首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Domains are modules within proteins that can fold and function independently and are evolutionarily conserved. Here we compared the usage and distribution of protein domain families in the free-living proteomes of Archaea, Bacteria and Eukarya and reconstructed species phylogenies while tracing the history of domain emergence and loss in proteomes. We show that both gains and losses of domains occurred frequently during proteome evolution. The rate of domain discovery increased approximately linearly in evolutionary time. Remarkably, gains generally outnumbered losses and the gain-to-loss ratios were much higher in akaryotes compared to eukaryotes. Functional annotations of domain families revealed that both Archaea and Bacteria gained and lost metabolic capabilities during the course of evolution while Eukarya acquired a number of diverse molecular functions including those involved in extracellular processes, immunological mechanisms, and cell regulation. Results also highlighted significant contemporary sharing of informational enzymes between Archaea and Eukarya and metabolic enzymes between Bacteria and Eukarya. Finally, the analysis provided useful insights into the evolution of species. The archaeal superkingdom appeared first in evolution by gradual loss of ancestral domains, bacterial lineages were the first to gain superkingdom-specific domains, and eukaryotes (likely) originated when an expanding proto-eukaryotic stem lineage gained organelles through endosymbiosis of already diversified bacterial lineages. The evolutionary dynamics of domain families in proteomes and the increasing number of domain gains is predicted to redefine the persistence strategies of organisms in superkingdoms, influence the make up of molecular functions, and enhance organismal complexity by the generation of new domain architectures. This dynamics highlights ongoing secondary evolutionary adaptations in akaryotic microbes, especially Archaea.  相似文献   

2.
Homologs of the Imp4 protein, a component specific to the eukaryotic U3 snoRNP complex, have been found in all archaeal genomes. The archaeal and eukaryotic Imp4 proteins that are related to four other protein families, the Imp4-like, the SSF1 homologs and two sets of hypothetical proteins, are characterized by the Imp4 signature pattern. These findings, together with the presence of other snoRNPs homologs in Archaea, provide evidence for similar RNA processing and folding in Eukarya and Archaea.  相似文献   

3.
Protein translocation begins with the efficient targeting of secreted and membrane proteins to complexes embedded within the membrane. In Eukarya and Bacteria, this is achieved through the interaction of the signal recognition particle (SRP) with the nascent polypeptide chain. In Archaea, homologs of eukaryal and bacterial SRP-mediated translocation pathway components have been identified. Biochemical analysis has revealed that although the archaeal system incorporates various facets of the eukaryal and bacterial targeting systems, numerous aspects of the archaeal system are unique to this domain of life. Moreover, it is becoming increasingly clear that elucidation of the archaeal SRP pathway will provide answers to basic questions about protein targeting that cannot be obtained from examination of eukaryal or bacterial models. In this review, recent data regarding the molecular composition, functional behavior and evolutionary significance of the archaeal signal recognition particle pathway are discussed.  相似文献   

4.
The ubiquity of mechanosensitive (MS) channels triggered a search for their functional homologs in Archaea. Archaeal MS channels were found to share a common ancestral origin with bacterial MS channels of large and small conductance, and sequence homology with several proteins that most likely function as MS ion channels in prokaryotic and eukaryotic cell-walled organisms. Although bacterial and archaeal MS channels differ in conductive and mechanosensitive properties, they share similar gating mechanisms triggered by mechanical force transmitted via the lipid bilayer. In this review, we suggest that MS channels of Archaea can bridge the evolutionary gap between bacterial and eukaryotic MS channels, and that MS channels of Bacteria, Archaea and cell-walled Eukarya may serve similar physiological functions and may have evolved to protect the fragile cellular membranes in these organisms from excessive dilation and rupture upon osmotic challenge.  相似文献   

