首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asialoglycoproteins are taken up by the rat liver for degradation; rat polymeric IgA is taken up via a separate receptor, secretory component (SC), for quantitative delivery to bile. There is negligible uptake of these ligands by the converse receptor, and only a low level of missorting of ligands to opposite destinations. The two pathways are not cross-inhibitable and operate independently (Schiff, J.M., M. M. Fisher, and B. J. Underdown, 1984, J. Cell Biol., 98:79-89). We report here that when human IgA is presented as a ligand in the rat, it is processed using elements of both pathways. To study this in detail, different IgA fractions were prepared using two radiolabeling methods that provide separate probes for degradation or re-secretion. Behavior of intravenously injected human polymeric IgA in the rat depended on its binding properties. If deprived of SC binding activity by affinity adsorption or by reduction and alkylation, greater than 80% of human IgA was degraded in hepatic lysosomes; radioactive catabolites were released into bile by a leupeptin-inhibitable process. If prevented from binding to the asialoglycoprotein receptor by competition or by treatment with galactose oxidase, human IgA was cleared and transported to bile directly via SC, but its uptake was about fivefold slower than rat IgA. Untreated human IgA was taken up rapidly by the asialoglycoprotein receptor, but depended on SC binding to get to bile: the proportion secreted correlated 1:1 with SC binding activity determined in vitro, and the IgA was released into bile with SC still attached. These results demonstrate that human IgA is normally heterovalent: it is first captured from blood by the asialoglycoprotein receptor, but escapes the usual fate of asialoglycoproteins by switching to SC during transport. Since the biliary transit times of native human and rat IgA are the same, it is probable that the receptor switching event occurs en route. This implies that the two receptors briefly share a common intracellular compartment.  相似文献   

2.
In the rat, all receptor-bindable immunoglobulin A (IgA), and 1-4% of injected asialoglycoprotein (ASG), are transported from blood to bile intact. The major fraction of the ASG is degraded in hepatic lysosomes. The study described here was designed to elucidate the sorting that occurs in hepatocytes subsequent to receptor binding of ligands not sharing the same fate. We show that conjugation of protein with the Bolton and Hunter reagent can be used as a probe for the lysosomal pathway, since 50% of the reagent is released into bile after lysosomal degradation of internalized protein. Radiolabeling by iodine monochloride was alternatively used to follow the direct pathways that deliver intact IgA and ASG to bile. After intravenous injection of labeled proteins, first intact ASG and IgA, and then radioactive catabolites from degraded protein, were released into bile. No proteolytic intermediates were detected, and the transport of IgA or ASG directly to bile was not affected by the lysosomal protease inhibitor leupeptin. These observations indicate that divergence of the direct biliary transport pathways from the degradation pathway occurs at a stage preceding delivery to lysosomes, possibly at the cell surface. Competition studies showed that all three pathways (including the biliary transport of intact ASG) are receptor mediated, but even at supersaturating doses the uptake and processing of IgA and ASG occur independently. We propose that IgA and ASG receptors are not frequently in juxtaposition on the plasma membrane, but that ASG, after binding to its receptor, is occasionally missorted into the biliary transport pool.  相似文献   

3.
Microtubule-depolymerizing drugs, such as colchicine, vinblastine sulfate, colcemide and podophyllotoxin, cause an apparent inhibition of the ability of rat hepatocytes to degrade asialo-orosomucoid. However, the binding of asialo-orosomucoid to the cell surface at 0 degrees C, the endocytosis of pre-bound glycoprotein at 37 degrees C, and the dissociation of internal receptor-glycoprotein complexes are unaffected by these microtubule drugs. Receptor recycling is slowed but still occurs, although degradation is blocked. The rate of degradation is decreased by low concentrations of drugs. (For example, 0.25 microM vinblastine sulfate, colchicine and colcemide inhibited 93%, 79% and 26%, respectively.) Neither beta- nor gamma-lumicolchicine affected any of the processes examined. The degree of inhibition with colchicine could be enhanced by a brief treatment of the cells at low temperature to depolymerize microtubules. However, if cells were allowed to endocytose asialo-orosomucoid at 37 degrees C prior to addition of the microtubule drug, then the inhibition of protein degradation was greatly reduced. The decrease in the inhibition of degradation was proportional to the amount of time that cells were exposed to asialoglycoprotein before addition of the drug. The results indicate that the segregation of protein from receptor after they dissociate and/or the subsequent translocation of internalized asialoglycoprotein from the cell perimeter to the lysosomal region requires intact microtubules.  相似文献   

