首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Arsenic trioxide (ATO) can affect many biological functions such as apoptosis and differentiation in various cells. We investigated the involvement of ROS and GSH in ATO-induced HeLa cell death using ROS scavengers, especially N-acetylcysteine (NAC). ATO increased intracellular O(2)(*-) levels and reduced intracellular GSH content. The ROS scavengers, Tempol, Tiron and Trimetazidine, did not significantly reduce levels of ROS or GSH depletion in ATO-treated HeLa cells. Nor did they reduce the apoptosis induced by ATO. In contrast, treatment with NAC reduced ROS levels and GSH depletion in the ATO-treated HeLa cells and prevented ATO-induced apoptosis. Treatment with exogenous SOD and catalase reduced the depletion of GSH content in ATO-treated cells. Catalase strongly protected the cells from ATO-induced apoptosis. In addition, treatment with SOD, catalase and NAC slightly inhibited the G1 phase accumulation induced by ATO. In conclusion, NAC protects HeLa cells from apoptosis induced by ATO by up-regulating intracellular GSH content and partially reducing the production of O(2)(*-).  相似文献   

2.
目的 探讨川芎嗪(tetramethylpyrazine,TMP)逆转人乳腺癌MCF-7/ADM细胞对阿霉素(ADM)的耐药性.方法 MTT法测定细胞的药敏性,荧光分光光度法检测细胞内阿霉素浓度的变化,流式细胞术检测耐药细胞凋亡百分率的变化.结果 非细胞毒性剂量(320 mg/L)及低毒剂量(1250 mg/L)川芎嗪均能显著降低MCF-7/ADM的IC50(P<0.01),逆转倍数分别为2.13倍和2.82倍;均能显著增加耐药细胞内ADM的浓度(P<0.01).320 mg/L川芎嗪能显著增加耐药细胞的凋亡百分率(P<0.01).结论 川芎嗪具有部分逆转人乳腺癌MCF-7/ADM细胞对阿霉素的耐药性,其逆转机制与增加细胞内ADM浓度有关.  相似文献   

3.
Arsenic trioxide (ATO) can regulate many biological functions such as apoptosis and differentiation in various cells. We investigated an involvement of ROS such as H(2)O(2) and O(2)(*-), and GSH in ATO-treated Calu-6 cell death. The levels of intracellular H(2)O(2) were decreased in ATO-treated Calu-6 cells at 72 h. However, the levels of O(2)(*-) were significantly increased. ATO reduced the intracellular GSH content. Many of the cells having depleted GSH contents were dead, as evidenced by the propidium iodine staining. The activity of CuZn-SOD was strongly down-regulated by ATO at 72 h while the activity of Mn-SOD was weakly up-regulated. The activity of catalase was decreased by ATO. ROS scavengers, Tiron and Trimetazidine did not reduce levels of apoptosis and intracellular O(2)(*-) in ATO-treated Calu-6 cells. Tempol showing a decrease in intracellular O(2)(*-) levels reduced the loss of mitochondrial transmembrane potential (DeltaPsi(m)). Treatment with NAC showing the recovery of GSH depletion and the decreased effect on O(2)(*-) levels in ATO-treated cells significantly inhibited apoptosis. In addition, BSO significantly increased the depletion of GSH content and apoptosis in ATO-treated cells. Treatment with SOD and catalase significantly reduced the levels of O(2)(*-) levels in ATO-treated cells, but did not inhibit apoptosis along with non-effect on the recovery of GSH depletion. Taken together, our results suggest that ATO induces apoptosis in Calu-6 cells via the depletion of the intracellular GSH contents rather than the changes of ROS levels.  相似文献   

4.
We treated four hepatocellular carcinoma cell lines, HLE, HLF, HuH7, and HepG2 with ATO and demonstrated that arsenic trioxide (ATO) at low doses (1--3 muM) induced a concentration-dependent suppression of cell growth in HLE, HLF, and HuH7. HLE cells underwent apoptosis at 2 microM ATO, which was executed by the activation of caspase-3 through the mitochondrial pathway mediated by caspase-8 activation and Bid truncation. When these cell lines were exposed to ATO in combination with l-S,R-buthionine sulfoximine (BSO) which inhibits GSH synthesis, a synergistic growth suppression was induced, even in HepG2 showing a lower sensitivity to ATO than other cell lines tested. The intracellular GSH levels after the treatment with ATO plus BSO were considerably decreased in HLE cells compared with those after the treatment with ATO or BSO alone. The production of reactive oxygen species (ROS) which was examined by 2' ,7' -dichlorodihydrofluorescein diacetate, increased significantly after the treatment with ATO plus BSO in HLE cells. These findings indicate that ATO at low concentrations induces growth inhibition and apoptosis, and furthermore that the ATO-BSO combination treatment enhances apoptosis through increased production of ROS in hepatocellular carcinoma cells.  相似文献   