5.
Amino acid sequence alignments of orthologous ribosomal proteins found in Bacteria, Archaea, and Eukaryota display, relative to one another, an unusual segment or block structure, with major evolutionary implications. Within each of the prokaryotic phylodomains the sequences exhibit substantial similarity, but cross-domain alignments break up into (a) universal blocks (conserved in both phylodomains), (b) bacterial blocks (unalignable with any archaeal counterparts), and (c) archaeal blocks (unalignable with any bacterial counterparts). Sequences of those eukaryotic cytoplasmic riboproteins that have orthologs in both Bacteria and Archaea, exclusively match the archaeal block structure. The distinct blocks do not correlate consistently with any identifiable functional or structural feature including RNA and protein contacts. This phylodomain-specific block pattern also exists in a number of other proteins associated with protein synthesis, but not among enzymes of intermediary metabolism. While the universal blocks imply that modern Bacteria and Archaea (as defined by their translational machinery) clearly have had a common ancestor, the phylodomain-specific blocks imply that these two groups derive from single, phylodomain-specific types that came into existence at some point long after that common ancestor. The simplest explanation for this pattern would be a major evolutionary bottleneck, or other scenario that drastically limited the progenitors of modern prokaryotic diversity at a time considerably after the evolution of a fully functional translation apparatus. The vast range of habitats and metabolisms that prokaryotes occupy today would thus reflect divergent evolution after such a restricting event. Interestingly, phylogenetic analysis places the origin of eukaryotes at about the same time and shows a closer relationship of the eukaryotic ribosome-associated proteins to crenarchaeal rather than euryarchaeal counterparts.  相似文献   

6.
The archaeal origins of the eukaryotic translational system   总被引:1,自引:0,他引:1  
Among the 78 eukaryotic ribosomal proteins, eleven are specific to Eukarya, 33 are common only to Archaea and Eukarya and 34 are homologous (at least in part) to those of both Bacteria and Archaea. Several other translational proteins are common only to Eukarya and Archaea (e.g., IF2a, SRP19, etc.), whereas others are shared by the three phyla (e.g., EFTu/EF1A and SRP54). Although this and other analyses strongly support an archaeal origin for a substantial fraction of the eukaryotic translational machinery, especially the ribosomal proteins, there have been numerous unique and ubiquitous additions to the eukaryotic translational system besides the 11 unique eukaryotic ribosomal proteins. These include peptide additions to most of the 67 archaeal homolog proteins, rRNA insertions, the 5.8S RNA and the Alu extension to the SRP RNA. Our comparative analysis of these and other eukaryotic features among the three different cellular phylodomains supports the idea that an archaeal translational system was most likely incorporated by means of endosymbiosis into a host cell that was neither bacterial nor archaeal in any modern sense. Phylogenetic analyses provide support for the timing of this acquisition coinciding with an ancient bottleneck in prokaryotic diversity.  相似文献   

7.
Although archaeal genomes encode proteins similar to eukaryotic replication factors, the hyperthermophilic archaeon Pyrococcus abyssi replicates its circular chromosome at a high rate from a single origin (oriC) as in Bacteria. In further elucidating the mechanism of archaeal DNA replication, we have studied the elongation step of DNA replication in vivo. We have detected, in two main archaeal phyla, short RNA-primed replication intermediates whose structure and length are very similar to those of eukaryotic Okazaki fragments. Mapping of replication initiation points further showed that discontinuous DNA replication in P. abyssi starts at a well-defined site within the oriC recently identified in this hyperthermophile. Short Okazaki fragments and a high replication speed imply a very efficient turnover of Okazaki fragments in Archaea. Archaea therefore have a unique replication system showing mechanistic similarities to both Bacteria and Eukarya.  相似文献   

8.
古生菌是一类区别于真细菌和真核生物的第三域生命形式 ,转录是生物体遗传信息传递系统中的一个中心环节。近年来研究结果表明 ,古生菌的转录系统具有真细菌和真核生物的融合特征 :古生菌的基本转录装置包括RNA聚合酶、基本转录因子、启动子元件等与真核生物相似 ;而古生菌的转录调控机制却更加类似于真细菌 ,在古生菌中发现并鉴定了许多类似于真细菌的转录调控蛋白。另外古生菌还具有某些独特的转录调控方式  相似文献   

9.
Archaea, along with Bacteria and Eukarya, are the three domains of life. In all living cells, chromatin proteins serve a crucial role in maintaining the integrity of the structure and function of the genome. An array of small, abundant and basic DNA-binding proteins, considered candidates for chromatin proteins, has been isolated from the Euryarchaeota and the Crenarchaeota, the two major phyla in Archaea. While most euryarchaea encode proteins resembling eukaryotic histones, crenarchaea appear to synthesize a number of unique DNA-binding proteins likely involved in chromosomal organization. Several of these proteins (e.g., archaeal histones, Sac10b homologs, Sul7d, Cren7, CC1, etc.) have been extensively studied. However, whether they are chromatin proteins and how they function in vivo remain to be fully understood. Future investigation of archaeal chromatin proteins will lead to a better understanding of chromosomal organization and gene expression in Archaea and provide valuable information on the evolution of DNA packaging in cellular life.  相似文献   

