首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background and Aims

Water solubility of zinc (Zn) fertilisers affects their plant availability. Further, simultaneous application of Zn and phosphorus (P) fertiliser can have antagonistic effects on plant Zn uptake. Arbuscular mycorrhizas (AM) can improve plant Zn and P uptake. We conducted a glasshouse experiment to test the effect of different Zn fertiliser materials, in conjunction with P fertiliser application, and colonisation by AM, on plant nutrition and biomass.

Methods

We grew a mycorrhiza-defective tomato genotype (rmc) and its mycorrhizal wild-type progenitor (76R) in soil with six different Zn fertilisers ranging in water solubility (Zn sulphate, Zn oxide, Zn oxide (nano), Zn phosphate, Zn carbonate, Zn phosphate carbonate), and supplemental P. We measured plant biomass, Zn and P contents, mycorrhizal colonisation and water use efficiency.

Results

Whereas water solubility of the Zn fertilisers was not correlated with plant biomass or Zn uptake, plant Zn and P contents differed among Zn fertiliser treatments. Plant Zn and P uptake was enhanced when supplied as Zn phosphate carbonate. Mycorrhizal plants took up more P than non-mycorrhizal plants; the reverse was true for Zn.

Conclusions

Zinc fertiliser composition and AM have a profound effect on plant Zn and P uptake.  相似文献   

2.

Background and aims

Crop phosphorus (P) content is controlled by P uptake from both banded P fertiliser and from P throughout the soil profile. These P supply factors are in turn controlled by soil, climatic and plant factors. The aim of this experiment was to measure the contribution of fertiliser, topsoil and subsoil P to wheat plants under wet and dry growing season conditions.

Methods

An isotopic tracer technique was used to measure P uptake from fertiliser at seven agricultural field sites under wet and dry growing season conditions. At three of these sites a dual isotopic technique was used to distinguish between wheat uptake of P from fertiliser, topsoil (0–15 cm) and subsoil (below 15 cm).

Results

The amount of P fertiliser used by wheat was in the order of 3–30% of the P applied and increased with increasing rainfall. Topsoil P was the most important P source, but when sufficient P was present in the subsoil, P fertiliser addition stimulated the use of subsoil P.

Conclusions

Most crop P uptake was from the topsoil, however P fertiliser banded below the seed increased plant P uptake and stimulated the use of subsoil P in one soil type in a decile 7 (above average rainfall) growing season.  相似文献   

3.
Ageing of zinc in highly-weathered iron-rich soils   总被引:1,自引:0,他引:1  

Background and aims

The reactivity and bioavailability of soluble metal added to soil decreases with time. This process, called ageing, has mainly been investigated in temperate soils. This paper uses isotopic exchangeability to investigate Zn ageing in a range of highly weathered and/or oxide-rich soils.

Methods

Changes in lability of soluble added Zn (450?mg Zn/kg soil) over time was measured in six contrasting soils, with pH adjusted to give ten treatments per soil type ranging from pH 4 to 7.

Results

Decreasing extractability and isotopic exchangeability (lability) over time revealed substantial fixation of added zinc in six highly weathered/variable charge soils. Strong negative relationships between pH and solubility, and pH and lability were observed. In soils with pH?>?6.5 a significant proportion of the added metal becomes non-isotopically exchangeable within 15?s of addition. Correlations between Mn solubility and Zn lability throughout the incubation demonstrated the role of redox conditions (and pH) in regulating Zn lability.

Conclusions

Results showed zinc fixation was strongly related to pH and ageing time, and relatively unaffected by soil type and mineralogy. Very rapid reductions in radiolability immediately (<15?s) after spiking suggest that precipitation plays a role in fixation of added soluble zinc at near neutral pH, however spectroscopic studies are needed to confirm this. Radiolability of added zinc was also affected by changing redox conditions during incubation.  相似文献   

4.

Background and aims

Long-fallow disorder is expressed as exacerbated deficiencies of phosphorus (P) and/or zinc (Zn) in field crops growing after long periods of weed-free fallow. The hypothesis that arbuscular-mycorrhizal fungi (AMF) improve the P and Zn nutrition, and thereby biomass production and seed yield of linseed (Linum usitatissimum) was tested in a field experiment.

Methods

A factorial combination of treatments consisting of ± fumigation, ±AMF inoculation with Glomus spp., ±P and ±Zn fertilisers was used on a long-fallowed vertisol. The use of such methods allowed an absolute comparison of plants growing with and without AMF in the field for the first time in a soil disposed to long-fallow disorder.

