首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time-resolved small-angle X-ray scattering (TR-SAXS) was used to study the kinetics of a large conformational change that occurs during the maturation of an icosahedral virus. Virus-like particles (VLPs) of the T=4 non-enveloped RNA virus Nudaurelia capensis omega virus (NomegaV) were shown to undergo a large pH-dependent conformational change. Electron cryo-microscopy (cryoEM) and X-ray solution scattering were used to show that the precursor VLP (procapsid) was 16 % larger in diameter than the resulting capsid, which was shown by the cryoEM study to closely resemble the infectious mature virion. The procapsid form of the VLPs was observed at pH 7.5 and was converted to the capsid form at pH 5.0. Static SAXS measurements of the VLPs in solutions ranging between these pH values determined that the half-titration point of the transition was pH 6.0. Time-resolved SAXS experiments were performed on VLP solutions by initiating a pH change from 7.5 to 5.0 using a stopped-flow device, and the time-scale of the conformational change occurred in the subsecond range. Using a less drastic pH change (lowering the pH to 5.8 or 5.5), the conformational change occurred more slowly, on the subminute or minute time-scale, with the detection of a fast-forming intermediate in the transition. Further characterization using static SAXS measurements showed that the conformational change was initially reversible but became irreversible after autoproteolytic maturation was about 15 % complete. In addition to characterizing the large quaternary conformational change, we have been able for the first time to demonstrate that it takes place on the subsecond time-scale, a regime comparable to that observed in other multisubunit assemblies.  相似文献   

2.
An empty precursor particle called the procapsid is formed during assembly of the single-stranded DNA bacteriophage phiX174. Assembly of the phiX174 procapsid requires the presence of the two scaffolding proteins, D and B, which are structural components of the procapsid, but are not found in the mature virion. The X-ray crystallographic structure of a "closed" procapsid particle has been determined to 3.5 A resolution. This structure has an external scaffold made from 240 copies of protein D, 60 copies of the internally located B protein, and contains 60 copies of each of the viral structural proteins F and G, which comprise the shell and the 5-fold spikes, respectively. The F capsid protein has a similar conformation to that seen in the mature virion, and differs from the previously determined 25 A resolution electron microscopic reconstruction of the "open" procapsid, in which the F protein has a different conformation. The D scaffolding protein has a predominantly alpha-helical fold and displays remarkable conformational variability. We report here an improved and refined structure of the closed procapsid and describe in some detail the differences between the four independent D scaffolding proteins per icosahedral asymmetric unit, as well as their interaction with the F capsid protein. We re-analyze and correct the comparison of the closed procapsid with the previously determined cryo-electron microscopic image reconstruction of the open procapsid and discuss the major structural rearrangements that must occur during assembly. A model is proposed in which the D proteins direct the assembly process by sequential binding and conformational switching.  相似文献   

3.
4.
The double-stranded RNA bacteriophage phi6 contains a nucleocapsid enclosed by a lipid envelope. The nucleocapsid has an outer layer of protein P8 and a core consisting of the four proteins P1, P2, P4 and P7. These four proteins form the polyhedral structure which acts as the RNA packaging and polymerase complex. Simultaneous expression of these four proteins in Escherichia coli gives rise to procapsids that can carry out the entire RNA replication cycle. Icosahedral image reconstruction from cryo-electron micrographs was used to determine the three-dimensional structures of the virion-isolated nucleocapsid and core, and of several procapsid-related particles expressed and assembled in E. coli. The nucleocapsid has a T = 13 surface lattice, composed primarily of P8. The core is a rounded structure with turrets projecting from the 5-fold vertices, while the procapsid is smaller than the core and more dodecahedral. The differences between the core and the procapsid suggest that maturation involves extensive structural rearrangements producing expansion. These rearrangements are co-ordinated with the packaging and RNA polymerization reactions that result in virus assembly. This structural characterization of the phi6 assembly intermediates reveals the ordered progression of obligate stages leading to virion assembly along with striking similarities to the corresponding Reoviridae structures.  相似文献   

