cover crop, such as vetch, may be a more desirable green manure to reduce total GWP per grain yield and to improve rice productivity.  相似文献   

13.

Background and aims

The direct measurement of denitrification dynamics and its product fractions is important for parameterizing process-oriented model(s) for nitrogen cycling in various soils. The aims of this study are to a) directly measure the denitrification potential and the fractions of nitrogenous gases as products of the process in laboratory, b) investigate the effects of the nitrate (NO 3 ? ) concentration on emissions of denitrification gases, and c) test the hypothesis that denitrification can be a major pathway of nitrous oxide (N2O) and nitric oxide (NO) production in calcic cambisols under conditions of simultaneously sufficient supplies of carbon and nitrogen substrates and anaerobiosis as to be found to occur commonly in agricultural lands.

Methods

Using the helium atmosphere (with or without oxygen) gas-flow-soil-core technique in laboratory, we directly measured the denitrification potential of a silt clay calcic cambisol and the production of nitrogen gas (N2), N2O and NO during denitrification under the conditions of seven levels of NO 3 ? concentrations (ranging from 10 to 250 mg N kg?1 dry soil) and an almost constant initial dissolved organic carbon concentration (300 mg C kg?1 dry soil).

Results

Almost all the soil NO 3 ? was consumed during anaerobic incubation, with 80–88 % of the consumed NO 3 ? recovered by measuring nitrogenous gases. The results showed that the increases in initial NO 3 ? concentrations significantly enhanced the denitrification potential and the emissions of N2 and N2O as products of this process. Despite the wide range of initial NO 3 ? concentrations, the ratios of N2, N2O and NO products to denitrification potential showed much narrower ranges of 51–78 % for N2, 14–36 % for N2O and 5–22 % for NO.

Conclusions

These results well support the above hypothesis and provide some parameters for simulating effects of variable soil NO 3 ? concentrations on denitrification process as needed for biogeochemical models.  相似文献   

14.

Aims

Two field microcosm experiments and 15N labeling techniques were used to investigate the effects of biochar addition on rice N nutrition and GHG emissions in an Inceptisol and an Ultisol.

Methods

Biochar N bioavailability and effect of biochar on fertilizer nitrogen-use efficiency (NUE) were studied by 15N-enriched wheat biochar (7.8803 atom% 15N) and fertilizer urea (5.0026 atom% 15N) (Experiment I). Corn biochar and corn stalks were applied at 12 Mg?ha?1 to study their effects on GHG emissions (Experiment II).

Results

Biochar had no significant impact on rice production and less than 2 % of the biochar N was available to plants in the first season. Biochar addition increased soil C and N contents and decreased urea NUE. Seasonal cumulative CH4 emissions with biochar were similar to the controls, but significantly lower than the local practice of straw amendment. N2O emissions with biochar were similar to the control in the acidic Ultisol, but significantly higher in the slightly alkaline Inceptisol. Carbon-balance calculations found no major losses of biochar-C.

Conclusion

Low bio-availability of biochar N did not make a significantly impact on rice production or N nutrition during the first year. Replacement of straw amendments with biochar could decrease CH4 emissions and increase SOC stocks.  相似文献   

15.
稻田秸秆还田:土壤固碳与甲烷增排   总被引:38,自引:0,他引:38  
基于我国农田土壤有机质长期定位试验和稻田甲烷排放试验成果,将全国稻田划分为单季区和双季区.根据土壤有机质试验数据,分析了秸秆还田在我国两个稻田区的单季稻田、水旱轮作稻田和双季稻田的固碳潜力.同时根据我国稻田甲烷排放试验数据,采用取平均排放系数的方法,估算了我国稻田在无秸秆还田情况下的甲烷排放总量;结合IPCC推荐的方法和参数,估算了我国稻田秸秆还田后甲烷排放总量及增排甲烷的全球增温潜势.结果表明:在中国稻田推广秸秆还田的固碳潜力为10.48TgC.a-1,对减缓全球变暖的贡献为38.43TgCO2-eqv.a-1;但秸秆还田后稻田甲烷排放将从无秸秆还田的5.796Tg.a-1增加到9.114Tg.a-1;秸秆还田引起甲烷增排3.318Tg.a-1,其全球增温潜势达82.95TgCO2-eqv.a-1,为土壤固碳减排潜力的2.158倍.可见,推广秸秆还田后,中国稻田增排甲烷的温室效应会大幅抵消土壤固碳的减排效益,是一项重要的温室气体泄漏.  相似文献   

16.

Background and aims

It is so far a gap in knowledge to assess nitrate (NO3 ?) leaching loss linking with crop yield for a given cereal cropping system.

Methods

We conducted a meta-analysis on 32 published studies reporting both NO3 ? leaching losses and crop yields in the maize (N?=?20) and wheat (N?=?12) systems.

Results

On average, 22 % and 15 % of applied fertilizer N to wheat and maize systems worldwide are leached in the form of NO3 ?, respectively. The average area-scaled NO3 - leaching loss for maize (57.4 kg N ha?1) was approx. two times higher than for wheat (29.0 kg N ha?1). While, if scaled to crop yields, the average yield-scaled NO3 ? losses were comparable between maize (5.40 kg N Mg?1) and wheat (5.41 kg N Mg?1) systems. Across all sites, the lowest yield-scaled NO3 ? leaching losses were observed at slightly suboptimal fertilization rates, corresponding to 90 % and 96 % of maximum maize or wheat yields, respectively.

Conclusions

Our findings suggest that small adjustments of agricultural N management practices can effectively reduce yield-scaled NO3 ? leaching losses. However, further targeted field experiments are still needed to identify at regional scale best agricultural management practices for reducing yield-scaled NO3 ? leaching losses in maize and wheat systems.  相似文献   

17.