Results

Plant biomass, height, P and Zn concentrations and contents, boll number and final seed yield were (a) least in fumigated soil with negligible AMF colonisation of the roots, (b) low initially in long-fallow soil but increased with time as AMF colonisation of the roots developed, and (c) greatest in soil inoculated with AMF cultures. The results showed for the first time in the field that inflows of both P and Zn into linseed roots were highly dependent on %AMF-colonisation (R2?=?0.95 for P and 0.85 for Zn, P?<?0.001) in a soil disposed to long-fallow disorder. Relative field mycorrhizal dependencies without and with P+Zn fertiliser were 85 % and 86 % for biomass and 68 % and 52 % for seed yield respectively.

Conclusions

This research showed in the field that AMF greatly improved the P and Zn nutrition, biomass production and seed yield of linseed growing in a soil disposed to long-fallow disorder. The level of mycorrhizal colonisation of plants suffering from long-fallow disorder can increase during the growing season resulting in improved plant growth and residual AMF inoculum in the soil, and thus it is important for growers to recognise the cause and not terminate a poor crop prematurely in order to sow another. Other positive management options to reduce long fallows and foster AMF include adoption of conservation tillage and opportunity cropping.  相似文献   

5.
Zinc nutrition in rice production systems: a review   总被引:1,自引:0,他引:1  

Background

Zinc (Zn) deficiency is one of the important abiotic factors limiting rice productivity worldwide and also a widespread nutritional disorder affecting human health. Given that rice is a staple for populations in many countries, studies of Zn dynamics and management in rice soils is of great importance.

Scope

Changing climate is forcing the growers to switch from conventional rice transplanting in flooded soils to water-saving cultivation, including aerobic rice culture and alternate wetting and drying system. As soil properties are changed with altered soil and water management, which is likely to affect Zn solubility and plant availability and should be considered before Zn management in rice. In this review, we critically appraise the role of Zn in plant biology and its dynamics in soil and rice production systems. Strategies and options to improve Zn uptake and partitioning efficiency in rice by using agronomic, breeding and biotechnological tools are also discussed.

Conclusions

Although soil application of inorganic Zn fertilizers is widely used, organic and chelated sources are better from economic and environmental perspectives. Use of other methods of Zn application (such as seed treatment, foliar application etc., in association with mycorrhizal fungi) may improve Zn-use efficiency in rice. Conventional breeding together with modern genomic and biotechnological tools may result in development of Zn-efficient rice genotypes that should be used in conjunction with judicious fertilization to optimize rice yield and grain Zn content.  相似文献   

6.

Background and aim

Recycled sources of phosphorus (P), such as struvite extracted from wastewater, have potential to substitute for more soluble manufactured fertilisers and help reduce the long-term threat to food security from dwindling finite reserves of phosphate rock (PR). This study aimed to determine whether struvite could be a component of a sustainable P fertiliser management strategy for arable crops.

Methods

A combination of laboratory experiments, pot trials and mathematical modelling of the root system examined the P release properties of commercial fertiliser-grade struvite and patterns of P uptake from a low-P sandy soil by two different crop types, in comparison to more soluble inorganic P fertilisers (di-ammonium phosphate (DAP) and triple super phosphate (TSP)).

Results

Struvite had greatly enhanced solubility in the presence of organic acid anions; buckwheat, which exudes a high level of organic acids, was more effective at mobilising struvite P than the low level exuder, spring wheat. Struvite granules placed with the seed did not provide the same rate of P supply as placed DAP granules for early growth of spring wheat, but gave equivalent rates of P uptake, yield and apparent fertiliser recovery at harvest, even though only 26 % of struvite granules completely dissolved. Fertiliser mixes containing struvite and DAP applied to spring wheat have potential to provide both optimal early and late season P uptake and improve overall P use efficiency.

Conclusions

We conclude that the potential resource savings and potential efficiency benefits of utilising a recycled slow release fertiliser like struvite offers a more sustainable alternative to only using conventional, high solubility, PR-based fertilisers.
  相似文献   

7.
8.

Key message

Twelve meta-QTL for seed Fe and Zn concentration and/or content were identified from 87 QTL originating from seven population grown in sixteen field trials. These meta-QTL include 2 specific to iron, 2 specific to zinc and 8 that co-localize for iron and zinc concentrations and/or content.

