首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double-stranded RNA (dsRNA) produced during viral infection activates several cellular antiviral responses. Among the best characterized is the shutoff of protein synthesis mediated by the dsRNA-dependent protein kinase (PKR) and the oligoadenylate synthetase (OAS)/RNase L system. As viral replication depends on protein synthesis, many viruses have evolved mechanisms for counteracting the PKR and OAS/RNase L pathways. The murine cytomegalovirus (MCMV) proteins m142 and m143 have been characterized as dsRNA binding proteins that inhibit PKR activation, phosphorylation of the translation initiation factor eIF2α, and a subsequent protein synthesis shutoff. In the present study we analyzed the contribution of the PKR- and the OAS-dependent pathways to the control of MCMV replication in the absence or presence of m142 and m143. We show that the induction of eIF2α phosphorylation during infection with an m142- and m143-deficient MCMV is specifically mediated by PKR, not by the related eIF2α kinases PERK or GCN2. PKR antagonists of vaccinia virus (E3L) or herpes simplex virus (γ34.5) rescued the replication defect of an MCMV strain with deletions of both m142 and m143. Moreover, m142 and m143 bound to each other and interacted with PKR. By contrast, an activation of the OAS/RNase L pathway by MCMV was not detected in the presence or absence of m142 and m143, suggesting that these viral proteins have little or no influence on this pathway. Consistently, an m142- and m143-deficient MCMV strain replicated to high titers in fibroblasts lacking PKR but did not replicate in cells lacking RNase L. Hence, the PKR-mediated antiviral response is responsible for the essentiality of m142 and m143.  相似文献   

2.
Cytomegaloviruses carry the US22 family of genes, which have common sequence motifs but diverse functions. Only two of the 12 US22 family genes of murine cytomegalovirus (MCMV) are essential for virus replication, but their functions have remained unknown. In the present study, we deleted the essential US22 family genes, m142 and m143, from the MCMV genome and propagated the mutant viruses on complementing cells. The m142 and the m143 deletion mutants were both unable to replicate in noncomplementing cells at low and high multiplicities of infection. In cells infected with the deletion mutants, viral immediate-early and early proteins were expressed, but viral DNA replication and synthesis of the late-gene product glycoprotein B were inhibited, even though mRNAs of late genes were present. Global protein synthesis was impaired in these cells, which correlated with phosphorylation of the double-stranded RNA-dependent protein kinase R (PKR) and its target protein, the eukaryotic translation initiation factor 2alpha, suggesting that m142 and m143 are necessary to block the PKR-mediated shutdown of protein synthesis. Replication of the m142 and m143 knockout mutants was partially restored by expression of the human cytomegalovirus TRS1 gene, a known double-stranded-RNA-binding protein that inhibits PKR activation. These results indicate that m142 and m143 are both required for inhibition of the PKR-mediated host antiviral response.  相似文献   

3.
Murine cytomegalovirus (MCMV) proteins m142 and m143 are essential for viral replication. They bind double-stranded RNA and prevent protein kinase R-induced protein synthesis shutoff. Whether the two viral proteins have additional functions such as their homologs in human cytomegalovirus do remained unknown. We show that MCMV m142 and m143 knockout mutants attain organ titers equivalent to those attained by wild-type MCMV in Pkr knockout mice, suggesting that these viral proteins do not encode additional PKR-independent functions relevant for pathogenesis in vivo.  相似文献   