10.
Archaeal DNA replication and repair   总被引:1,自引:0,他引:1  
Since the first archaeal genome was sequenced, much attention has been focused on the study of these unique microorganisms. We have learnt that although archaeal DNA metabolic processes (replication, recombination and repair) are more similar to the metabolic processes of Eukarya than those of Bacteria, Archaea are not simply 'mini Eukarya'. They are, in fact, a mosaic of the eukaryal and bacterial systems that also possess archaeal-specific features. Recent biochemical and structural studies of the proteins that participate in archaeal DNA replication and repair have increased our understanding of these processes.  相似文献   

11.
Zinc is one of the metal ions essential for life, as it is required for the proper functioning of a large number of proteins. Despite its importance, the annotation of zinc-binding proteins in gene banks or protein domain databases still has significant room for improvement. In the present work, we compiled a list of known zinc-binding protein domains and of known zinc-binding sequence motifs (zinc-binding patterns), and then used them jointly to analyze the proteome of 57 different organisms to obtain an overview of zinc usage by archaeal, bacterial, and eukaryotic organisms. Zinc-binding proteins are an abundant fraction of these proteomes, ranging between 4% and 10%. The number of zinc-binding proteins correlates linearly with the total number of proteins encoded by the genome of an organism, but the proportionality constant of Eukaryota (8.8%) is significantly higher than that observed in Bacteria and Archaea (from 5% to 6%). Most of this enrichment is due to the larger portfolio of regulatory proteins in Eukaryota.  相似文献   

12.
RNA silencing plays crucial roles in both bacteria and eukaryotes, yet its machinery appears to differ in these two kingdoms. A couple of Argonaute protein homologs have been reported in some archaeal species in recent years. As Argonaute protein is the key component of eukaryotic RNA silencing pathways, such findings suggested the possibility of existence of eukaryotic RNA silencing like pathways in Archaea, which present the life forms between prokaryotes and eukaryotes. To further explore such hypothesis, we systematically screened 71 fully sequenced archaeal genomes, and identified some proteins containing homologous regions to the functional domains of eukaryotie RNA silencing pathway key proteins. The phylogenetic relationships of these proteins were analyzed. The conserved time-tional amino acids between archaeal and eukaryotic Piwi domains suggested their functional similarity. Our results provide new clues to the evolution of RNA silencing pathways.  相似文献   

13.
Protein translocation across the prokaryotic plasma membrane occurs at the translocon, an evolutionarily conserved membrane-embedded proteinaceous complex. Together with the core components SecYE, prokaryotic translocons also contain auxilliary proteins, such as SecDF. Alignment of bacterial and archaeal SecDF protein sequences reveals the presence of a similar number of homologous regions within each protein. Moreover, the conserved sequence domains in the archaeal proteins are located in similar positions as their bacterial counterparts. When these domains are, however, compared along Bacteria-Archaea lines, a much lower degree of similarity is detected. In Bacteria, SecDF are thought to modulate the membrane association of SecA, the ATPase that provides the driving force for bacterial protein secretion. As no archaeal version of SecA has been detected, the sequence differences reported here may reflect functional differences between bacterial and archaeal SecDF proteins, and by extension, between the bacterial and archaeal protein translocation processes. Moreover, the apparent absence of SecDF in several completed archaeal genomes suggests that differences may exist in the process of protein translocation within the archaeal domain itself.  相似文献   

14.
15.
A comprehensive investigation of ribosomal genes in complete genomes from 66 different species allows us to address the distribution of r-proteins between and within the three primary domains. Thirty-four r-protein families are represented in all domains but 33 families are specific to Archaea and Eucarya, providing evidence for specialisation at an early stage of evolution between the bacterial lineage and the lineage leading to Archaea and Eukaryotes. With only one specific r-protein, the archaeal ribosome appears to be a small-scale model of the eukaryotic one in terms of protein composition. However, the mechanism of evolution of the protein component of the ribosome appears dramatically different in Archaea. In Bacteria and Eucarya, a restricted number of ribosomal genes can be lost with a bias toward losses in intracellular pathogens. In Archaea, losses implicate 15% of the ribosomal genes revealing an unexpected plasticity of the translation apparatus and the pattern of gene losses indicates a progressive elimination of ribosomal genes in the course of archaeal evolution. This first documented case of reductive evolution at the domain scale provides a new framework for discussing the shape of the universal tree of life and the selective forces directing the evolution of prokaryotes.  相似文献   