Abstract

Common bean (Phaseolus vulgaris L.) is the most important legume for human consumption worldwide and it is an important source of microelements, especially iron and zinc. Bean biofortification breeding programs develop new varieties with high levels of Fe and Zn targeted for countries with human micronutrient deficiencies. Biofortification efforts thus far have relied on phenotypic selection of raw seed mineral concentrations in advanced generations. While numerous quantitative trait loci (QTL) studies have been conducted to identify genomic regions associated with increased Fe and Zn concentration in seeds, these results have yet to be employed for marker-assisted breeding. The objective of this study was to conduct a meta-analysis from seven QTL studies in Andean and Middle American intra- and inter-gene pool populations to identify the regions in the genome that control the Fe and Zn levels in seeds. Two meta-QTL specific to Fe and two meta-QTL specific to Zn were identified. Additionally, eight Meta QTL that co-localized for Fe and Zn concentration and/or content were identified across seven chromosomes. The Fe and Zn shared meta-QTL could be useful candidates for marker-assisted breeding to simultaneously increase seed Fe and Zn. The physical positions for 12 individual meta-QTL were identified and within five of the meta-QTL, candidate genes were identified from six gene families that have been associated with transport of iron and zinc in plants.
  相似文献   

9.

Background & Aims

Searching for root traits underpinning efficient nutrient acquisition has received increased attention in modern breeding programs aimed at improved crop productivity. Root models provide an opportunity to investigate root-soil interactions through representing the relationships between rooting traits and the non-uniform supply of soil resources. This study used simulation modelling to predict and identify phenotypic plasticity, root growth responses and phosphorus (P) use efficiency of contrasting Lupinus angustifolius genotypes to localised soil P in a glasshouse.

Methods

Two L. angustifolius genotypes with contrasting root systems were grown in cylindrical columns containing uniform soil with three P treatments (nil and 20 mg P kg?1 either top-dressed or banded) in the glasshouse. Computer simulations were carried out with root architecture model ROOTMAP which was parameterized with root architectural data from an earlier published hydroponic phenotyping study.

Results

The experimental and simulated results showed that plants supplied with banded P had the largest root system and the greatest P-uptake efficiency. The P addition significantly stimulated root branching in the topsoil, whereas plants with nil P had relatively deeper roots. Genotype-dependent root growth plasticity in response to P supply was shown, with the greatest response to banded P.

Conclusions

Both experimental and simulation outcomes demonstrated that 1) root hairs and root proliferation increased plant P acquisition and were more beneficial in the localised P fertilisation scenario, 2) placing P deeper in the soil might be a more effective fertilisation method with greater P uptake than top dressing, and 3) the combination of P foraging strategies (including root architecture, root hairs and root growth plasticity) is important for efficient P acquisition from a localised source of fertiliser P.  相似文献   

10.

Background and aims

Whether root Zn uptake during grain filling or remobilization from pre-anthesis Zn stores contributes more to grain Zn in wheat is subject to an on-going debate. This study investigated the effects of N nutrition and post-anthesis Zn availability on the relative importance of these sources.

Methods

Durum wheat plants were grown in nutrient solution containing adequate Zn (0.5?μM) and three different N levels (0.5; 1.5; 4.5?mM). One third of the plants were harvested when they reached anthesis. One half of the remaining plants were grown to maturity with adequate Zn, whereas the Zn supply to the other half was discontinued at anthesis. Roots, straw and grains were harvested separately and analyzed for Zn and N.

Results

Depending on the N supply, Zn remobilization from pre-anthesis sources provided almost all of grain Zn when the Zn supply was withheld at anthesis; otherwise up to 100?% of grain Zn could be accounted for by Zn taken up post-anthesis. By promoting tillering and grain yield and extending the grain filling, higher N supply favored the contribution of Zn uptake to grain Zn accumulation.

Conclusion

Remobilization is critical for grain Zn accumulation when Zn availability is restricted during grain filling. However, where root uptake can continue, concurrent Zn uptake during grain development, favored by higher N supply, overshadows net remobilization.  相似文献   

11.

Background and aims

Malnutrition resulting from zinc (Zn) and iron (Fe) deficiency has become a global issue. Excessive phosphorus (P) application may aggravate this issue due to the interactions of P and micronutrients in soil crop. Crop grain micronutrients associated with P applications and the increase of grain Zn by Zn fertilization were field-evaluated.

Methods

A field experiment with wheat was conducted to quantify the effect of P applications on grain micronutrient quality during two cropping seasons. The effect of foliar Zn applications on grain Zn quality with varied P applications was tested in 2011.