4.
Hakki M  Geballe AP 《Journal of virology》2005,79(12):7311-7318
The human cytomegalovirus (HCMV) TRS1 and IRS1 genes rescue replication of vaccinia virus (VV) that has a deletion of the double-stranded RNA binding protein gene E3L (VVDeltaE3L). Like E3L, these HCMV genes block the activation of key interferon-induced, double-stranded RNA (dsRNA)-activated antiviral pathways. We investigated the hypothesis that the products of these HCMV genes act by binding to dsRNA. pTRS1 expressed by cell-free translation or by infection of mammalian cells with HCMV or recombinant VV bound to dsRNA. Competition experiments revealed that pTRS1 preferentially bound to dsRNA compared to double-stranded DNA or single-stranded RNA. 5'- and 3'-end deletion analyses mapped the TRS1 dsRNA-binding domain to amino acids 74 through 248, a region of identity to pIRS1 that contains no homology to known dsRNA-binding proteins. Deletion of the majority of this region (Delta86-246) completely abrogated dsRNA binding. To determine the role of the dsRNA-binding domain in the rescue of VVDeltaE3L replication, wild-type or deletion mutants of TRS1 were transfected into HeLa cells, which were then infected with VVDeltaE3L. While full-length TRS1 rescued VVDeltaE3L replication, deletion mutants affecting a carboxy-terminal region of TRS1 that is not required for dsRNA binding failed to rescue VVDeltaE3L. Analyses of stable cell lines revealed that the carboxy-terminal domain is necessary to prevent the shutoff of protein synthesis and the phosphorylation of eIF2alpha after VVDeltaE3L infection. Thus, pTRS1 contains an unconventional dsRNA-binding domain at its amino terminus, but a second function involving the carboxy terminus is also required for countering host cell antiviral responses.  相似文献   

5.
Many viruses have evolved mechanisms to evade the repression of translation mediated by protein kinase R (PKR). In the case of murine cytomegalovirus (MCMV), the protein products of two essential genes, m142 and m143, bind to double-stranded RNA (dsRNA) and block phosphorylation of PKR and eukaryotic initiation factor 2α. A distinctive feature of MCMV is that two proteins are required to block PKR activation whereas other viral dsRNA-binding proteins that prevent PKR activation contain all the necessary functions in a single protein. In order to better understand the mechanism by which MCMV evades the PKR response, we investigated the associations of pm142 and pm143 with each other and with PKR. Both pm142 and pm143 interact with PKR in infected and transfected cells. However, the ~200-kDa pm142-pm143 complex that forms in these cells does not contain substantial amounts of PKR, suggesting that the interactions between pm142-pm143 and PKR are unstable or transient. The stable, soluble pm142-pm143 complex appears to be a heterotetramer consisting of two molecules of pm142 associated with each other, and each one binds to and stabilizes a monomer of pm143. MCMV infection also causes relocalization of PKR into the nucleus and to an insoluble cytoplasmic compartment. These results suggest a model in which the pm142-pm143 multimer interacts with PKR and causes its sequestration in cellular compartments where it is unable to shut off translation and repress viral replication.  相似文献   

6.
The cellular response to viral infection often includes activation of pathways that shut off protein synthesis and thereby inhibit viral replication. In order to enable efficient replication, many viruses carry genes such as the E3L gene of vaccinia virus that counteract these host antiviral pathways. Vaccinia virus from which the E3L gene has been deleted (VVDeltaE3L) is highly sensitive to interferon and exhibits a restricted host range, replicating very inefficiently in many cell types, including human fibroblast and U373MG cells. To determine whether human cytomegalovirus (CMV) has a mechanism for preventing translational shutoff, we evaluated the ability of CMV to complement the deficiencies in replication and protein synthesis associated with VVDeltaE3L. CMV, but not UV-inactivated CMV, rescued VVDeltaE3L late gene expression and replication. Thus, complementation of the VVDeltaE3L defect appears to depend on de novo CMV gene expression and is not likely a result of CMV binding to the cell receptor or of a virion structural protein. CMV rescued VVDeltaE3L late gene expression even in the presence of ganciclovir, indicating that CMV late gene expression is not required for complementation of VVDeltaE3L. The striking decrease in overall translation after infection with VVDeltaE3L was prevented by prior infection with CMV. Finally, CMV blocked both the induction of eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation and activation of RNase L by VVDeltaE3L. These results suggest that CMV has one or more immediate-early or early genes that ensure maintenance of a high protein synthetic capacity during infection by preventing activation of the PKR/eIF2alpha phosphorylation and 2-5A oligoadenylate synthetase/RNase L pathways.  相似文献   