4.
IGA in human bile and liver   总被引:12,自引:0,他引:12  
Hepatic bile IgA from 6 patients was measured by radioimmunoassay and characterized immunochemically. The concentration of IgA was 0.14 to 0.88 mg/ml. IgA associated with secretory component (SC) as well as unassociated with SC was demonstrated in all 6 samples; The proportion associated with SC (secretory IgA) was 72% to 95%. IgA and SC were localized immunocytochemically in liver and bile duct tissues by the peroxidase-labeled antibody method. Evidence favoring endocytic, SC-mediated transfer of IgA by intrahepatic and extrahepatic biliary epithelium, but not by hepatocytes, was found.  相似文献   

5.
Microtubule-depolymerizing drugs, such as colchicine, vinblastine sulfate, colcemide and podophyllotoxin, cause an apparent inhibition of the ability of rat hepatocytes to degrade asialo-orosomucoid. However, the binding of asialo-orosomucoid to the cell surface at 0°C, the endocytosis of pre-bound glycoprotein at 37°C, and the dissociation of internal receptor-glycoprotein complexes are unaffected by these microtubule drugs. Receptor recycling is slowed but still occurs, although degradation is blocked. The rate of degradation is decreased by low concentrations of drugs. (For example, 0.25 μM vinblastine sulfate, colchicine and colcemide inhibited 93%, 79% and 26%, respectively.) Neither β- nor γ-lumicolchicine affected any of the processes examined. The degree of inhibition with colchicine could be enhanced by a brief treatment of the cells at low temperature to depolymerize microtubules. However, if cells were allowed to endocytose asialo-orosomucoid at 37°C prior to addition of the microtubule drug, then the inhibition of protein degradation was greatly reduced. The decrease in the inhibition of degradation was proportional to the amount of time that cells were exposed to asialoglycoprotein before addition of the drug. The results indicate that the segregation of protein from receptor after they dissociate and/or the subsequent translocation of internalized asialoglycoprotein from the cell perimeter to the lysosomal region requires intact microtubules.  相似文献   

6.
The in vivo kinetics of hepatic clearance of 125I-asialo-orosomucoid and 125I-asialofetuin was determined with a portal vein injection technique in barbiturate-anesthetized rats. Nonlinear regression analyses of saturation data gave the following parameters for asialo-orosomucoid, Km = 0.26 +/- 0.06 mg/ml, Vmax = 320 +/- 70 micrograms/min/g, and for asialofetuin, Km = 0.32 +/- 0.07 mg/ml, Vmax = 240 +/- 40 micrograms/min/g. Unlabeled asialofetuin inhibited the clearance of 125I-asialo-orosomucoid with a Ki = 0.25 +/- 0.04 mg/ml. Based on a model assuming that in vivo receptor concentration much greater than receptor KD, then the maximal binding capacity of the external surface of liver cells in vivo for asialo-orosomucoid is 2Km or 520 micrograms/ml or 52 micrograms/g of liver, assuming the liver interstitial space is 0.1 ml/g. Our estimate of in vivo binding capacity approximates in vitro estimates of total hepatic binding capacity, but is 10-fold greater than in vitro estimates of binding capacity on the external surface of liver cells. These results suggest the large majority of asialoglycoprotein receptors are located on the external surface of liver cells. The saturability of 125I-asialo-orosomucoid clearance was also demonstrated with a portal vein double bolus technique, wherein the portal injection of 20-1000 micrograms of unlabeled asialo-orosomucoid was followed 30 s later by the portal injection of tracer. Maximal inhibition of uptake was obtained with a portal vein injection of greater than or equal to 500 micrograms of asialo-orosomucoid. The specific extraction of the 125I-asialo-orosomucoid, which was near zero shortly after a 400-micrograms loading dose, gradually increased toward normal levels with a t1/2 of 21 min. This t1/2 may represent the in vivo rate of receptor recycling, since the gradual increase in unoccupied receptor sites is consistent with the model of receptor binding, internalization, and recycling.  相似文献   