Results

Phosphorus applications decreased grain Zn concentration by 17–56%, while grain levels of Fe, manganese (Mn) and copper (Cu) either remained the same or increased. Although P applications increased grain yield, they restricted the accumulation of shoot Zn, but enhanced the accumulation of shoot Fe, Cu and especially Mn. In 2011, foliar Zn application restored the grain Zn to levels occurring without P and Zn application, and consequently reduced the grain P/Zn molar ratio by 19–53% than that without Zn application.

Conclusions

Foliar Zn application may be needed to achieve both favorable yield and grain Zn quality of wheat in production areas where soil P is building up.  相似文献   

12.

Background and aims

Silicon (Si) was suggested to enhance plant resistance to toxic elements, and its beneficial role was mainly based on external and internal plant mechanisms. This work aimed at investigating the internal effect of Si on zinc (Zn) detoxification to rice (Oryza sativa L., cv. Tian You 116) seedlings.

Methods

In a hydroponic experiment, we examined the uptake, xylem loading and localization of Zn in rice seedlings under the condition of 200?μM Zn contamination with the additional silicate supply at three levels ( 0, 0.5 and 1.8?mM).

Results

The silicate addition significantly increased the seedling biomass, and decreased Zn concentration in both root and shoot of seedlings and in xylem sap flow. Zinpyr-1 fluorescence test and Energy-dispersive X-ray spectroscopy analysis showed the concentration of biologically active Zn2+ decreased, and Zn and Si co-localized in the cell wall of metabolically less active tissues, especially in sclerenchyma of root. The fractionation analysis further supported silicate supply increased about 10% the cell wall bound fraction of Zn.

Conclusions

This study suggests the Si-assisted Zn tolerance of rice is mainly due to the reduction of uptake and translocation of excess Zn, and a stronger binding of Zn in the cell wall of less bioactive tissues might also contribute to some degree.  相似文献   

13.

Background and aims

Increasing the concentrations of the essential micronutrient Zn in staple crops like grain is desirable for human nutrition. We investigated the long-term ability of municipal treatment works sewage sludge, liquid sewage sludge and ZnCO3 applied to soils to increase Zn in in wheat grain (Triticum aestivum L.) in a number of field experiments conducted on different soils.

Methods

We used six long-term field experiments that were set up on contrasting soils in England and the target applications were built up between 1994 and 1997. Topsoil samples and harvested grain samples were taken and air dried in 1999, 2001, 2003 and 2005. Relationships between grain Zn concentrations and soil properties and changes with time were examined.

Results

Wheat grain Zn concentrations increased with soil Zn concentrations in a similar log-log relationship with all of the Zn sources tested. Comparing total or extractable Zn in soil as explanatory factors showed little benefit of using extractable Zn measurements to predict grain concentrations over total Zn. Additional factors such as soil pH or organic carbon did not explain much more of the variation in grain Zn in our experiments. However, grain Zn concentrations did not respond at all at a site with pH 7.7.

Conclusions

Sewage sludge applications to soil can increase grain Zn concentrations for at least 2 to 8?years after application and has similar effectiveness to ZnCO3.  相似文献   

14.

Background

Metal oxides in nanoparticle form such as zinc oxide and titanium dioxide now appear on the ingredient lists of household products as common and diverse as cosmetics, sunscreens, toothpaste, and medicine. Previous studies of zinc oxide and titanium dioxide in non-nanoparticle format using animals have found few adverse effects. This has led the FDA to classify zinc oxide as GRAS (generally recognized as safe) for use as a food additive. However, there is no regulation specific for the use of these chemicals in nanoparticle format. Recent studies, however, have begun to raise concerns over the pervasive use of these compounds in nanoparticle forms. Unfortunately, there is a lack of easily-adaptable screening methods that would allow for the detection of their biological effects.

Results

We adapted two image-based assays, a fluorescence resonance energy transfer-based caspase activation assay and a green fluorescent protein coupled-LC3 assay, to test for the biological effects of different nanoparticles in a high-throughput format. We show that zinc oxide nanoparticles are cytotoxic. We also show that titanium dioxide nanoparticles are highly effective in inducing autophagy, a cellular disposal mechanism that is often activated when the cell is under stress.

Conclusion

We suggest that these image-based assays provide a method of screening for the biological effects of similar compounds that is both efficient and sensitive as well as do not involve the use of animals.  相似文献   

15.