7.
Many viruses encode proteins that inhibit the induction of programmed cell death at the mitochondrial checkpoint. Murine cytomegalovirus (MCMV) encodes the m38.5 protein, which localizes to mitochondria and protects human HeLa cells and fibroblasts from apoptosis triggered by proteasome inhibitors but not from Fas-induced apoptosis. However, the ability of this protein to suppress the apoptosis of murine cells and its role during MCMV infection have not been investigated previously. Here we show that m38.5 is expressed at early time points during MCMV infection. Cells infected with MCMVs lacking m38.5 showed increased sensitivity to cell death induced by staurosporine, MG132, or the viral infection itself compared to the sensitivity of cells infected with wild-type MCMV. This defect was eliminated when an m38.5 or Bcl-X(L) gene was inserted into the genome of a deletion mutant. Using fibroblasts deficient in the proapoptotic Bcl-2 family proteins Bak and/or Bax, we further demonstrated that m38.5 protected from Bax- but not Bak-mediated apoptosis and interacted with Bax in infected cells. These results consolidate the role of m38.5 as a viral mitochondrion-localized inhibitor of apoptosis and its functional similarity to the human cytomegalovirus UL37x1 gene product. Although the m38.5 gene is not homologous to the UL37x1 gene at the sequence level, m38.5 is conserved among rodent cytomegaloviruses. Moreover, the fact that MCMV-infected cells are protected from both Bak- and Bax-mediated cell death suggests that MCMV possesses an additional, as-yet-unidentified mechanism to block Bak-mediated apoptosis.  相似文献   

8.
The large cytomegalovirus (CMV) US22 gene family, found in all betaherpesviruses, comprises 12 members in both human cytomegalovirus (HCMV) and murine cytomegalovirus (MCMV). Conserved sequence motifs suggested a common ancestry and related functions for these gene products. Two members of this family, m140 and m141, were recently shown to affect MCMV replication on macrophages. To test the role of all US22 members in cell tropism, we analyzed the growth properties in different cell types of MCMV mutants carrying transposon insertions in all 12 US22 gene family members. When necessary, additional targeted mutants with gene deletions, ATG deletions, and ectopic gene revertants were constructed. Mutants with disruption of genes M23, M24, m25.1, m25.2, and m128 (ie2) showed no obvious growth phenotype, whereas growth of M43 mutants was reduced in a number of cell lines. Genes m142 and m143 were shown to be essential for virus replication. Growth of mutants with insertions into genes M36, m139, m140, and m141 in macrophages was severely affected. The common phenotype of the m139, m140, and m141 mutants was explained by an interaction at the protein level. The M36-dependent macrophage growth phenotype could be explained by the antiapoptotic function of the gene that was required for growth on macrophages but not for growth on other cell types. Together, the comprehensive set of mutants of the US22 gene family suggests that individual family members have diverged through evolution to serve a variety of functions for the virus.  相似文献   

9.
Efficient replication of murine cytomegalovirus (MCMV) in macrophages is a prerequisite for optimal growth and spread of the virus in its natural host. Simultaneous deletion of US22 gene family members M139, M140, and M141 results in impaired replication of MCMV in macrophages and mice. In this study, we characterized the proteins derived from these three genes and examined the impact of individual gene deletions on viral pathogenesis. The M139, M140, and M141 gene products were identified as early proteins that localize to both the nucleus and cytoplasm in infected cells. Gene M139 encodes two proteins, of 72 and 61 kDa, while M140 and M141 each encode a single protein of 56 (pM140) and 52 (pM141) kDa, respectively. No role for the M139 proteins in MCMV replication in macrophages or mice was determined in these studies. In contrast, deletion of either M140 or M141 resulted in impaired MCMV replication in macrophages and spleen tissue. Replication of the M140 deletion mutant was significantly more impaired than that of the virus lacking M141. Further analyses revealed that the absence of the pM140 adversely affected pM141 levels by rendering the latter protein unstable. Since the replication defect due to deletion of M140 was more profound than could be explained by the reduced half-life of pM141, pM140 must exert an additional, independent function in mediating efficient replication of MCMV in macrophages and spleen tissue. These data indicate that the US22 genes M140 and M141 function both cooperatively and independently to regulate MCMV replication in a cell type-specific manner and, thus, to influence viral pathogenesis.  相似文献   