7.
Hepatocytes and cholangiocytes release ATP into bile, where it is rapidly degraded into adenosine and P(i). In rat, biliary P(i) concentration (0.01 mM) is approximately 100-fold and 200-fold lower than in hepatocytes and plasma, respectively, indicating active reabsorption of biliary P(i). We aimed to functionally characterize canalicular P(i) reabsorption in rat liver and to identify the involved P(i) transport system(s). P(i) transport was determined in isolated rat canalicular liver plasma membrane (LPM) vesicles using a rapid membrane filtration technique. Identification of putative P(i) transporters was performed with RT-PCR from liver mRNA. Phosphate transporter protein expression was confirmed by Western blotting in basolateral and canalicular LPM and by immunofluorescence in intact liver. Transport studies in canalicular LPM vesicles demonstrated sodium-dependent P(i) uptake. Initial P(i) uptake rates were saturable with increasing P(i) concentrations, exhibiting an apparent K(m) value of approximately 11 muM. P(i) transport was stimulated by an acidic extravesicular pH and by an intravesicular negative membrane potential. These data are compatible with transport characteristics of sodium-phosphate cotransporters NaPi-IIb, PiT-1, and PiT-2, of which the mRNAs were detected in rat liver. On the protein level, NaPi-IIb was detected at the canalicular membrane of hepatocytes and at the brush-border membrane of cholangiocytes. In contrast, PiT-1 and PiT-2 were detected at the basolateral membrane of hepatocytes. We conclude that NaPi-IIb is most probably involved in the reabsorption of P(i) from primary hepatic bile and thus might play an important role in the regulation of biliary P(i) concentration.  相似文献   

8.
Experiments were undertaken to determine whether the method of iodination of epidermal growth factor (EGF) affects its binding to rat liver plasma membranes and its uptake, processing, and secretion into bile by intact rat hepatocytes. EGF was iodinated using one of three oxidative reagents: chloramine T (CT), lactoperoxidase (LP), or monochloride (MC). Quantitative receptor binding studies on plasma membranes isolated from male rat livers with either CT-, LP-or MC-125I-EGF indicated no significant difference in the apparent binding constants of the three preparations. To determine whether these three preparations were capable of forming a covalent-like complex with the EGF receptor, they were individually incubated with isolated plasma membranes and subjected to polyacrylamide gel electrophoresis under reducing conditions, followed by autoradiography. Each preparation formed a major radioactive protein band of approximately 180 kD, identified as the EGF receptor by immunoprecipitation with monoclonal anti-EGF receptor antibodies. Furthermore, even unlabeled EGF incubated with plasma membranes formed this same 180 kD band, as revealed on Western blots using anti-EGF antibody. The biliary secretion of CT-, LP-, and MC-125I-EGF was compared by injecting each one into rat portal veins and measuring the total and immunoprecipitable radioactivity in bile. The amount of immunologically intact CT-125I-EGF in bile was significantly greater than the others, whereas MC-125I-EGF transport was significantly reduced. We conclude that the method of iodination does not affect the covalent-like binding properties of EGF. Furthermore, since unlabeled EGF displayed these same binding properties, oxidative iodination procedures per se do not account for the covalent-like association between EGF and its receptor. However, the method of iodination used did affect the intracellular transport and processing of EGF by hepatocytes. The structural modification responsible for this alteration in transport properties has yet to be determined.  相似文献   