5.
The assembly and maturation of the coat protein of a T=4, nonenveloped, single-stranded RNA virus, Nudaurelia capensis omega virus (N omega V), was examined by using a recombinant baculovirus expression system. At pH 7.6, the coat protein assembles into a stable particle called the procapsid, which is 450 A in diameter and porous. Lowering the pH to 5.0 leads to a concerted reorganization of the subunits into a 410-A-diameter particle called the capsid, which has no obvious pores. This conformational change is rapid but reversible until slow, autoproteolytic cleavage occurs in at least 15% of the subunits at the lower pH. In this report, we show that expression of subunits with replacement of Asn-570, which is at the cleavage site, with Thr results in assembly of particles with expected morphology but that are cleavage defective. The conformational change from procapsid to capsid is reversible in N570T mutant virus-like particles, in contrast to wild-type particles, which are locked into the capsid conformation after cleavage of the coat protein. The reexpanded procapsids display slightly different properties than the original procapsid, suggesting hysteretic effects. Because of the stability of the procapsid under near-neutral conditions and the reversible properties of the cleavage-defective mutant, N omega V provides an excellent model for the study of pH-induced conformational changes in macromolecular assemblies. Here, we identify the relationship between cleavage and the conformational change and propose a pH-dependent helix-coil transition that may be responsible for the structural rearrangement in N omega V.  相似文献   

6.
Benevides JM  Juuti JT  Tuma R  Bamford DH  Thomas GJ 《Biochemistry》2002,41(40):11946-11953
The icosahedral core of a double-stranded (ds) RNA virus hosts RNA-dependent polymerase activity and provides the molecular machinery for RNA packaging. The stringent requirements of dsRNA metabolism may explain the similarities observed in core architecture among a broad spectrum of dsRNA viruses, from the mammalian rotaviruses to the Pseudomonas bacteriophage phi6. Although the structure of the assembled core has been described in atomic detail for Reoviridae (blue tongue virus and reovirus), the molecular mechanism of assembly has not been characterized in terms of conformational changes and key interactions of protein constituents. In the present study, we address such questions through the application of Raman spectroscopy to an in vitro core assembly system--the procapsid of phi6. The phi6 procapsid, which comprises multiple copies of viral proteins P1 (copy number 120), P2 (12), P4 (72), and P7 (60), represents a precursor of the core that is devoid of RNA. Raman signatures of the procapsid, its purified recombinant core protein components, and purified sub-assemblies lacking either one or two of the protein components have been obtained and interpreted. The major procapsid protein (P1), which forms the skeletal frame of the core, is an elongated and monomeric molecule of high alpha-helical content. The fold of the core RNA polymerase (P2) is also mostly alpha-helical. On the other hand, the folds of both the procapsid accessory protein (P7) and RNA-packaging ATPase (P4) are of the alpha/beta type. Raman difference spectra show that conformational changes occur upon interaction of P1 with either P4 or P7 in the procapsid. These changes involve substantial ordering of the polypeptide backbone. Conversely, conformations of procapsid subunits are not significantly affected by interactions with P2. An assembly model is proposed in which P1 induces alpha-helix in P4 during formation of the nucleation complex. Subsequently, the partially disordered P7 subunit is folded within the context of the procapsid shell.  相似文献   

7.
Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds) DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM) and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion.  相似文献   

8.
9.
The morphogenesis of poxviruses such as vaccinia virus (VACV) sees the virion shape mature from spherical to brick-shaped. Trimeric capsomers of the VACV D13 protein form a transitory, stabilizing lattice on the surface of the initial spherical immature virus particle. The crystal structure of D13 reveals that this major scaffolding protein comprises?a double β barrel "jelly-roll" subunit arranged as pseudo-hexagonal trimers. These structural features are characteristic of the major capsid proteins of?a lineage of large icosahedral double-stranded DNA viruses including human adenovirus and the bacteriophages PRD1 and PM2. Structure-based phylogenetic analysis confirms that VACV belongs to this lineage, suggesting that (analogously to higher organism embryogenesis) early poxvirus morphogenesis reflects their evolution from a lineage of viruses sharing a common icosahedral ancestor.  相似文献   

10.
Enterovirus 71 (EV71) is an important emerging human pathogen with a global distribution and presents a disease pattern resembling poliomyelitis with seasonal epidemics that include cases of severe neurological complications, such as acute flaccid paralysis. EV71 is a member of the Picornaviridae family, which consists of icosahedral, nonenveloped, single-stranded RNA viruses. Here we report structures derived from X-ray crystallography and cryoelectron microscopy (cryo-EM) for the 1095 strain of EV71, including a putative precursor in virus assembly, the procapsid, and the mature virus capsid. The cryo-EM map of the procapsid provides new structural information on portions of the capsid proteins VP0 and VP1 that are disordered in the higher-resolution crystal structures. Our structures solved from virus particles in solution are largely in agreement with those from prior X-ray crystallographic studies; however, we observe small but significant structural differences for the 1095 procapsid compared to a structure solved in a previous study (X. Wang, W. Peng, J. Ren, Z. Hu, J. Xu, Z. Lou, X. Li, W. Yin, X. Shen, C. Porta, T. S. Walter, G. Evans, D. Axford, R. Owen, D. J. Rowlands, J. Wang, D. I. Stuart, E. E. Fry, and Z. Rao, Nat. Struct. Mol. Biol. 19:424–429, 2012) for a different strain of EV71. For both EV71 strains, the procapsid is significantly larger in diameter than the mature capsid, unlike in any other picornavirus. Nonetheless, our results demonstrate that picornavirus capsid expansion is possible without RNA encapsidation and that picornavirus assembly may involve an inward radial collapse of the procapsid to yield the native virion.  相似文献   