10.
11.
Several early genes of murine cytomegalovirus (MCMV) encode proteins that mediate immune evasion by interference with the major histocompatibility complex class I (MHC-I) pathway of antigen presentation to cytolytic T lymphocytes (CTL). Specifically, the m152 gene product gp37/40 causes retention of MHC-I molecules in the endoplasmic reticulum (ER)-Golgi intermediate compartment. Lack of MHC-I on the cell surface should activate natural killer (NK) cells recognizing the "missing self." The retention, however, is counteracted by the m04 early gene product gp34, which binds to folded MHC-I molecules in the ER and directs the complex to the cell surface. It was thus speculated that gp34 might serve to silence NK cells and thereby complete the immune evasion of MCMV. In light of these current views, we provide here results demonstrating an in vivo role for gp34 in protective antiviral immunity. We have identified an antigenic nonapeptide derived from gp34 and presented by the MHC-I molecule D(d). Besides the immunodominant immediate-early nonapeptide consisting of IE1 amino acids 168-176 (IE1(168-176)), the early nonapeptide m04(243-251) is the second antigenic peptide described for MCMV. The primary immune response to MCMV generates significant m04-specific CD8 T-cell memory. Upon adoptive transfer into immunodeficient recipients, an m04-specific CTL line controls MCMV infection with an efficacy comparable to that of an IE1-specific CTL line. Thus, gp34 is the first noted early protein of MCMV that escapes viral immune evasion mechanisms. These data document that MCMV is held in check by a redundance of protective CD8 T cells recognizing antigenic peptides in different phases of viral gene expression.  相似文献   

12.
The evolutionary survival of viruses relies on their ability to disseminate infectious progeny to sites of transmission. The capacity to subvert apoptosis is thought to be crucial for ensuring efficient viral replication in permissive cells, but its role in viral dissemination in vivo has not been considered. We show here that the murine cytomegalovirus (MCMV) m38.5 protein specifically counters the action of Bax. As predicted from our biochemical data, the capacity of m38.5 to inhibit apoptosis is only apparent in cells unable to activate Bak. Deletion of m38.5 resulted in an attenuated growth of MCMV in vitro. In vivo replication of the Deltam38.5 virus was not significantly impaired in visceral organs. However, m38.5 played a central role in protecting leukocytes from Bax-mediated apoptosis, thereby promoting viral dissemination to the salivary glands, the principal site of transmission. These results establish that in vivo MCMV replication induces the activation of Bax in leukocytes, but not other permissive cells, and that MCMV interferes with this process to attain maximum dissemination.  相似文献   

13.
The murine cytomegalovirus (MCMV) proteins encoded by US22 genes M139, M140, and M141 function, at least in part, to regulate replication of this virus in macrophages. Mutant MCMV having one or more of these genes deleted replicates poorly in macrophages in culture and in the macrophage-dense environment of the spleen. In this report, we demonstrate the existence of stable complexes formed by the products of all three of these US22 genes, as well as a complex composed of the products of M140 and M141. These complexes form in the absence of other viral proteins; however, the pM140/pM141 complex serves as a requisite binding partner for the M139 gene products. Products from all three genes colocalize to a perinuclear region of the cell juxtaposed to or within the cis-Golgi region but excluded from the trans-Golgi region. Interestingly, expression of pM141 redirects pM140 from its predominantly nuclear residence to the perinuclear, cytoplasmic locale where these US22 proteins apparently exist in complex. Thus, complexing of these nonessential, early MCMV proteins likely confers a function(s) independent of each individual protein and important for optimal replication of MCMV in its natural host.  相似文献   