9.
The present studies were conducted to compare the levels of free secretory component (SC) in a number of rat mucosal secretions and to determine whether SC content varies significantly during the four stages of the estrous cycle. Levels of SC, as measured by radioimmunoassay, were markedly different in various external secretions. Bile contained the highest amount, irrespective of whether SC was normalized to volume or protein. Concentrations of SC in saliva or uterine fluid from intact rats were approximately 20- to 30-fold less than measured in bile. When SC levels were normalized to protein, the SC to protein ratios in uterine, vaginal, and respiratory secretions were six to 18 times greater than values calculated in salivary and small intestinal fluids. Analysis of SC levels in mucosal secretions during the estrous cycle indicated significant variations occur in uterine and vaginal samples, but not in saliva or small intestinal secretions. In the uterine lumen, SC levels were highest at proestrus, partially elevated at estrus, and lowest at both days of diestrus. In contrast, vaginal SC levels were maximal at estrus and reduced at all other stages of the cycle. Immunoglobulin A content was also measured in uterine and vaginal secretions during the estrous cycle. Significant changes in IgA levels were found and these coincided with the changing pattern of SC. These results suggest hormones may modulate SC levels in reproductive tissues. In addition, our findings indicate variations in SC during the estrous cycle may direct the movement of IgA from tissue to lumen.  相似文献   

10.
The uterine immune system is under the control of estradiol which acts to increase the levels of both IgA and secretory component (SC) in uterine secretions. The objective of the present study was to determine whether serum is the primary source of the IgA which enters uterine secretions in response to estradiol. To examine this, serum IgA levels in rats were surgically elevated by portacaval anastomosis which prevents hepatic clearance of IgA. Under these conditions, IgA levels in serum were 2- to 4-fold higher than those of intact or sham-operated animals. Levels of IgA in uterine secretions of portacaval animals, however, were significantly lower than those measured in controls when animals were ovariectomized and treated with estradiol. IgA in vaginal secretions of portacaval animals was greater than that in sham-operated or intact rats. To determine whether IgA had leaked from the uterus into vaginal secretions, a second group of animals had their uteri ligated at the utero-cervical junction prior to hormone treatment. Following estradiol stimulation, uterine IgA levels in portacaval animals were the same as those measured in intact and sham-operated animals. When free SC was measured in uterine secretions of ligated rats, levels were the same in all three groups. These studies indicate that elevated levels of serum IgA did not lead to a rise in uterine IgA. Further, since SC, which is thought to be a receptor for transporting IgA into mucosal secretions, remained unchanged, it appears unlikely that IgA movement into the uterine lumen was transport limited. These studies suggest that the presence of IgA in uterine and vaginal secretions is not due exclusively to serum contributions but may involve local synthesis of IgA.  相似文献   

11.
《The Journal of cell biology》1984,99(4):1259-1265
Epidermal growth factor (EGF), circulating in the blood, is taken up by rat liver hepatocytes by means of specific and saturable receptor- mediated endocytosis. These experiments were undertaken to determine (a) the transport pathway(s) of EGF taken up by rat liver and (b) the effects of lysosomal inhibition on its transport. 125I-EGF was injected into rat portal veins, and bile samples were collected and analyzed for both total and immunoprecipitable radioactivity. In addition, the livers were examined by electron microscopic autoradiography. Some animals received injections of chloroquine before surgery, to disrupt lysosomal function. The results indicate that most of the EGF taken up by the hepatocytes is transported to lysosomes and degraded. However, a small but significant percentage of endocytosed EGF is transported by a pathway independent of the lysosomal system, resulting in secretion of intact EGF: (a) Both degraded and immunoprecipitable EGF are secreted into bile. (b) Immunoprecipitable radioactivity peaks at 20 min after EGF injection, whereas degradation-associated radioactivity does not peak until 40 min postinjection. (c) EGF isolated from bile is specifically taken up by isolated hepatocytes in monolayer culture, indicating that it is still recognizable by the EGF receptor. (d) When the lysosomal system is inhibited with chloroquine, secretion of degraded EGF is significantly inhibited, whereas the amount of intact EGF secreted into bile is unchanged. The utilization by liver of a dual transport process for EGF represents an unusual system of intracellular ligand processing, whose physiological significance has yet to be determined.  相似文献   