5.
Arsenic trioxide (ATO) has been tested in relapsed/refractory multiple myeloma with limited success. In order to better understand drug mechanism and resistance pathways in myeloma we generated an ATO-resistant cell line, 8226/S-ATOR05, with an IC50 that is 2–3-fold higher than control cell lines and significantly higher than clinically achievable concentrations. Interestingly we found two parallel pathways governing resistance to ATO in 8226/S-ATOR05, and the relevance of these pathways appears to be linked to the concentration of ATO used. We found changes in the expression of Bcl-2 family proteins Bfl-1 and Noxa as well as an increase in cellular glutathione (GSH) levels. At low, clinically achievable concentrations, resistance was primarily associated with an increase in expression of the anti-apoptotic protein Bfl-1 and a decrease in expression of the pro-apoptotic protein Noxa. However, as the concentration of ATO increased, elevated levels of intracellular GSH in 8226/S-ATOR05 became the primary mechanism of ATO resistance. Removal of arsenic selection resulted in a loss of the resistance phenotype, with cells becoming sensitive to high concentrations of ATO within 7 days following drug removal, indicating changes associated with high level resistance (elevated GSH) are dependent upon the presence of arsenic. Conversely, not until 50 days without arsenic did cells once again become sensitive to clinically relevant doses of ATO, coinciding with a decrease in the expression of Bfl-1. In addition we found cross-resistance to melphalan and doxorubicin in 8226/S-ATOR05, suggesting ATO-resistance pathways may also be involved in resistance to other chemotherapeutic agents used in the treatment of multiple myeloma.  相似文献   

6.
This article reports a pressure-driven perfusion culture chip developed for parallel drug cytotoxicity assay. The device is composed of an 8 x 5 array of cell culture microchambers with independent perfusion microchannels. It is equipped with a simple interface for convenient access by a micropipette and connection to an external pressure source, which enables easy operation without special training. The unique microchamber structure was carefully designed with consideration of hydrodynamic parameters and was fabricated out of a polydimethylsiloxane by using multilayer photolithography and replica molding. The microchamber structure enables uniform cell loading and perfusion culture without cross-contamination between neighboring microchambers. A parallel cytotoxicity assay was successfully carried out in the 8 x 5 microchamber array to analyze the cytotoxic effects of seven anticancer drugs. The pressure-driven perfusion culture chip, with its simple interface and well-designed microfluidic network, will likely become an advantageous platform for future high-throughput drug screening by microchip.  相似文献   

7.
Continuous exposure of breast cancer cells to adriamycin induces high expression of P-gp and multiple drug resistance. However, the biochemical process and the underlying mechanisms for the gradually induced resistance are not clear. To explore the underlying mechanism and evaluate the anti-tumor effect and resistance of adriamycin, the drug-sensitive MCF-7S and the drug-resistant MCF-7Adr breast cancer cells were used and treated with adriamycin, and the intracellular metabolites were profiled using gas chromatography mass spectrometry. Principal components analysis of the data revealed that the two cell lines showed distinctly different metabolic responses to adriamycin. Adriamycin exposure significantly altered metabolic pattern of MCF-7S cells, which gradually became similar to the pattern of MCF-7Adr, indicating that metabolic shifts were involved in adriamycin resistance. Many intracellular metabolites involved in various metabolic pathways were significantly modulated by adriamycin treatment in the drug-sensitive MCF-7S cells, but were much less affected in the drug-resistant MCF-7Adr cells. Adriamycin treatment markedly depressed the biosynthesis of proteins, purines, pyrimidines and glutathione, and glycolysis, while it enhanced glycerol metabolism of MCF-7S cells. The elevated glycerol metabolism and down-regulated glutathione biosynthesis suggested an increased reactive oxygen species (ROS) generation and a weakened ability to balance ROS, respectively. Further studies revealed that adriamycin increased ROS and up-regulated P-gp in MCF-7S cells, which could be reversed by N-acetylcysteine treatment. It is suggested that adriamycin resistance is involved in slowed metabolism and aggravated oxidative stress. Assessment of cellular metabolomics and metabolic markers may be used to evaluate anti-tumor effects and to screen for candidate anti-tumor agents.  相似文献   