16.
17.
Ribosomes have a characteristic protuberance termed the stalk, which is indispensable for ribosomal function. The ribosomal stalk has long been believed to be a pentameric protein complex composed of two sets of protein dimers, L12-L12, bound to a single anchor protein, although ribosomes carrying three L12 dimers were recently discovered in a few thermophilic bacteria. Here we have characterized the stalk complex from Pyrococcus horikoshii, a thermophilic species of Archaea. This complex is known to be composed of proteins homologous to eukaryotic counterparts rather than bacterial ones. In truncation experiments of the C-terminal regions of the anchor protein Ph-P0, we surprisingly observed three Ph-L12 dimers bound to the C-terminal half of Ph-P0, and the binding site for the third dimer was unique to the archaeal homologs. The stoichiometry of the heptameric complex Ph-P0(Ph-L12)(2)(Ph-L12)(2)(Ph-L12)(2) was confirmed by mass spectrometry of the intact complex. In functional tests, ribosomes carrying a single Ph-L12 dimer had significant activity, but the addition of the second and third dimers increased the activity. A bioinformatics analysis revealed the evidence that ribosomes from all archaeal and also from many bacterial organisms may contain a heptameric complex at the stalk, whereas eukaryotic ribosomes seem to contain exclusively a pentameric stalk complex, thus modifying our view of the stalk structure significantly.  相似文献   

18.
The high-affinity cohesin–dockerin interaction was originally discovered as modular components, which mediate the assembly of the various subunits of the multienzyme cellulosome complex that characterizes some cellulolytic bacteria. Until recently, the presence of cohesins and dockerins within a bacterial proteome was considered a definitive signature of a cellulosome-producing bacterium. Widespread genome sequencing has since revealed a wealth of putative cohesin- and dockerin-containing proteins in Bacteria, Archaea, and in primitive eukaryotes. The newly identified modules appear to serve diverse functions that are clearly distinct from the classical cellulosome archetype, and the vast majority of parent proteins are not predicted glycoside hydrolases. In most cases, only a few such genes have been identified in a given microorganism, which encode proteins containing but a single cohesin and/or dockerin. In some cases, one or the other module appears to be missing from a given species, and in other cases both modules occur within the same protein. This review provides a bioinformatics-based survey of the current status of cohesin- and dockerin-like sequences in species from the Bacteria, Archaea, and Eukarya. Surprisingly, many identified modules and their parent proteins are clearly unrelated to cellulosomes. The cellulosome paradigm may thus be the exception rather than the rule for bacterial, archaeal, and eukaryotic employment of cohesin and dockerin modules.  相似文献   

19.
It is becoming increasingly clear that similarities exist in the manner in which extracytoplasmic proteins are targeted to complexes responsible for translocating these proteins across membranes in each of the three domains of life. In Eukarya and Bacteria, the signal recognition particle (SRP) directs nascent polypeptides to membrane-embedded translocation sites. In Archaea, the SRP protein targeting pathway apparently represents an intermediate between the bacterial and eukaryal systems. Understanding the archaeal SRP pathway could therefore reveal universal aspects of targeting not detected in current comparisons of the eukaryal and bacterial systems while possibly identifying aspects of the process either not previously reported or unique to Archaea.  相似文献   

20.
It is desirable to estimate a tree of life, a species tree including all available species in the 3 superkingdoms, Archaea, Bacteria, and Eukaryota, using not a limited number of genes but full-scale genome information. Here, we report a new method for constructing a tree of life based on protein domain organizations, that is, sequential order of domains in a protein, of all proteins detected in a genome of an organism. The new method is free from the identification of orthologous gene sets and therefore does not require the burdensome and error-prone computation. By pairwise comparisons of the repertoires of protein domain organizations of 17 archaeal, 136 bacterial, and 14 eukaryotic organisms, we computed evolutionary distances among them and constructed a tree of life. Our tree shows monophyly in Archaea, Bacteria, and Eukaryota and then monophyly in each of eukaryotic kingdoms and in most bacterial phyla. In addition, the branching pattern of the bacterial phyla in our tree is consistent with the widely accepted bacterial taxonomy and is very close to other genome-based trees. A couple of inconsistent aspects between the traditional trees and the genome-based trees including ours, however, would perhaps urge to revise the conventional view, particularly on the phylogenetic positions of hyperthermophiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号