首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Murine monoclonal antibodies (MAbs) were produced for the detection of faba bean necrotic yellows virus (FBNYV), an isometric ssDNA virus belonging to a new, yet unnamed genus of plant viruses. A total of 19 FBNYV-specific MAbs were obtained from three fusion experiments and characterised by determining their immunoglobulin types and titres as well as their corresponding epitopes. At least six distinct epitopes were revealed on FBNYV particles of different virus isolates. Only two MAbs reacted with SDS-dissociated FBNYV virions in triple antibody sandwich (TAS)-ELISA and with viral capsid protein in Western blots. Almost all MAbs were more sensitive in detecting FBNYV in viruliferous aphids by TAS-ELISA than polyclonal anti-FBNYV IgG by double antibody sandwich ELISA and permitted virus detection in individual aphids even following short acquisition access feeding periods. Coat protein variation among FBNYV isolates and serological relatedness to taxonomically similar viruses was studied by determining the cross reactivity of these MAbs with several field isolates of FBNYV as well as with milk vetch dwarf (MDV), banana bunchy top (BBTV), and subterranean clover stunt (SCSV) viruses. Whereas none of the MAbs reacted with BBTV, only one reacted with SCSV, indicating that FBNYV and SCSV share a common epitope. By contrast, 16 of the 19 MAbs reacted with MDV, suggesting that FBNYV and MDV are serologically closely related and strains of the same virus. When all 19 MAbs produced were tested against a total of 107 samples of FBNYV collected during virus surveys in Egypt, Ethiopia, Jordan, Morocco and Syria, five MAbs showed differential reactions. While the majority of the samples reacted with all 19 MAbs, about 20% of the 107 FBNYV samples did not react with one and/or other of these five MAbs, permitting the differentiation of seven serotypes of FBNYV and suggesting a considerable coat protein variation in FBNYV isolates from the countries surveyed. The MDV isolate from Japan and five FBNYV samples from Ethiopia appeared to be the least closely related to typical FBNYV isolates by not reacting with three and four, respectively, of the five differentiating Mabs.  相似文献   

2.
Genomes of the four plant viruses of the genus Nanovirus consist of multiple circular single-stranded DNA components, each of which encodes a single protein. Protein phylogenies supported the hypothesis that faba bean necrotic yellows virus (FBNYV) and milk vetch disease virus (MDV) are sister taxa; that subterranean clover stunt virus (SCSV) branched next; and that banana bunchy top virus (BBTV) is an outgroup to the three other species. The phylogeny of replication (Rep) proteins indicate that this small viral multi-gene family has evolved by a process of duplication and subsequent loss of Rep-encoding genome components, analogous to the "birth-and-death" process of evolution which has been described in eukaryotic multi-gene families. By contrast, repeated recombinational events between components were found to have homogenized the non-coding portions of several components encoding unrelated components. For example, as result of recent recombination a portion of the non-coding region is virtually identical among SCSV components 1, 3, 4, 5, and 7. Thus, there is a process of concerted evolution of non-coding regions of Nanovirus genome components, which raises the possibility that certain non-coding regions are subject to functional constraint.  相似文献   

3.
Replication initiation of nanoviruses, plant viruses with a multipartite circular single-stranded DNA genome, is triggered by the master Rep (M-Rep) protein. To enable the study of interactions between M-Rep and viral or host factors involved in replication, we designed oligohistidine-tagged variants of the nanovirus Faba bean necrotic yellows virus (FBNYV) M-Rep protein that allow affinity purification of enzymatically active M-Rep from plant tissue. The tagged M-Rep protein was able to initiate replication of its cognate and other FBNYV DNAs in Nicotiana benthamiana leaf disks and plants. The replicon encoding the tagged M-Rep protein multiplied and moved systemically in FBNYV-infected Vicia faba plants and was transmitted by the aphid vector of the virus. Using the tagged M-Rep protein, we demonstrated the in planta interaction between wild-type M-Rep and its tagged counterpart. Such a tagged and fully functional replication initiator protein will have bearings on the isolation of protein complexes from plants.  相似文献   