14.
Zhan X  Lee M  Xiao J  Liu F 《Journal of virology》2000,74(16):7411-7421
A transposon derived from Escherichia coli Tn3 was introduced into the genome of murine cytomegalovirus (MCMV) to generate a pool of viral mutants, including two recombinant viruses that contained the transposon sequence within open reading frames m09 and M83. Our studies provide the first direct evidence to suggest that m09 is not essential for viral replication in mouse NIH 3T3 cells. Studies in cultured cells and in both BALB/c-Byj and CB17 severe combined immunodeficient (SCID) mice indicated that the transposon insertion is stable during viral propagation both in vitro and in vivo. Moreover, the virus that contained the insertion mutation in m09 exhibited a titer similar to that of the wild-type virus in the salivary glands, lungs, livers, spleens, and kidneys of both the BALB/c and SCID mice and was as virulent as the wild-type virus in killing the SCID mice when these animals were intraperitoneally infected with these viruses. These results suggest that m09 is dispensable for viral growth in these organs and that the presence of the transposon sequence in the viral genome does not significantly affect viral replication in vivo. In contrast, the virus that contained the insertion mutation in M83 exhibited a titer of at least 60-fold lower than that of the wild-type virus in the organs of the SCID mice and was attenuated in killing the SCID mice. These results demonstrate the utility of using the Tn3-based system as a mutagenesis approach for studying the function of MCMV genes in both immunocompetent and immunodeficient animals.  相似文献   

15.
Characterization of the human cytomegalovirus UL34 gene   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

16.
The human cytomegalovirus (HCMV) TRS1 and IRS1 genes block the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) and the consequent shutoff of cellular protein synthesis that occur during infection with vaccinia virus (VV) deleted of the double-stranded RNA binding protein gene E3L (VVDeltaE3L). To further define the underlying mechanism, we first evaluated the effect of pTRS1 on protein kinase R (PKR), the double-stranded RNA (dsRNA)-dependent eIF2alpha kinase. Immunoblot analyses revealed that pTRS1 expression in the context of a VVDeltaE3L recombinant decreased levels of PKR in the cytoplasm and increased its levels in the nucleus of infected cells, an effect not seen with wild-type VV or a VVDeltaE3L recombinant virus expressing E3L. This effect of pTRS1 was confirmed by visualizing the nuclear relocalization of PKR-EGFP expressed by transient transfection. PKR present in both the nuclear and cytoplasmic fractions was nonphosphorylated, indicating that it was unactivated when TRS1 was present. PKR also accumulated in the nucleus during HCMV infection as determined by indirect immunofluorescence and immunoblot analysis. Binding assays revealed that pTRS1 interacted with PKR in mammalian cells and in vitro. This interaction required the same carboxy-terminal region of pTRS1 that is necessary to rescue VVDeltaE3L replication in HeLa cells. The carboxy terminus of pIRS1 was also required for rescue of VVDeltaE3L and for mediating an interaction of pIRS1 with PKR. These results suggest that these HCMV genes directly interact with PKR and inhibit its activation by sequestering it in the nucleus, away from both its activator, cytoplasmic dsRNA, and its substrate, eIF2alpha.  相似文献   

17.
RNA silencing or interference (RNAi) is a gene regulation mechanism in eukaryotes that controls cell differentiation and developmental processes via expression of microRNAs. RNAi also serves as an innate antiviral defence response in plants, nematodes, and insects. This antiviral response is triggered by virus-specific double-stranded RNA molecules (dsRNAs) that are produced during infection. To overcome antiviral RNAi responses, many plant and insect viruses encode RNA silencing suppressors (RSSs) that enable them to replicate at higher titers. Recently, several human viruses were shown to encode RSSs, suggesting that RNAi also serves as an innate defence response in mammals. Here, we demonstrate that the Ebola virus VP35 protein is a suppressor of RNAi in mammalian cells and that its RSS activity is functionally equivalent to that of the HIV-1 Tat protein. We show that VP35 can replace HIV-1 Tat and thereby support the replication of a Tat-minus HIV-1 variant. The VP35 dsRNA-binding domain is required for this RSS activity. Vaccinia virus E3L protein and influenza A virus NS1 protein are also capable of replacing the HIV-1 Tat RSS function. These findings support the hypothesis that RNAi is part of the innate antiviral response in mammalian cells. Moreover, the results indicate that RSSs play a critical role in mammalian virus replication.  相似文献   