11.
Venezuelan equine encephalitis virus (VEEV) is an important human and equine pathogen in the Americas, with widespread reoccurring epidemics extending from South America to the southern United States. Most troubling, VEEV has been made into a weapon by several countries and is currently restricted by the Centers for Disease Control and Prevention as a potential biological warfare and terrorism agent. To facilitate the development of antiviral compounds, the structure of the nucleocapsid isolated from VEEV has been determined by electron cryomicroscopy and image reconstruction and represents the first three-dimensional structure of a nucleocapsid isolated from a single-stranded enveloped RNA virus. The isolated VEEV nucleocapsid undergoes significant reorganization relative to its structure within VEEV. However, the isolated nucleocapsid clearly exhibits T=4 icosahedral symmetry, and its characteristic nucleocapsid hexons and pentons are preserved. The diameter of the isolated nucleocapsid is approximately 11.5% larger than that of the nucleocapsid within VEEV, with radial expansion being greatest near the hexons. Significantly, this is the first direct structural evidence showing that a simple enveloped virus undergoes large conformational changes during maturation, suggesting that the lipid bilayer and the transmembrane proteins of simple enveloped viruses provide the energy necessary to reorganize the nucleocapsid during maturation.  相似文献   

12.
The genome of the lineal double-stranded DNA viruses of both prokaryotes and eukaryotes is packaged into a preformed procapsid during maturation. Common features exist in this step of the viral life cycle. Bacteriophage ø29 is an ideal model in this study because its DNA can be efficiently packaged in vitro with all components overproduced and purified. An exciting aspect is the discovery that a small viral RNA (pRNA) encoded by ø29 has a novel and essential role in viral DNA packaging. This pRNA is not a structural component of the mature virion, nor is it required for the assembly of the procapsid. The discovery of pRNA as a non-protein participant in viral DNA packaging extends previously demonstrated RNA functions.  相似文献   

13.
The capsid of the herpes simplex virus initially assembles as a procapsid that matures through a massive conformational change of its 182 MDa surface shell. This transition, which stabilizes the fragile procapsid, is facilitated by the viral protease that releases the interaction between the shell and the underlying scaffold; however, protease-deficient procapsids mature slowly in vitro. To study procapsid maturation as a time-resolved process, we monitored this reaction by cryo-electron microscopy (cryo-EM). The resulting images were sorted into 17 distinct classes, and three-dimensional density maps were calculated for each. When arranged in a chronological series, these maps yielded molecular movies of procapsid maturation. A single major switching event takes place at stages 8-9, preceded by relatively subtle adjustments in the pattern of interactions and followed by similarly small 'aftershocks'. The primary mechanism underlying maturation is relative rotations of domains of VP5, the major capsid protein.  相似文献   

14.
The assembly and maturation of viruses with icosahedral capsids must be coordinated with icosahedral symmetry. The icosahedral symmetry imposes also the restrictions on the cooperative specific interactions between genomic RNA/DNA and coat proteins that should be reflected in quasi-regular segmentation of viral genomic sequences. Combining discrete direct and double Fourier transforms, we studied the quasi-regular large-scale segmentation in genomic sequences of different ssRNA, ssDNA, and dsDNA viruses. The particular representatives included satellite tobacco mosaic virus (STMV) and the strains of satellite tobacco necrosis virus (STNV), STNV-C, STNV-1, STNV-2, Escherichia phages MS2, ?X174, α3, and HK97, and Simian virus 40. In all their genomes, we found the significant quasi-regular segmentation of genomic sequences related to the virion assembly and the genome packaging within icosahedral capsid. We also found good correspondence between our results and available cryo-electron microscopy data on capsid structures and genome packaging in these viruses. Fourier analysis of genomic sequences provides the additional insight into mechanisms of hierarchical genome packaging and may be used for verification of the concepts of 3-fold or 5-fold intermediates in virion assembly. The results of sequence analysis should be taken into account at the choice of models and data interpretation. They also may be helpful for the development of antiviral drugs.  相似文献   