4.
The multipartite genome of the nanovirus Faba bean necrotic yellows virus, which consists of one gene on each DNA component, was exploited to construct a series of virus-based episomal vectors designed for transient replication and gene expression in plants. This nanovirus based expression system yields high levels of protein which allows isolation of recombinant protein and protein complexes from plant tissues. As examples, we demonstrated in planta interaction between the nanovirus F-box protein Clink and SKP1, a constituent of the ubiquitin-dependent protein turnover pathway. Thus, replicative nanovirus vectors provide a simple and efficient means for in planta characterization of protein-protein interaction.  相似文献   

5.
The paper presents data of investigation on the physico‐chemical and antigenic properties of capsid proteins of the Bean common mosaic virus isolated from Phaseolus plants in the Russian Far East (BCMV‐R) and from China (BCMV‐C). A method for isolation of the virus preparation was selected. The purified preparations of two isolates BCMV have been obtained. The presence of one polypeptide in structural proteins of virions was established and their molecular masses determined (BCMV‐R ‐ 31,6 kD; BCMV‐C ‐ 32,1 kD). Polyclonal antiserum was obtained with titre 1:12800 and the indirect and “sandwich"‐variants of ELISA were developed to detect this virus. The allied relationships were established with the bean yellow mosaic virus and with the type representative of the genus Potyvirus ‐ PVY. Based on the data of physico‐chemical and antigenic properties it was concluded that isolates BCMV‐R and BCMV‐C are two independent strains of this virus. The presence of strain‐, virus‐ and genusspecific epitopes of capsid proteine was revealed as a result of comparison of antigenic characteristics of the Russian Far Eastern and Chinese strains of BCMV. A high antigenic activity of capsid protein of the Russian Far Eastern strain was observed.  相似文献   

6.
The effect of sowing date on aphid infestation and the incidence of aphid-transmitted viruses were investigated in organically managed, small-scale field experiments with two faba bean cultivars over 3 years (2002–04). As an additional factor, straw mulch was applied in 2 of the 3 years shortly before the start of vector activity in May. Virus incidence was determined using enzyme-linked immunosorbent assay and immunoelectron microscopy. Aphid flight activity was monitored using standard yellow water traps. Bean colonising aphids were assessed throughout the vegetation period by counting the number of plants infested with Acyrthosiphon pisum , Megoura viciae and Aphis fabae . Pea enation mosaic virus and bean yellow mosaic virus were the most abundant aphid-transmitted viruses, being detected in 22–54% and 9–69%, respectively, of the total number of virus-infected plants analysed per year. Further aphid-transmitted viruses found in faba bean were bean leaf roll virus, beet western yellows virus, clover yellow vein virus (in 2002) and soybean dwarf virus (in 2004). A. pisum was the predominant aphid species colonising faba bean plants. Early sowing compared with late sowing led to a significant reduction of the total virus incidence in faba bean in all 3 years. However, significantly decreased levels of A. pisum colonisation as a result of early sowing were observed only in 1 year and one cultivar. Irrespective of sowing date, straw mulching had no significant effects on virus incidence and aphid colonisation. Compared with late sowing, early sowing significantly increased bean yield in all 3 years and kernel weight in 2 years, whereas straw mulching had no effect on yield.  相似文献   