8.
Cultured neuronal networks (CNNs) are a robust model to closely investigate neuronal circuits’ formation and monitor their structural properties evolution. Typically, neurons are cultured in plastic plates or, more recently, in microfluidic platforms with potentially a wide variety of neuroscience applications. As a biological protocol, cell culture integration with a microfluidic system provides benefits such as accurate control of cell seeding area, culture medium renewal, or lower exposure to contamination. The objective of this report is to present a novel neuronal network on a chip device, including a chamber, fabricated from PDMS, vinyl and glass connected to a microfluidic platform to perfuse the continuous flow of culture medium. Network growth is compared in chips and traditional Petri dishes to validate the microfluidic chip performance. The network assessment is performed by computing relevant topological measures like the number of connected neurons, the clustering coefficient, and the shortest path between any pair of neurons throughout the culture's life. The results demonstrate that neuronal circuits on a chip have a more stable network structure and lifespan than developing in conventional settings, and therefore this setup is an advantageous alternative to current culture methods. This technology could lead to challenging applications such as batch drug testing of in vitro cell culture models. From the engineering perspective, a device's advantage is the chance to develop custom designs more efficiently than other microfluidic systems.  相似文献   

9.
Arsenic trioxide (ATO) has been successfully used to treat leukemia and some solid malignant tumors. Our previous study regarding the effects of ATO on mesenchymal-derived human osteosarcoma MG63 cells showed that heme oxygenase-1 (HO-1) was strongly induced upon treatment with ATO. The present study sought to investigate the effect of silencing HO-1 on the sensitivity of osteosarcoma cells to ATO to determine the potential for therapeutic applications. Small hairpin RNA (shRNA)-mediated interference was used to silence HO-1 in MG63 cells. Viability, apoptosis, and intracellular reactive oxygen species (ROS) of the cells were assessed to evaluate the sensitivity of the cells to ATO as well as the potential mechanisms responsible. shRNA-mediated interference prevented the induction of HO-1, increased cell death, and increased intracellular ROS levels in MG63 cells upon treatment with ATO. Silencing HO-1 increased the susceptibility of MG63 cells to the chemotherapeutic drug ATO by enhancing intracellular accumulation of ROS. Our results suggest that the inhibition of HO-1 could improve the outcome of osteosarcoma treated with ATO.  相似文献   

10.
The novel chrysin analog 8-bromo-7-methoxychrysin (BrMC) has been reported to induce apoptosis of various cancer cell lines. Arsenic trioxide (ATO) treatment induces clinical remission in acute promyelocytic leukemia patients. The combination of ATO with other agents has been shown to improve therapeutic effectiveness in vitro and in vivo. In this report, the mechanism of apoptosis induced by treatment with ATO alone or in combination with BrMC was studied in U937, HL-60, and Jurkat cells. Our results demonstrated that BrMC cooperated with ATO to induce apoptosis in human leukemia cells. This co-treatment caused mitochondrial transmembrane potential dissipation and stimulated the mitochondrial apoptotic pathway, as evidenced by cytochrome c release, down-regulation of X-linked inhibitor of apoptosis (XIAP) and Bcl-XL, and up-regulation of Bax. BrMC alone or in combination with ATO, decreased Akt phosphorylation as well as intracellular reduced glutathione (GSH) content. The thiol antioxidant N-acetylcysteine and exogenous GSH restored GSH content and attenuated apoptosis induced by co-treatment with ATO plus BrMC. In contrast, the non-thiol antioxidant butylated hydroxyanisole and mannitol failed to do so. These findings suggest that GSH depletion explains at least in part the potentiation of ATO-induced apoptosis by BrMC.  相似文献   

11.
细胞培养是细胞研究的基础, 微系统技术的发展给细胞培养提供了新的方法。在微系统平台上进行细胞研究,能够充分利用微流体和微结构的性质, 对细胞进行操控, 在细胞生物学、组织工程学、药物筛选等领域有广泛应用。介绍了一种利用SU-8负性光刻胶模具制作双层细胞培养微芯片的方法, 该芯片通过狭缝将细胞培养区和微通道区隔离, 既保证细胞培养区域的相对独立, 又可以利用微流体的特性调节细胞外基质的性质, 给基于微芯片进行细胞研究提供了一种新的平台。  相似文献   