Background and Aims

Tree species composition shifts can alter soil CO2 and N2O effluxes. We quantified the soil CO2 and N2O efflux rates and temperature sensitivity from Pyrenean oak, Scots pine and mixed stands in Central Spain to assess the effects of a potential expansion of oak forests.

Methods

Soil CO2 and N2O effluxes were measured from topsoil samples by lab incubation from 5 to 25 °C. Soil microbial biomass and community composition were assessed.

Results

Pine stands showed highest soil CO2 efflux, followed by mixed and oak forests (up to 277, 245 and 145 mg CO2-C m?2 h?1, respectively). Despite contrasting soil microbial community composition (more fungi and less actinomycetes in pine plots), carbon decomposability and temperature sensitivity of the soil CO2 efflux remain constant among tree species. Soil N2O efflux rates and its temperature sensitivity was markedly higher in oak stands than in pine stands (70 vs. 27 μg N2O-N m?2 h?1, Q10, 4.5 vs. 2.5).

Conclusions

Conversion of pine to oak forests in the region will likely decrease soil CO2 effluxes due to decreasing SOC contents on the long run and will likely enhance soil N2O effluxes. Our results present only a seasonal snapshot and need to be confirmed in the field.  相似文献   

18.

Background

Evaluating the net exchange of greenhouse gas (GHG) emissions in conjunction with soil carbon sequestration may give a comprehensive insight on the role of agricultural production in global warming.

Materials and Methods

Measured data of methane (CH4) and nitrous oxide (N2O) were utilized to test the applicability of the Denitrification and Decomposition (DNDC) model to a winter wheat – single rice rotation system in southern China. Six alternative scenarios were simulated against the baseline scenario to evaluate their long-term (45-year) impacts on net global warming potential (GWP) and greenhouse gas intensity (GHGI).

Principal Results

The simulated cumulative CH4 emissions fell within the statistical deviation ranges of the field data, with the exception of N2O emissions during rice-growing season and both gases from the control treatment. Sensitivity tests showed that both CH4 and N2O emissions were significantly affected by changes in both environmental factors and management practices. Compared with the baseline scenario, the long-term simulation had the following results: (1) high straw return and manure amendment scenarios greatly increased CH4 emissions, while other scenarios had similar CH4 emissions, (2) high inorganic N fertilizer increased N2O emissions while manure amendment and reduced inorganic N fertilizer scenarios decreased N2O emissions, (3) the mean annual soil organic carbon sequestration rates (SOCSR) under manure amendment, high straw return, and no-tillage scenarios averaged 0.20 t C ha−1 yr−1, being greater than other scenarios, and (4) the reduced inorganic N fertilizer scenario produced the least N loss from the system, while all the scenarios produced comparable grain yields.

Conclusions

In terms of net GWP and GHGI for the comprehensive assessment of climate change and crop production, reduced inorganic N fertilizer scenario followed by no-tillage scenario would be advocated for this specified cropping system.  相似文献   

19.

Background

The greenhouse gas (GHG) mitigation is one of the most important environmental benefits of using bioenergy replacing fossil fuels. Nitrous oxide (N2O) and methane (CH4) are important GHGs and have drawn extra attention for their roles in global warming. Although there have been many works of soil emissions of N2O and CH4 from bioenergy crops in the field scale, GHG emissions in large area of marginal lands are rather sparse and how soil temperature and moisture affect the emission potential remains unknown. Therefore, we sought to estimate the regional GHG emission based on N2O and CH4 releases from the energy crop fields.

Results

Here we sampled the top soils from two Miscanthus fields and incubated them using a short-term laboratory microcosm approach under different conditions of typical soil temperatures and moistures. Based on the emission measurements of N2O and CH4, we developed a model to estimate annual regional GHG emission of Miscanthus production in the infertile Loess Plateau of China. The results showed that the N2O emission potential was 0.27 kg N ha?1 year?1 and clearly lower than that of croplands and grasslands. The CH4 uptake potential was 1.06 kg C ha?1 year?1 and was slightly higher than that of croplands. Integrated with our previous study on the emission of CO2, the net greenhouse effect of three major GHGs (N2O, CH4 and CO2) from Miscanthus fields was 4.08 t CO2eq ha?1 year?1 in the Loess Plateau, which was lower than that of croplands, grasslands and shrub lands.

Conclusions

Our study revealed that Miscanthus production may hold a great potential for GHG mitigation in the vast infertile land in the Loess Plateau of China and could contribute to the sustainable energy utilization and have positive environmental impact on the region.
  相似文献   

20.

Aim

This study aimed at better characterising background nitrous oxide (N2O) emissions (BNE) in agricultural and natural lands.

Methods

We compiled and analysed field-measured data for annual background N2O emission in agricultural (BNEA) and natural (BNEN) lands from 600 and 307 independent experimental studies, respectively.

Results

There were no significant differences between BNEA (median: 0.70 & mean: 1.52 kg N2O???N ha?1 yr?1) and BNEN (median:0.31 & mean:1.75 kg N2O???N ha?1 yr?1) (P?>?0.05). A simultaneous comparison across all BNEA and BNEN indicated that BNEs from riparian, vegetable crop fields and intentional fallow areas were significantly higher than from boreal forests (P?<?0.05). Correlation and regression analyses supported the underlying associations of soil organic carbon (C), nitrogen (N), pH, bulk density (BD),and/or air temperature (AT) with BNEs to a varying degree as a function of land-use or ecosystem type (Ps?<?0.05).

Conclusions

Although overall BNEN tended to be lower than BNEA on median basis, results in general suggest that land-use shifts between natural and managed production systems would not result in consistent changes in BNE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号