7.
We describe a new plant single-stranded DNA (ssDNA) virus, a nanovirus isolate originating from the faba bean in Ethiopia. We applied rolling circle amplification (RCA) to extensively copy the individual circular DNAs of the nanovirus genome. By sequence analyses of more than 208 individually cloned genome components, we obtained a representative sample of eight polymorphic swarms of circular DNAs, each about 1 kb in size. From these heterogeneous DNA populations after RCA, we inferred consensus sequences of the eight DNA components of the virus genome. Based on the distinctive molecular and biological properties of the virus, we propose to consider it a new species of the genus Nanovirus and to name it faba bean necrotic stunt virus (FBNSV). Selecting a representative clone of each of the eight DNAs for transfer by T-DNA plasmids of Agrobacterium tumefaciens into Vicia faba plants, we elicited the development of the typical FBNSV disease symptoms. Moreover, we showed that the virus thus produced was readily transmitted by two different aphid vector species, Aphis craccivora and Acyrthosiphon pisum. This represents the first reconstitution of a fully infectious and sustainably insect-transmissible nanovirus from its cloned DNAs and provides compelling evidence that the genome of a legume-infecting nanovirus is typically comprised of eight distinct DNA components.Circular single-stranded DNA (ssDNA) viruses that belong to the family Nanoviridae have recently emerged as important pathogens which often severely affect leguminous crops in West Asia, North Africa (40), and Spain (46). One of the most important nanoviruses is faba bean necrotic yellows virus (FBNYV), which infects a range of legume crops in this geographic region. Also, some nonleguminous dicotyledonous plant species have been reported as hosts for FBNYV in natural or experimental conditions (19, 32, 57). FBNYV belongs to the genus Nanovirus, which comprises at least two other legume-infecting members, milk vetch dwarf virus (MDV) from Japan (48) and China (36) and subterranean clover stunt virus (SCSV) from Australia (10).A second taxon of the family Nanoviridae is the genus Babuvirus, with species infecting monocotyledonous plants. Banana bunchy top virus (BBTV) infects bananas (Musa spp.) and is present in banana-growing countries in the Asia-Pacific region and Africa (24, 52). Recently, abacá bunchy top virus (ABTV) from Southeast Asia has been molecularly characterized (50), and also a single DNA component of cardamom bushy dwarf virus from India was described (41). These two viruses have been proposed as members of the genus Babuvirus (www.ictvonline.org).Both nano- and babuviruses are transmitted by several aphid species in a persistent nonpropagative manner, with Aphis craccivora and Acyrthosiphon pisum being efficient vectors of the three nanoviruses, whereas BBTV and ABTV are naturally transmitted by Pentalonia nigronervosa (39, 45).Viruses of the family Nanoviridae have a multipartite genome consisting of six to eight ssDNA molecules (58). Each circular ssDNA component is about 1 kb in size and is encapsidated in individual icosahedral particles. Experimental data and sequence evidence suggest that each DNA molecule, with a single exception, encodes only one protein (4, 58). A set of five homologous genome components are common to both nano- and babuviruses: DNA-R encoding the master Rep (M-Rep) protein, which initiates rolling circle replication of all genomic DNAs of a nano- or babuvirus (25, 53, 55); DNA-S encoding the capsid protein (11, 30, 61); DNA-C encoding Clink, a cell-cycle link protein (3); DNA-M encoding a movement protein (60); and DNA-N encoding a nuclear-shuttle protein (60). Three other DNAs (DNAs-U1, -U2, and -U4) encoding proteins of as yet unknown functions have been identified from the nanoviruses FBNYV and MDV, and one further DNA (DNA-U3) was identified from the babuviruses BBTV (58) and ABTV (50). An additional putative protein of unknown function appears to be encoded by a small internal open reading frame (ORF) embedded within the m-rep gene of BBTV, the sole exception to the “one DNA, one protein” rule for nano- and babuviruses (4). In addition to these bona fide integral genome components, additional Rep-encoding DNAs have been found associated with several nano- and babuvirus isolates (26, 58). They encode related, but distinct Rep proteins (para-Rep) that, in contrast to the M-Rep, are capable of initiating the replication only of their respective cognate DNAs (53).A prerequisite to studying viruses by reverse genetics is an artificial infection system, which has been accomplished only for FBNYV (54). Cloned viral DNAs were shown to be infectious, yet the virus thus obtained was not transmitted by aphid species known to be efficient vectors of FBNYV. The reason for this failure may be the existence of not yet identified genomic component(s) or a suboptimal sequence of the eight cloned FBNYV DNAs. Hence, there was a need for a rigorous and exhaustive search to detect and characterize all DNAs of a given nanovirus from infected plants.An ideal method for such a comprehensive study is the rolling circle amplification (RCA) technique (27). It has been successfully used to detect and molecularly characterize geminiviruses, the other family of plant ssDNA viruses (9, 21, 23, 28, 33-35, 37, 49, 56), and also the babuvirus ABTV (50).To sufficiently cover the genetic variability within a nanovirus isolate, we applied RCA to analyze and clone a hitherto little-characterized nanovirus from Ethiopia. Limited information on this Ethiopian isolate suggested that it is closely related to, but genetically distinct from, FBNYV and MDV (20). Here, we report the comprehensive sequence analysis of the DNA genome of this nanovirus from Ethiopia. Based on its DNA sequence and distinct serological and biological characteristics, we propose to assign it as a new species to the genus Nanovirus and to name it faba bean necrotic stunt virus (FBNSV). Moreover, we established clone banks of all essential genomic DNAs of FBNSV, used representative molecules for artificial infection, and succeeded in reconstituting for the first time an authentic and aphid-transmissible nanovirus.  相似文献   