Background and aims

Rice (Oryza sativa L.) and pearl millet (Pennisetum glaucum L.) biofortification breeding programs require accurate and convenient methods to identify nutrient dense genotypes. The aim of this study was to investigate energy-dispersive X-ray fluorescence spectrometry (EDXRF) for the measurement of zinc (Zn) and iron (Fe) concentration in whole grain rice and pearl millet.

Methods

Grain samples were obtained from existing biofortification breeding programs. Reference Zn and Fe concentrations obtained by inductively-coupled plasma-optical emission spectroscopy (ICP-OES) were used to calibrate the EDXRF instrument. Calibration was performed with 24 samples and separate calibrations were developed for rice and pearl millet. To validate calibrations, EDXRF analyses were conducted on an additional 40 samples of each species.

Results

EDXRF results were highly correlated with ICP-OES values for both Zn and Fe in both species (r2?=?0.79 to 0.98). EDXRF predicted Zn and Fe in rice to within 1.9 and 1.6?mg?kg?1 of ICP-OES values, and Zn and Fe in pearl millet to within 7.6 and 12.5?mg?kg?1 of ICP-OES values, at a 95% confidence level.

Conclusion

EDXRF offers a convenient, economical tool for screening Zn and Fe concentration in rice and pearl millet biofortification breeding programs.  相似文献   

16.

Aims

The objectives were to investigate (i) the forms and release pattern of P from an ash-rich biochar-amended sandy soil; (ii) the transformation of biochar P in a soil-plant system.

Methods

Several methodologies (a bioassay test, soluble P extractions, a sequential P fractionation and successive P extractions via resin strips) were used to study the bioavailability and transformation of P in a sandy soil fertilised with either conventional P fertilisers [Ca(H2PO4)2 (CaP) and Sechura phosphate rock (SPR)] or biochars produced from cattle manure (MAe) and alum-treated biosolids (BSe) at four temperatures (250, 350, 450, and 550 °C).

Results

Biochar P mainly contributed to increase soil resin-extractable P- and inorganic NaOH-extractable P-fractions, and thus to plant available P. The decrease in P concentrations of those fractions was caused by the uptake of P by plants rather than their transformations into more stable forms. P release rates diminished following the order: CaP > MAe > BSe > SPR, which indicates a decline in P availability from these P sources.

Conclusions

Phosphorus-rich biochar can be used as a slow-release fertiliser. It is necessary to determine available P (either soil or fertiliser tests) in biochars prior to its application to soil, so that dose, frequency and timing of application are correctly established.  相似文献   

17.

Aims

Fluctuating phosphorus (P) fertiliser costs, water quality issues and on-going debate over global P supply and demand support the need to evaluate and ensure that P is used efficiently in agriculture.

Methods

We analysed the P balance of farming systems across southern Australia to south east Queensland in relation to P management and soil properties at farm and sub-farm scales. Phosphorus input, yield of products and soil data were collected from Mediterranean, temperate and sub-tropical farming environments to assess soil chemistry and P Balance Efficiency (PBE; percentage of P inputs harvested as P outputs) of sheep, beef, dairy and cropping systems.

Results

The median PBE was 11% for sheep, 19% for beef, 29% for dairy and 48% for cropping. Phosphorus applied in excess of product removal (P balance) ranged from 18.1 for dairy to 6.1 kg P ha?1 yr?1 for cropping. The bicarbonate-extractable (Colwell) P concentration of surface soils increased with fertiliser application and this differed in relation to P Buffering Index (PBI), production history and the rate of P input. Soil test values for 63% to 89% of soil samples from pastures and crops exceeded critical values (CV; defined by PBI, bicarbonate-extractable P and land use) when little yield improvement would be achieved by applying additional P. A greater percentage of these soil test values exceeded environmental thresholds for water contamination.

Conclusions

A transition to using lower rates of P fertiliser to maintain soil P fertility at near optimal levels (P maintenance) has not occurred in farming systems represented by these soil samples. Over 50% of the samples had indications of more important constraints (soil acidity, potassium and sulphur deficiency) to yield. Alleviating these constraints is likely to improve PBE. For soils that exceed the CV for P, there is a need to adopt P maintenance practices to improve financial and environmental outcomes.  相似文献   

18.