15.
Double-stranded DNA (dsDNA) viruses such as herpesviruses and bacteriophages infect by delivering their genetic material into cells, a task mediated by a DNA channel called "portal protein." We have used electron cryomicroscopy to determine the structure of bacteriophage P22 portal protein in both the procapsid and mature capsid conformations. We find that, just as the viral capsid undergoes major conformational changes during virus maturation, the portal protein switches conformation from a procapsid to a mature phage state upon binding of gp4, the factor that initiates tail assembly. This dramatic conformational change traverses the entire length of the DNA channel, from the outside of the virus to the inner shell, and erects a large dome domain directly above the DNA channel that binds dsDNA inside the capsid. We hypothesize that this conformational change primes dsDNA for injection and directly couples completion of virus morphogenesis to a new cycle of infection.  相似文献   

16.
17.
Protein subunits of several RNA viruses are known to undergo post-assembly, autocatalytic cleavage that is required for infectivity. Nudaurelia capensis omega virus (Nomega V) is one of the simplest viruses to undergo an autocatalytic cleavage, making it an excellent model to understand both assembly and the mechanism of autoproteolysis. Heterologous expression of the coat protein gene of Nomega V in a baculovirus system results in the spontaneous assembly of virus-like particles (VLPs) that remain uncleaved when purified at neutral pH. After acidification to pH 5.0, the VLPs autocatalytically cleave at residue 570, providing an in vitro control of the cleavage. The crystal structure of Nomega V displays three residues near the scissile bond that were candidates for participation in the reaction. These were changed by site-directed mutagenesis to conservative and nonconservative residues and the products analyzed. Even conservative changes at the three residues dramatically reduced cleavage when the subunits assembled properly. Unexpectedly, we discovered that these residues are not only critical to the kinetics of Nomega V autoproteolysis, but are also necessary for proper folding of subunits and, ultimately, assembly of Nomega V VLPs.  相似文献   

18.
Large-scale conformational transitions are involved in the life-cycle of many types of virus. The dsDNA phages, herpesviruses, and adenoviruses must undergo a maturation transition in the course of DNA packaging to convert a scaffolding-containing precursor capsid to the DNA-containing mature virion. This conformational transition converts the procapsid, which is smaller, rounder, and displays a distinctive skewing of the hexameric capsomeres, to the mature virion, which is larger and more angular, with regular hexons. We have used electron cryomicroscopy and image reconstruction to obtain 15 A structures of both bacteriophage P22 procapsids and mature phage. The maturation transition from the procapsid to the phage results in several changes in both the conformations of the individual coat protein subunits and the interactions between neighboring subunits. The most extensive conformational transformation among these is the outward movement of the trimer clusters present at all strict and local 3-fold axes on the procapsid inner surface. As the trimer tips are the sites of scaffolding binding, this helps to explain the role of scaffolding protein in regulating assembly and maturation. We also observe DNA within the capsid packed in a manner consistent with the spool model. These structures allow us to suggest how the binding interactions of scaffolding and DNA with the coat shell may act to control the packaging of the DNA into the expanding procapsids.  相似文献   

19.
20.
Viral capsids are robust structures designed to protect the genome from environmental insults and deliver it to the host cell. The developmental pathway for complex double-stranded DNA viruses is generally conserved in the prokaryotic and eukaryotic groups and includes a genome packaging step where viral DNA is inserted into a pre-formed procapsid shell. The procapsids self-assemble from monomeric precursors to afford a mature icosahedron that contains a single “portal” structure at a unique vertex; the portal serves as the hole through which DNA enters the procapsid during particle assembly and exits during infection. Bacteriophage λ has served as an ideal model system to study the development of the large double-stranded DNA viruses. Within this context, the λ procapsid assembly pathway has been reported to be uniquely complex involving protein cross-linking and proteolytic maturation events. In this work, we identify and characterize the protease responsible for λ procapsid maturation and present a structural model for a procapsid-bound protease dimer. The procapsid protease possesses autoproteolytic activity, it is required for degradation of the internal “scaffold” protein required for procapsid self-assembly, and it is responsible for proteolysis of the portal complex. Our data demonstrate that these proteolytic maturation events are not required for procapsid assembly or for DNA packaging into the structure, but that proteolysis is essential to late steps in particle assembly and/or in subsequent infection of a host cell. The data suggest that the λ-like proteases and the herpesvirus-like proteases define two distinct viral protease folds that exhibit little sequence or structural homology but that provide identical functions in virus development. The data further indicate that procapsid assembly and maturation are strongly conserved in the prokaryotic and eukaryotic virus groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号