8.
根据鸡马立克氏病病毒(MDV)GA株Meq基因序列,设计并合成一对用于扩增Meq基因的引物,利用这对引物通过PCR方法分别扩增4株东北地区分离的强毒株、国内标准强毒株J-1株、国内疫苗株814株的Meq基因片段,进行克隆测序,对4株MDV分离毒株Meq基因与国内传统毒株Meq基因及GenBank上收录的国内外9株毒株Meq基因序列进行比较分析.序列比较显示,不同的MDV株的Meq基因序列相对比较保守,它们相互间氨基酸序列的同源性在96.5%~99.7%之间.4株MDV分离毒株Meq基因在相关报道中提到的与毒力相关的脯氨酸重复区存在点突变;3株分离毒株Meq基因上相同位置均存在两个定点突变,这两处点突变是国内近几年分离株所特有的,国外已发表的MDV毒株Meq序列中不存在这种变化.分离株Meq基因的这些突变和毒株毒力的关系具有一定的规律性,但是这些规律性还有待进一步研究.  相似文献   

9.
10.
Based on reported TMV-U1 sequence, primers were designed and fragments covering the entire genome of TMV broad bean strain (TMV-B) were obtained with RT-PCR. These fragments were cloned and sequenced and the 5' and 3' end sequences of genome were confirmed with RACE. The complete sequence of TMV-B comprises 6 395 nucleotides (nt) and four open reading frames, which correspond to 126 ku (1 116 amino acids), 183 ku (1 616 amino acids), 30 ku (268 amino acids) and 17.5 ku proteins (159 amino acids). The complete nucleotide sequence of TMV-B is 99.4% identical to that of TMV-U1. The two virus isolates share the same sequence of 5', 3' non-coding region and 17.5 K ORF, and 6, 1 and 3 amino acid changes are found in 126 K protein, 54 K protein and 30 K protein, respectively. The possible mechanism on the infection of TMV-B in Vicia faba is discussed.  相似文献   

11.
水稻条叶枯病毒NS2基因遗传多样性分析   总被引:3,自引:0,他引:3  
应用单链构象多态性 (SSCP)和序列分析方法研究了来自我国 9个省份的水稻条叶枯病毒(RSV) 80个田间分离物的NS2基因遗传结构特征 .SSCP分析结果表明 ,我国RSVNS2基因遗传结构符合准种 (quasispecies)结构特征 .部分分离物的序列分析结果表明 ,RSV上述分离物和已报道的日本 2个分离物可以归入 2个组 :云南的部分分离物划分为 1个组 ;其它分离物及日本T、O的 2个分离物为另 1组 .组与组之间 ,NS2蛋白基因核苷酸同源性为 94 %~ 95 % ,氨基酸同源性为 95 %~ 97% .遗传多样性分析结果表明 ,RSV种群存在地理隔离但在种群间可能发生了基因漂移 (geneflow) .NS2蛋白可能的运动蛋白功能所造成的负选择压力和介体传播引起的奠基者效应可能是RSV种群内和种群间遗传多样性差别的主要因素  相似文献   