18.
Induction of apoptosis limits cytomegalovirus cross-species infection   总被引:8,自引:0,他引:8  
Jurak I  Brune W 《The EMBO journal》2006,25(11):2634-2642
Cross-species infections are responsible for the majority of emerging and re-emerging viral diseases. However, little is known about the mechanisms that restrict viruses to a certain host species, and the factors viruses need to cross the species barrier and replicate in a different host. Cytomegaloviruses (CMVs) are representatives of the beta-herpesviruses that are highly species specific. They replicate only in cells of their own or a closely related species. In this study, the molecular mechanism underlying the cytomegalovirus species specificity was investigated. We show that infection of human cells with the murine cytomegalovirus (MCMV) triggers the intrinsic apoptosis pathway involving caspase-9 activation. MCMV can break the species barrier and replicate in human cells if apoptosis is blocked by Bcl-2 or a functionally analogous protein. A single gene of the human cytomegalovirus encoding a mitochondrial inhibitor of apoptosis is sufficient to allow MCMV replication in human cells. Moreover, the same principle facilitates replication of the rat cytomegalovirus in human cells. Thus, induction of apoptosis serves as an innate immune defense to inhibit cross-species infections of rodent CMVs.  相似文献   

19.
During infection with human cytomegalovirus (HCMV), cellular protein synthesis continues even as viral proteins are being synthesized in abundance. Thus, HCMV may have a mechanism for counteracting host cell antiviral pathways that act by shutting off translation. Consistent with this view, HCMV infection of human fibroblasts rescues the replication of a vaccinia virus mutant lacking the double-stranded RNA-binding protein gene E3L (VVdeltaE3L). HCMV also prevents the phosphorylation of the eukaryotic translation initiation factor eIF-2alpha, the activation of RNase L, and the shutoff of viral and cellular protein synthesis that otherwise result from VVdeltaE3L infection. To identify the HCMV gene(s) responsible for these effects, we prepared a library of VVdeltaE3L recombinants containing HCMV genomic fragments. By infecting nonpermissive cells with this library and screening for VV gene expression and replication, we isolated a virus containing a 2.8-kb HCMV fragment that rescues replication of VVdeltaE3L. The fragment comprises the 3' end of the J1S open reading frame through the entire TRS1 gene. Analyses of additional VVdeltaE3L recombinants revealed that the protein encoded by TRS1, pTRS1, as well as the closely related IRS1 gene, rescues VVdeltaE3L replication and prevent the shutoff of protein synthesis, the phosphorylation of eIF-2alpha, and activation of RNase L. These results demonstrate that TRS1 and IRS1 are able to counteract critical host cell antiviral response pathways.  相似文献   

20.
The ubiquitin-like modifier ISG15 is one of the most predominant proteins induced by type I interferons (IFN). In this study, murine embryo fibroblast (MEFs) and mice lacking the gene were used to demonstrate a novel role of ISG15 as a host defense molecule against vaccinia virus (VACV) infection. In MEFs, the growth of replication competent Western Reserve (WR) VACV strain was affected by the absence of ISG15, but in addition, virus lacking E3 protein (VVDeltaE3L) that is unable to grow in ISG15+/+ cells replicated in ISG15-deficient cells. Inhibiting ISG15 with siRNA or promoting its expression in ISG15-/- cells with a lentivirus vector showed that VACV replication was controlled by ISG15. Immunoprecipitation analysis revealed that E3 binds ISG15 through its C-terminal domain. The VACV antiviral action of ISG15 and its interaction with E3 are events independent of PKR (double-stranded RNA-dependent protein kinase). In mice lacking ISG15, infection with VVDeltaE3L caused significant disease and mortality, an effect not observed in VVDeltaE3L-infected ISG15+/+ mice. Pathogenesis in ISG15-deficient mice infected with VVDeltaE3L or with an E3L deletion mutant virus lacking the C-terminal domain triggered an enhanced inflammatory response in the lungs compared with ISG15+/+-infected mice. These findings showed an anti-VACV function of ISG15, with the virus E3 protein suppressing the action of the ISG15 antiviral factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号