Background

Low concentrations of nitric oxide (NO) are necessary for the biology and physiology of spermatozoa, but high levels of NO are toxic and have negative effects on sperm functions. Although several studies have considered the relationship between infertility and semen NO concentrations, no study on the effects of asthenospermia treatments such as oral zinc supplementation on concentrations of NO, which are important in fertility, has been reported. Studies have shown that oral zinc supplementation develops sperm count, motility and the physical characteristics of sperm in animals and in some groups of infertile men. The present study was conducted to study the effect of zinc supplementation on the quantitative and qualitative characteristics of semen, along with enzymes of the NO pathway in the seminal plasma of asthenospermic patients.

Methods

Semen samples were obtained from 60 fertile and 60 asthenozoospermic infertile men of matched age. The subfertile group was treated with zinc sulfate; each participant took two capsules (220 mg per capsule) per day for 3 months. Semen samples were obtained (before and after zinc sulfate supplementation). After liquefaction of the seminal fluid at room temperature, routine semen analyses were performed. The stable metabolites of NO (nitrite) in seminal plasma were measured by nitrophenol assay. Arginase activity and NO synthase activity were measured spectrophotometrically.

Results

Peroxynitrite levels, arginase activity, NO synthase activity and various sperm parameters were compared among fertile controls and infertile patients (before and after treatment with zinc sulfate). Peroxynitrite levels and NO synthase activity were significantly higher in the infertile patients compared to the fertile group. Conversely, arginase activity was significantly higher in the fertile group than the infertile patients. Peroxynitrite levels, arginase activity and NO synthase activity of the infertile patient were restored to normal values after treatment with zinc sulfate. Volume of semen, progressive sperm motility percentage and total normal sperm count were increased after zinc supplementation.

Conclusions

Treatment of asthenospermic patients with zinc supplementation leads to restored peroxynitrite levels, arginase activity and NO synthase activity to normal values and gives a statistically significant improvement of semen parameters compared with controls.

Trial registration

ClinicalTrials.gov identifier: NCT01684059  相似文献   

19.

Aims

Evaluate the genetic and environmental variability of metal concentration and metal mass of Noccaea caerulescens, from metalliferous (MET), non metalliferous (NMET) and serpentine (SERP) soils.

Methods

18 populations were cultivated in 18 different growth conditions, such as a soil mine tailing, soils amended with zinc (Zn), cadmium (Cd) and nickel (Ni) salts (in mixtures or in monometallic salts) and a hydroponic solution with two Zn concentrations.

Results

MET populations had Zn concentrations lower than NMET and SERP in the different soils but higher Cd mass (the product of aerial biomass and foliar metal concentration). SERP had the highest Ni concentration and Ni mass values. The addition of Cd or Ni to a Zn-contaminated soil significantly decreases Zn concentration. In hydroponics, MET and NMET had equivalent Zn concentrations but these were three times higher than those obtained in soil experiments. Zn mass of NMET was significantly lower than MET with the latter having Zn mass values largely above those obtained in mine soil.

Conclusions

Results showed a large heterogeneity of responses among populations depending on the substrate used, and it was not possible to correctly assign a single population to its accurate origin with only one experiment. Finally, data on metal concentration obtained in culture soils are closer to those in field soils than those from hydroponics so that they could give a more accurate information on the accumulating capacity of Noccaea caerulescens and its use in phytoextraction of metals in field conditions.  相似文献   

20.

Background and aims

Crop biofortification programs require fast, accurate and inexpensive methods of identifying nutrient dense genotypes. This study investigated energy-dispersive X-ray fluorescence spectrometry (EDXRF) for the measurement of zinc (Zn), iron (Fe) and selenium (Se) concentrations in whole grain wheat.

Methods

Grain samples were obtained from existing biofortification programs. Reference Zn, Fe and Se concentrations were obtained using inductively coupled plasma optical emission spectrometry (ICP-OES) and/or inductively coupled plasma mass spectrometry (ICP-MS). One set of 25 samples was used to calibrate for Zn (19–60?mg?kg–1) and Fe (26–41?mg?kg–1), with 25 further samples used to calibrate for Se (2–31?mg?kg–1 ). Calibrations were validated using an additional 40–50 wheat samples.

Results

EDXRF limits of quantification (LOQ) were estimated as 7, 3 and 2?mg?kg–1 for Zn, Fe, and Se, respectively. EDXRF results were highly correlated with ICP-OES or -MS values. Standard errors of EDXRF predictions were ±2.2?mg Zn kg–1, ±2.6?mg Fe kg–1, and ±1.5?mg Se kg–1.

Conclusion

EDXRF offers a fast and economical method for the assessment of Zn, Fe and Se concentration in wheat biofortification programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号