12.
13.
N-Acetylcysteine (NAC) has been used as an antioxidant to prevent apoptosis triggered by different stimuli in different cell types. It is common opinion that cellular redox, which is largely determined by the ratio of oxidized and reduced glutathione (GSH), plays a significant role in the propensity of cells to undergo apoptosis. However, there are also contrasting opinions stating that intracellular GSH depletion or supplemented GSH alone are not sufficient to lead cells to apoptosis or conversely protect them. Unexpectedly, this study shows that NAC, even if it maintains the peculiar characteristics of an agent capable of reducing cell proliferation and increasing intracellular GSH content, increases apoptosis induced by H(2)O(2) treatment and mo-antiFas triggering in a 3DO cell line. We found that 24 h of NAC pre-treatment can shift cellular death from necrotic to apoptotic and determine an early expression of FasL in a 3DO cell line treated with H(2)O(2).  相似文献   

14.
Sample flow switching techniques on microfluidic chips   总被引:1,自引:0,他引:1  
This paper presents an experimental investigation into electrokinetically focused flow injection for bio-analytical applications. A novel microfluidic device for microfluidic sample handling is presented. The microfluidic chip is fabricated on glass substrates using conventional photolithographic and chemical etching processes and is bonded using a high-temperature fusion method. The proposed valve-less device is capable not only of directing a single sample flow to a specified output port, but also of driving multiple samples to separate outlet channels or even to a single outlet to facilitate sample mixing. The experimental results confirm that the sample flow can be electrokinetically pre-focused into a narrow stream and guided to the desired outlet port by means of a simple control voltage model. The microchip presented within this paper has considerable potential for use in a variety of applications, including high-throughput chemical analysis, cell fusion, fraction collection, sample mixing, and many other applications within the micro-total-analysis systems field.  相似文献   

15.
Epirubicin, an anthracycline antitumor drug, often causes vascular injury such as vascular pain, phlebitis, and necrotizing vasculitis. However, an effective prevention for the epirubicin-induced vascular injury has not been established. The purpose of this study is to identify the mechanisms of cell injury induced by epirubicin in porcine aorta endothelial cells (PAECs). PAECs were exposed to epirubicin for 10 min followed by further incubation without epirubicin. The exposure to epirubicin (3-30 μM) decreased the cell viability concentration and time dependently. Epirubicin increased the activity of caspase-3/7, apoptotic cells, and intracellular lipid peroxide levels, and also induced depolarization of mitochondrial membranes. These intracellular events were reversed by glutathione (GSH) and N-acetylcysteine (NAC), while epirubicin rather increased intracellular GSH slightly and L-buthionine-(S,R)-sulfoximine, a specific inhibitor of GSH synthesis, had no effect on the epirubicin-induced cell injury. The epirubicin-induced cell injury and increase of caspase-3/7 activity were also attenuated by p38 mitogen-activated protein kinase (MAPK) inhibitors, SB203580 and PD169316. Moreover, epirubicin significantly enhanced the phosphorylation of p38 MAPK, and these effects were attenuated by GSH and NAC. In contrast, a c-Jun N-terminal kinase inhibitor SP600125, an extracellular signal-regulated kinase inhibitor PD98059, and a p53 inhibitor pifithrin α did not affect the epirubicin-induced cell injury and increase of caspase-3/7 activity. These results indicate that an activation of p38 MAPK by oxidative stress is involved in the epirubicin-induced endothelial cell injury.  相似文献   

16.
The productive internalization in the host cell of Chlamydia trachomatis elementary bodies and their infectivity depends on the degree of reduction of disulfide bonds in the outer envelope of the elementary body. We have hypothesized that the reducing agent may be intracellular glutathione (GSH). Three approaches were used to modulate the intracellular GSH concentration: (1) treatment of cells with buthionine sulfoximine, which causes irreversible inhibition of GSH biosynthesis; (2) hydrogen peroxide-induced oxidation of GSH by intracellular glutathione peroxidases; and (3) treatment of cells with N-acetyl-l-cysteine (NAC), a precursor of glutathione. In the first two cases, we observed a four- to sixfold inhibition of C. trachomatis infection, whereas in NAC-treated cells we detected an increase in the size of chlamydial inclusions. Using a proteomics approach, we showed that the inhibition of chlamydial infection does not combine with alterations in protein expression patterns after cell treatment. These results suggest that GSH plays a key role in the reduction of disulfide bonds in the C. trachomatis outer envelope at an initial stage of the infection.  相似文献   