12.
An isolate (N15) of broad bean wilt virus (BB W V) from faba bean in China was compared with some other isolates and strains including the nasturtium ringspot strain (NRSV, BBWV serotype I), parsley virus 3 (PV3, serotype I) and BBWV isolate PV131 (serotype II). In host range studies, N15 infected 12 of 14 species, including soybean and spinach. It was purified from Chenopodium quinoa and pea by a method that yielded up to 8mg/100g tissue. By the same method, NRSV yielded up to 4mg/100 g. Purified preparations of N15 and NRSV contained isometric particles c. 26 nm in diameter which sedimented as three components, N15 at 62, 93 and 117 S, and NRSV at 60, 91 and 116 S. In immunodiffusion tests using antisera to N15 and NRSV, N15 was distinguishable from NRSV but indistinguishable from PV131. In ISEM tests, many more particles of N15 and NRSV were trapped by homologous than by heterologous antiserum; in decoration tests, much antibody attached to homologous particles but none to heterologous particles. In DAS ELISA using N15 antiserum, N15 and six other Chinese faba bean or pea isolates, and a Chinese spinach isolate, were readily detected and were indistinguishable from each other and from PV131; unlike NRSV and PV3, none of the Chinese isolates, nor PV131, was detected using NRSV antiserum. These results indicate that the Chinese isolates belong to BBWV serotype II group.  相似文献   

13.
将禽流感病毒M2基因克隆于真核表达质粒pIRES-EGFP中,使其位于pCMV启动子的调控下,并与绿色荧光蛋白基因(EGFP)串联后,将上述串联基因插入到含MDV CVI988的非必需区US基因的重组质粒pUS2中,构建带标记的重组质粒,然后将此重组质粒转染感染了MDV CVI988的鸡胚成纤维细胞,利用同源重组的方法,筛选了表达禽流感病毒M2基因的重组病毒MDV1。经PCR、Dot-blotting,Western-blotting等实验的结果表明,禽流感病毒M2基因的确插入到MDV1(CVI988)基因组中并获得表达。重组MDV1免疫1日龄SPF鸡21天后,用ELISA可检测到M2蛋白的特异性抗体。接种了重组病毒rMDV的鸡体内针对H9N2疫苗血凝素的抗体滴度(p<0.05)明显提高,以禽流感病毒AIV A/Chicken/Guangdong/00(H9N2)攻毒后进行病毒重分离试验的结果发现,重组病毒能有效地降低病毒的排出量(p<0.01),说明该重组病毒可以用于防制禽流感的免疫。  相似文献   

14.
Faba bean (Vicia faba L.) is a major introduced grain-legume crop cultivated in China. In this study, rhizobia that nodulated faba bean grown in soils from three sites in North China (Hebei Province) were isolated and characterized. Firstly, isolates were categorized into genotypes by ribosomal IGS PCR-RFLP analysis, then representatives of the different IGS genotypes were further identified by phylogenetic analyses of 16S rRNA, housekeeping (atpD, recA) and nodulation (nodC) gene sequences. Rhizobial distribution based on the IGS genotype was related to the different soil physicochemical features by redundancy analysis. IGS typing and phylogenetic analyses of 16S rRNA and concatenated housekeeping gene sequences affiliated the 103 rhizobial strains isolated into four Rhizobium species/genospecies. A total of 69 strains of 3 IGS types were assigned to R. sophorae, 20 isolates of 5 IGS types to R. changzhiense and 9 isolates of 3 IGS types to R. indicum. The representative strain of the five remaining isolates (1 IGS type) was clearly separated from all Rhizobium type strains and was most closely related to defined genospecies according to the recently described R. leguminosarum species complex. Rhizobium sophorae strains (67% of total isolates) were common in all sites and shared an identical nodC sequence typical of faba bean symbionts belonging to symbiovar viciae. In this first study of rhizobia nodulating faba bean in Hebei Province, China, R. sophorae was found to be the dominant symbiont in contrast to other countries.  相似文献   