12.
The binding of rat hepatocytes to flat polyacrylamide surfaces containing galactose is sugar-specific, requires Ca+2, and occurs only above a critical concentration of sugar in the substratum [Weigel et al., 1979, J. Biol. Chem., 254, 10,830). Binding is completely inhibited by asialo-orosomucoid but not by orosomucoid or asialo- agalacto-orosomucoid, suggesting that cell binding is mediated by asialoglycoprotein receptors. Asialo-orosomucoid was labeled with fluorescein isothiocyanate and used as a direct fluorescent probe to monitor the distribution of cell surface asialoglycoprotein receptors before and after hepatocyte binding to galactoside or control substrata. Cells bound at 37 degrees C were de-adhered at 4 degrees C using the Ca+2 chelator EGTA. The released cells were then stained with fluorescein-asialo-orosomucoid, fixed, washed, and examined by fluorescence microscopy. On freshly isolated cells before binding, the distribution of asialoglycoprotein receptors appears diffuse and nonclustered. However, more than half of the cells released intact from a galactoside surface had a single large (4 micrometer2) fluorescent patch. The receptor patch cannot be detected on cells while they are bound to a galactoside surface but rather only on released cells, indicating that the cell-substratum junction is the site of the receptor patch. No asialoglycoprotein receptor patches (less than or equal to 1%) were observed on cells that were incubated on, but did not bind to, an underivatized polyacrylamide surface or to a surface with a galactose concentration below the critical concentration for binding. Furthermore, no receptor patches were present on cells that had bound to and were subsequently released from substrata that did not contain galactose, including glass, tissue culture plastic, nontissue culture plastic, and collagen. The distribution of asialoglycoprotein receptors is preserved at 4 degrees C because at 37 degrees C the patches disappear with a half-life of approximately 2.6 min. The results directly demonstrate that a large cluster of asialoglycoprotein receptors mediates the binding of rat hepatocytes to a galactoside surface.  相似文献   

13.
Polymeric IgA (pIgA) is transported by liver parenchymal cells (hepatocytes) from blood to bile via a receptor-mediated process. We have studied the intracellular pathway taken by a TEPC15 mouse myeloma pIgA. When from 1 microgram to 1 mg 125I-pIgA was injected into the saphenous vein of a rat, 36% was transported as intact protein into the bile over a 3-h period. The concentration of transported 125I-pIgA was maximal in bile 30-60 min after injection, and approximately 80% of the total 125I-pIgA ultimately transported had been secreted into bile by 90 min. A horseradish peroxidase-pIgA conjugate (125I-pIgA-HRP) was transported to a similar extent and with kinetics similar to that of unconjugated 125I-pIgA and was therefore used to visualize the transport pathway. Peroxidase cytochemistry of livers fixed in situ 2.5 to 10 min after 125I-pIgA-HRP injection demonstrated a progressive redistribution of labeled structures from the sinusoidal area to intermediate and bile canalicular regions of the hepatocyte cytoplasm. Although conjugate-containing structures began accumulating in the bile canalicular region at these early times, no conjugate was present in bile until 20 min. From 7.5 to 45 min after injection approximately 30% of the labeled structures were in regions that contained Golgi complexes and lysosomes; however, we found no evidence that either organelle contained 125I-pIgA-HRP. At least 85% of all positive structures in the hepatocyte were vesicles of 110-160-nm median diameters, with the remaining structures accounted for by tubules and multivesicular bodies. Vesicles in the bile canalicular region tended to be larger than those in the sinusoidal region. Serial sectioning showed that the 125I-pIgA-HRP-containing structures were relatively simple (predominantly vesicular) and that extensive interconnections did not exist between structures in the sinusoidal and bile canalicular regions.  相似文献   

14.
The asialoglycoprotein receptor is an abundant hetero-oligomeric endocytic receptor that is predominantly expressed on the sinusoidal surface of the hepatocytes. A number of physiological and pathophysiological functions have been ascribed to this hepatic lectin (HL), the removal of desialylated serum glycoproteins and apoptotic cells, clearance of lipoproteins, and the sites of entry for hepatotropic viruses. The assembly of two homologous subunits, HL-1 and HL-2, is required to form functional, high affinity receptors on the cell surface. However, the importance of the individual subunits for receptor transport to the cell surface is controversial. We have previously generated HL-2-deficient mice and showed that the expression of HL-1 was significantly reduced, and the functional activity as the asialoglycoprotein receptor was virtually eliminated. However, we failed to detect phenotypic abnormalities. To explore the significance of the major HL-1 subunit for receptor expression and function in vivo, we have disrupted the HL-1 gene in mice. Homozygous HL-1-deficient animals are superficially normal. HL-2 expression in the liver is virtually abrogated, indicating that HL-1 is strictly required for the stable expression of HL-2. Although these mice are almost unable to clear asialo-orosomucoid, a high affinity ligand for asialoglycoprotein receptor, they do not accumulate desialylated glycoproteins or lipoproteins in the plasma.  相似文献   