17.
The induction of apoptotic cell death is a significant mechanism of tumor cells under the influence of radio-/chemotherapy, and resistance to these treatments has been linked to some cancer cell lines with a low propensity for apoptosis. The present study aimed to investigate the enhanced effects and mechanisms in apoptosis and the cycle distribution of HL-60 cells, a human leukemia cell line lacking a functional p53 protein, after combination treatment with arsenic trioxide (ATO) and irradiation (IR). Our results indicated that combined treatment led to increased cytotoxicity and apoptotic cell death in HL-60 cells, which was correlated with the activation of cdc-2 and increased expression of cyclin B, the induction of intracellular reactive oxygen species (ROS) generation, the loss of mitochondria membrane potential, and the activation of caspase-3. The combined treatment of HL-60 cells pre-treated with Z-VAD or NAC resulted in a significant reduction in apoptotic cells. In addition, activation of JNK and p38 MAPK may be involved in combined treatment-mediated apoptosis. The data suggest that a combination of IR and ATO could be a potential therapeutic strategy against p53-deficient leukemia cells.  相似文献   

18.
Arsenic trioxide (ATO) affects many biological processes such as cell proliferation, apoptosis, differentiation and angiogenesis. L-buthionine sulfoximine (BSO) is an inhibitor of GSH synthesis. We tested whether ATO reduced the viability of lung cancer A549 cells in vitro, and investigated the in vitro effect of the combination of ATO and BSO on cell viability in relation to apoptosis and the cell cycle. ATO caused a dose-dependant decrease of viability of A549 cells with an IC50 of more than 50 muM. Low doses of ATO or BSO (1~10 muM) alone did not induce cell death. However, combined treatment depleted GSH content and induced apoptosis, loss of mitochondrial transmembrane potential (DeltaPsi(m)) and cell cycle arrest in G2. Reactive oxygen species (ROS) increased or decreased depending on the concentration of ATO. In addition, BSO generally increased ROS in ATO-treated A549 cells. ROS levels were at least in part related to apoptosis in cells treated with ATO and/or BSO. In conclusion, we have demonstrated that A549 lung cells are very resistant to ATO, and that BSO synergizes with clinically achievable concentration of ATO. Our results suggest that combination treatment with ATO and BSO may be useful for treating lung cancer.  相似文献   

19.
基于微流控技术的微生物细胞梯度稀释分离方法   总被引:1,自引:0,他引:1  
随着微流控分析技术的快速发展,集成化的微流控芯片在满足实验高通量的同时,还在微生物细胞分离领域呈现出独特的优势。本研究基于微流控技术,制备了以聚二甲基硅氧烷(PDMS)、玻片为材料的细菌细胞梯度稀释分离芯片。该芯片的核心是通过一系列复杂的梯度网络来实现对细菌悬液的连续稀释,最终被分离的细菌细胞进入通道末端的存储孔内。结果显示,该方法能分离出的最少细菌细胞数低于10个。此芯片平台操作简单、耗时短、成本低,为微生物单细胞研究提供了新的途径。  相似文献   

20.

Background

The outcome of chemotherapy in breast cancer is strongly influenced by multidrug resistance (MDR). Several surrogate markers of chemoresistance have been identified including - CD24 (cluster differentiation 24) expression, stem cell growth factor (SCF), B-cell lymphocyte protein 2 (Bcl-2) and annexin V. The present study aimed to examine the expression of CD24 in the sensitive breast cancer cell line MCF-7 (Michigan Foudation-7) and MCF-7/adriamycin resistant (MCF-7/AdrRes) cells, and, if minimal effective doses of the anthracycline drug adriamycin (0.579???M and 88.2???M) would be enhanced by the antibody to SCF (anti-SCF).

Methods

CD24 expression was analysed by flow cytometry. Both Bcl-2 and annexin V protein expression were quantitatively assessed by the enzyme-linked immunosorbent assay (ELISA).

Results

In MCF-7/AdrRes cells the expression of CD24 was significantly higher compared to MCF-7 cells, 86.6% and 16.3% (p?Conclusion Adding anti-SCF to the chemotherapeutic regime of adriamycin may strongly enhance its chemotherapeutic effect in the treatment of patients with breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号