15.
Li  Long  Yang  Sicun  Li  Xiaolin  Zhang  Fusuo  Christie  Peter 《Plant and Soil》1999,212(2):105-114
Interspecific complementary and competitive interactions between maize (Zea mays L. cv. Zhongdan No. 2) and faba bean (Vicia faba L. cv. Linxia Dacaidou) in maize/faba bean intercropping systems were assessed in two field experiments in Gansu province, northwestern China, plus a microplot experiment in one treatment of one of the field experiments in which root system partitions were used to determine interspecific root interactions. Intercropping effects were detected, with land equivalent ratio values of 1.21–1.23 based on total (grain+straw) yield and 1.13–1.34 based on grain yield. When two rows of maize were intercropped with two rows of faba bean, both total yield and grain yield of both crop species were significantly higher than those of sole maize and faba bean on an equivalent area basis. When two rows of pea (Pisum sativum L. cv. Beijing No. 5) were intercropped with two rows of faba bean, neither total yield nor grain yield of faba bean was higher than of sole faba bean on an equivalent area basis. Interspecific competition between maize and faba bean was relatively weak, with mean relative crowding coefficients of 0.99–1.02 for maize and 1.55–1.59 for faba bean. The microplot experiment in which partitions were placed between root systems showed a significant positive yield effect on maize when the root systems intermingled freely (no partition) or partly (400 mesh nylon net partition) compared with no interspecific root interaction (plastic sheet partition). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
In this study, morphological, ultrastructural and physiological modifications of faba bean (Vicia faba cv Giza 461) leaves in response to bean yellow mosaic virus (BYMV) infection and salicylic acid (SA) treatments were examined. Under BYMV stress, leaves showed symptoms including severe mosaic, mottling, crinkling, size reduction and deformations. Three weeks after virus inoculation, photosynthetic rate, pigment contents and transpiration rate were significantly reduced in response to BYMV infection.

Ultrastructural investigations of BYMV-infected leaves demonstrated that most chloroplasts with increased stromal area became spherical in shape and some lost their envelopes, either partially or totally. The internal structures of chloroplast, grana and thylakoids were dilated. Two kinds of inclusions were detected in BYMV-infected leaves: straight or slightly curved bands sometimes coiled or looped at the end, and electron opaque crystals with varied shapes. BYMV-infected cells showed lower chloroplast number in comparison to the control.

Spraying of SA on faba bean leaves helped to reduce or prevent the harmful effects produced after virus infection. Application of 100 μM SA three days before inoculation restored the metabolism of infected leaves to the levels of healthy controls. SA treatment improved plant health by increasing the photosynthesis rates, pigment contents and levels of other parameters studied similar to control values.

Moreover, SA treatment increased plant resistance against BYMV. This was observed through induction of chloroplast number, reduction in percentage of infected plants, decrease in disease severity and virus concentration of plants treated with SA prior to BYMV inoculation. Cells of SA-treated samples showed well-developed chloroplasts with many starch grains and well-organized cell organelles.

The present results provide an overview of the negative effects on faba bean leaves due to BYMV infection from physiological and subcellular perspectives. Also, a role of SA involved in induction of resistance against BYMV infection in bean plants is discussed.  相似文献   


17.
The genus Nanovirus consists of plant viruses that predominantly infect legumes leading to devastating crop losses. Nanoviruses are transmitted by various aphid species. The transmission occurs in a circulative nonpropagative manner. It was long suspected that a virus-encoded helper factor would be needed for successful transmission by aphids. Recently, a helper factor was identified as the nanovirus-encoded nuclear shuttle protein (NSP). The mode of action of NSP is currently unknown in contrast to helper factors from other plant viruses that, for example, facilitate binding of virus particles to receptors within the aphids' stylets. In this review, we are summarizing the current knowledge about nanovirus–aphid vector interactions.  相似文献   