15.
Indirect evidence for a microtubule-dependent vesicular hepatocellular transport of bile acids has accumulated. Since inhibition of this transport by colchicine can be achieved only at high but not at low bile acid infusion rates we were wondering whether this transport pathway shows a hepatic zonation or not. To answer this question we perfused isolated rat livers antegradely or retrogradely, respectively, with unlabeled and labeled taurocholate or taurodeoxycholate. Inhibition of microtubule-dependent bile acid transport was aimed at co-infusion of colchicine. Periportal cells eliminated the likewise hydrophobic taurodeoxycholate as fast as the more hydrophilic taurocholate. In contrast, pericentral cells excreted taurodeoxycholate much slower than taurocholate. Colchicine did not change the biliary taurocholate excretion profile in periportal and pericentral cells. However, colchicine reduced significantly taurodeoxycholate excretion in pericentral but not in periportal cells. It is concluded that a microtubule-dependent vesicular, colchicine-sensitive transport pathway seems to be involved in the translocation of taurodeoxycholate in pericentral but not in periportal cells. Since such a vesicular bile acid transport is regarded to be much slower than transcellular transport by diffusion, this observation may explain the much slower excretion of hydrophobic bile acids like taurodeoxycholate in pericentral than in periportal cells under physiological conditions.  相似文献   

16.
Rat hepatocytes in the continuous presence of [3H]asialo-orosomucoid quickly establish a steady state number of free and occupied surface receptors and rate of endocytosis. These values do not change even though many times more glycoprotein is internalized than there are surface receptors per cell. However, when cells endocytose only one round of surface bound [3H]asialo-orosomucoid at 37°C the internalization of glycoprotein is about 5 times faster than the increase of functional receptors on the cell surface. At 18°C new surface receptors appear at only 6% of the rate of internalization of pre-bound asialoglycoprotein. The results suggest that reutilization of asialoglycoprotein receptors is preferentially inhibited at low temperature and that receptor-ligand complexes enter the cell.  相似文献   

17.
The mechanisms underlying the hepatotropism of hepatitis A virus (HAV) and the relapsing courses of HAV infections are unknown. In this report, we show for a mouse hepatocyte model that HAV-specific immunoglobulin A (IgA) mediates infection of hepatocytes with HAV via the asialoglycoprotein receptor, which binds and internalizes IgA molecules. Proof of HAV infection was obtained by detection of HAV minus-strand RNA, which is indicative for virus replication, and quantification of infectious virions. We demonstrate that human hepatocytes also ingest HAV-anti-HAV IgA complexes by the same mechanism, resulting in infection of the cells, by using the HepG2 cell line and primary hepatocytes. The relevance of this surrogate receptor mechanism in HAV pathogenesis lies in the fact that HAV, IgA, and antigen-IgA complexes use the same pathway within the organism, leading from the gastrointestinal tract to the liver via blood and back to the gastrointestinal tract via bile fluid. Therefore, HAV-specific IgA antibodies produced by gastrointestinal mucosa-associated lymphoid tissue may serve as carrier and targeting molecules, enabling and supporting HAV infection of IgA receptor-positive hepatocytes and, in the case of relapsing courses, allowing reinfection of the liver in the presence of otherwise neutralizing antibodies, resulting in exacerbation of liver disease.  相似文献   