18.
Genetic variation of 30 different Uromyces isolates collected on faba bean, lentil, common vetch, pea, chickpea, alfalfa, cowpea and lupin was studied. Random Amplified Polymorphic DNA markers were used showing clear differences among Uromyces species. Uromyces viciae-fabae isolates clustered according to the host, with a clear cluster including all U. viciae-fabae ex Vicia faba isolates. The U. viciae-fabae ex Lens culinaris isolate was the nearest to the cluster of U. viciae faba ex V. faba isolates, followed by U. pisi from Canada and U. viciae-fabae ex V. sativa . No association was found among molecular diversity and virulence or geographic origin within U. vicia-fabae ex V. faba isolates. Among the three U. pisi isolates considered, a great variability was observed and no grouping could be established. The most different isolate from the rest of species considered was U. striatus , followed by U. vignae . The two U. ciceris-arietini isolates clustered together and so did the two U. lupinicolus isolates.  相似文献   

19.
将增强型绿色荧光蛋白基因(eGFP)与鸡传染性法氏囊病病毒(IBDV)的VP2基因融合,插入马立克氏病毒(MDV)CVI988/Rispens的非必需区US10片段中,成功构建表达VP2融合蛋白的MDVCVI988转移载体pUC18-US10-VP2。将转移载体质粒与CVI988/Rispens疫苗毒共转染鸡胚成纤维细胞(CEF),筛选获得表达VP2融合蛋白的重组MDV(rMDV)。聚合酶链式反应(PCR)和间接免疫荧光实验(IFA)证明,rMDV传至第31代仍能稳定表达VP2融合蛋白。用rMDV免疫SPF鸡,进行IBDV攻毒保护试验,1日龄SPF鸡分别用1000PFU、2000PFU、5000PFU的rMDV进行免疫,33日龄用100LD50的IBDVJS超强毒进行攻毒,鸡的免疫保护率分别为50%、60%、80%。值得注意的是,5000PFU的rMDV一次免疫1日龄SPF鸡,其法氏囊组织病理损伤等级与IBD中等毒力活疫苗常规二次免疫相当(2·0/1·5),其保护效果无显著差异(p>0·05),而与非重组病毒免疫组相比较,保护效果差异显著(P<0·01),这表明构建的表达IBDVVP2融合蛋白的rMDV可以有效地为SPF鸡提供免疫保护作用。  相似文献   

20.
Bacteria of the faba bean (Vicia faba L.)/Orobanche spp. root environment were evaluated for their potential use as biocontrol agents for the parasitic weed. Bacteria were isolated mainly from the rhizosphere of faba bean as well as from diseased Orobanche underground structures and an Orobanche-suppressive soil from three districts of northern Tunisia. Out of 351 bacterial isolates, 337 were tested for pathogenicity in an inverted pyramidal-shape screening programme including a Lactuca sativa L. seedlings bioassay, root-chamber and pot experiments. In pre-selection screening on L. sativa seedlings, 37 isolates (11%) showed a strong growth inhibitory effect, of which 70 and 84% also had a significant suppressive activity on the pre-emergence structures of O. foetida and O. crenata, respectively, in root-chamber experiments. Among five bacterial isolates selected for pot trials, strain Bf7-9 of Pseudomonas fluorescens showed high biocontrol activity against both species of Orobanche and positively influenced faba bean growth. The bacterium reduced shoot emergence of O. crenata and O. foetida by 64 and 76% and their dry weight by 39 and 63%, respectively, compared with non-inoculated controls. Pseudomonas marginalis strain Nc1-2 exhibited also a tendency to reduce incidence of O. crenata and to improve faba bean performance. Results of the present study suggest that application of naturally occurring rhizosphere bacteria offers an additional approach for biocontrol of Orobanche spp. that can supplement current methods of control in an integrated weed management strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号