18.
Binding and transport of polymeric Igs (pIgA and IgM) across epithelia is mediated by the polymeric Ig receptor (pIgR), which is expressed on the basolateral surface of secretory epithelial cells. Although an Fc receptor for IgA (FcalphaR) has been identified on myeloid cells and some cultured mesangial cells, the expression of an FcalphaR on epithelial cells has not been described. In this study, binding of IgA to a human epithelial line, HT-29/19A, with features of differentiated colonic epithelial cells, was examined. Radiolabeled monomeric IgA (mIgA) showed a dose-dependent, saturable, and cation-independent binding to confluent monolayers of HT-29/19A cells. Excess of unlabeled mIgA, but not IgG or IgM, competed for the mIgA binding, indicating that the binding was IgA isotype-specific and was not mediated by the pIgR. The lack of competition by asialoorosomucoid and the lack of requirement for divalent cations excluded the possibility that IgA binding to HT-29/19A cells was due to the asialoglycoprotein receptor or beta-1, 4-galactosyltransferase, previously described on HT-29 cells. Moreover, the FcalphaR (CD89) protein and message were undetectable in HT-29/19A cells. FACS analysis of IgA binding demonstrated two discrete populations of HT-29/19 cells, which bound different amounts of mIgA. IgA binding to other colon carcinoma cell lines was also demonstrated by FACS analysis, suggesting that an IgA receptor, distinct from the pIgR, asialoglycoprotein receptor, galactosyltransferase, and CD89 is constitutively expressed on cultured human enterocytes. The function of this novel IgA receptor in mucosal immunity remains to be elucidated.  相似文献   

19.
Sulfate esterification has been shown previously to be a prominent feature of lithocholate metabolism in man. These studies were undertaken to ascertain whether this metabolic pathway is also present in rats, and to investigate the physiological significance of bile acid sulfate formation. Lithocholic acid-24-(14)C was administered to bile fistula rats, and sulfated metabolites were identified in bile by chromatographic and appropriate degradative procedures. They constituted only a small fraction (2-9%) of the total metabolites but a more significant fraction (about 20%) of the secreted monohydroxy bile acids, most of the lithocholate having been hydroxylated by the rat liver. When sulfated glycolithocholate was administered orally, it was absorbed from the intestine without loss of the sulfate, presumably by active transport, and secreted intact into the bile. In comparison with non-sulfated lithocholate, an unusually large fraction (24%) of the sulfated bile acid was excreted in the urine, and fecal excretion took place more rapidly. Both the amino acid and sulfate moieties were extensively removed prior to excretion in the feces. Hydroxylation of bile acid sulfates or sulfation of polyhydroxylated bile acids did not occur to any great extent, if at all.  相似文献   

20.
M cells of intestinal epithelia overlying lymphoid follicles endocytose luminal macromolecules and microorganisms and deliver them to underlying lymphoid tissue. The effect of luminal secretory IgA antibodies on adherence and transepithelial transport of antigens and microorganisms by M cells is unknown. We have studied the interaction of monoclonal IgA antibodies directed against specific enteric viruses, or the hapten trinitrophenyl (TNP), with M cells. To produce monospecific IgA antibodies against mouse mammary tumor virus (MMTV) and reovirus type 1, Peyer's patch cells from mucosally immunized mice were fused with myeloma cells, generating hybridomas that secreted virus-specific IgA antibodies in monomeric and polymeric forms. One of two anti-MMTV IgA antibodies specifically bound the viral surface glycoprotein gp52, and 3 of 10 antireovirus IgA antibodies immunoprecipitated sigma 3 and mu lc surface proteins. 35S-labeled IgA antibodies injected intravenously into rats were recovered in bile as higher molecular weight species, suggesting that secretory component had been added on passage through the liver. Radiolabeled or colloidal gold-conjugated mouse IgA was injected into mouse, rat, and rabbit intestinal loops containing Peyer's patches. Light microscopic autoradiography and EM showed that all IgA antibodies (antivirus or anti-TNP) bound to M cell luminal membranes and were transported in vesicles across M cells. IgA-gold binding was inhibited by excess unlabeled IgA, indicating that binding was specific. IgG-gold also adhered to M cells and excess unlabeled IgG inhibited IgA-gold binding; thus binding was not isotype-specific. Immune complexes consisting of monoclonal anti-TNP IgA and TNP-ferritin adhered selectively to M cell membranes, while TNP-ferritin alone did not. These results suggest that selective adherence of luminal antibody to M cells may facilitate delivery of virus-antibody complexes to mucosal lymphoid tissue, enhancing subsequent secretory immune responses or facilitating viral invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号