首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
从罗布麻植物生长特点和纤维利用出发,建议我国罗布麻使用“罗布红麻”和“罗布白麻”以区别罗布麻的2个有生产意义的种。  相似文献   

2.
为了优化天麻素的提取工艺,本研究采用超声法提取天麻素,以天麻素含量为指标,在单因素筛选基础上,采用正交试验优化提取工艺,选择料液比、提取次数和提取时间3个影响因素,每个因素3个水平进行正交试验。结果表明,最优提取工艺组合为:提取时间20min、料液比1∶15和提取次数2次;按照此工艺平行制备3批样品,天麻素的提取率为(0.339±0.13)%。  相似文献   

3.
以甘肃庆阳的朝天椒为材料,采用超声波辅助法通过单因素和正交试验设计,以辣椒红素提取率为指标,确定辣椒红素最佳提取工艺为:浸提温度40℃、浸提时间30min、超声波功率400W、料液比1∶12,在该工艺条件下辣椒红素的提取率可达6.65%。  相似文献   

4.
在单因素实验基础上,采用正交设计和方差分析,研究超声时间、提取温度、料液比对山茱萸多糖提取得率的影响,以山茱萸多糖提取得率作为评价指标,筛选出最佳提取条件为:超声波预处理40 min,提取温度80℃,料液比1∶30。在此条件下,山茱萸多糖平均提取得率为5.29%;超声法提取与传统热水醇沉法比较,山茱萸多糖提取得率无显著性差异,但耗能较少,提取效率更高。超声波辅助提取法可作为山茱萸多糖提取的一种有效方法。  相似文献   

5.
优选芍甘颗粒的提取工艺及制备工艺。方法:正交试验法,以芍药苷及出膏率为综合评价指标,优选提取工艺。从吸湿率、粒度、含水量、溶化性等多指标综合考察各种赋形剂,优选赋形剂及配伍比例制备颗粒剂。结果:最佳工艺为12倍量水煎煮3次,每次1小时。提取液浓缩、干燥后,与糊精(5:1)与甜蜜素(1:0.02)混匀,乙醇(95%)润湿制粒。  相似文献   

6.
鸭毛水解制备复合氨基酸新工艺的研究   总被引:5,自引:0,他引:5  
采用正交试验方法,对鸭毛水解制备复合氨基酸工艺条件进行优选,试验结果表明,鸭毛水解的最佳工艺条件为:水解时间10小时,反应温度100℃,盐酸浓度为4摩尔/升。  相似文献   

7.
8.
为探索高效、低污染的长春花中文多灵、长春质碱、长春新碱和长春碱的提取工艺,进行了超声波-甲醇法提取工艺条件的优化研究。结果表明:在单因素试验基础上,通过正交试验表明,超声波-甲醇法提取文多灵和长春质碱的最佳工艺条件为:提取溶剂:甲醇(pH4.0);料液比:1∶15;提取温度:45℃,提取时间:180 min,提取频率:59 KHz;文多灵和长春质碱平均得率为0.16%,0.08%。  相似文献   

9.
目的:优选参附丹强心颗粒的提取工艺。方法:采用正交试验,以出膏率和丹参素钠含量考察水提工艺条件。结果:水提取的最佳工艺为药材用8倍量水提取3次,每次3h。加入乙醇使含醇量达70%,搅匀,静置24小时,滤过,回收乙醇至无醇味。3批验证结果,出膏率18.81%,丹参素钠含量23.06mg/g。结论:上述实验结果可作为参附丹强心颗粒的提取工艺。  相似文献   

10.
为了进一步提高大枣多糖的提取效率,本文通过正交试验优化了超声波法提取大枣多糖的工艺条件。考察的因素包括料液比、超声功率、超声时间和浸提温度。结果显示超声波法提取大枣多糖的最佳提取工艺条件为:料液比1∶30、超声功率80W、超声时间10min,浸提温度80℃。在此工艺条件下大枣多糖的提取率达到6.97%。该工艺条件下提取率较高,因此适合于提取大枣中的多糖类化合物。  相似文献   

11.
汽爆秸秆漆酶协同作用提取木质素   总被引:2,自引:0,他引:2  
组分分离是秸秆炼制的关键技术。本文建立了汽爆耦合漆酶协同作用工艺,研究其对秸秆物理形态、化学组成以及木质素碱提取过程的影响。研究结果表明汽爆破坏秸秆表面致密结构,提高比表面积,促进漆酶对秸秆木质素的氧化作用;红外分析表明,漆酶破坏了汽爆秸秆中半纤维素酯键,且愈创木基吸收峰减弱,漆酶削弱了木质素与纤维素间相互作用;汽爆漆酶协同作用后的秸秆木质素提取率提高约20%(70℃,120 min)。Nuclei Growth模型分析温和条件下秸秆木质素提取过程,动力学结果表明,汽爆漆酶协同预处理增加了汽爆秸秆木质素碱提过程中反应起始作用位点,并提高了该过程对温度的敏感性。汽爆-漆酶协同预处理是一种有效的分离木质素的方法,将在木质纤维素原料的生物炼制中发挥重要作用。  相似文献   

12.
研究蒸汽爆破预处理对沙柳原料酶解效果的影响,通过响应曲面实验设计法优化蒸汽爆破处理沙柳原料的酶解工艺。结果表明,蒸汽爆破预处理沙柳原料的最佳蒸汽爆破处理条件:压力3.5 MPa、维压时间300 s; 蒸汽爆破最佳酶解条件:pH 4.8、温度53.5 ℃、 每克底物酶加量29.8 FPU。在最优条件下,蒸汽爆破处理沙柳原料的酶解率可以达到最大值87.92%,并验证了数学模型的有效性,试验结果表明蒸汽爆破预处理可以有效提高沙柳原料的水解率。  相似文献   

13.
以稀酸蒸爆的玉米秸秆为研究对象,考察直接水洗、Ca(OH)2、NaOH、氨水中和物料至pH 5,在固液比1∶10、酶添加量为每克纤维素14 U(滤纸酶活)的酶解条件下对纤维素转化率的影响。结果表明:水洗、Ca(OH)2、NaOH、氨水中和物料酶解72 h后,纤维素转化率分别为91.7%、80.7%、83.1%及81.7%。同时对影响纤维素酶解效率的各种因素进行了探讨。从综合成本及后续发酵过程考虑,用氨水中和稀酸蒸爆物料更适合于工业化生产。  相似文献   

14.
蒸汽爆破和微生物酶解处理对剑麻纤维结构的影响   总被引:1,自引:0,他引:1  
张兰兰  郝再彬  李洋  黄斌 《广西植物》2011,31(2):270-274
将蒸汽爆破和微生物酶解两种方法处理的剑麻纤维与对照进行了比较,利用扫描电镜(SEM)、红外光谱(IR)和热性能分析等仪器对纤维微观表面结构、基团及其热稳定性进行了分析,同时对化学组分、直径、回潮率、含水率、耐碱性和抗拉强度等也进行了研究.结果表明:蒸汽爆破对剑麻纤维中的半纤维素组分影响较大,但在红外光谱中并未形成新的基...  相似文献   

15.
Solubilization of domestic household waste through steam explosion with subsequent ethanol production by the microbial saccharification and fermentation of the exploded product was studied. The effects of steam explosion on the changes of the density, viscosity, pH, and amounts of extractive components in artificial household waste were determined. The composition of artificial waste used was similar to leftover waste discharged from a typical home in Japan. Consecutive microbial saccharification and fermentation, and simultaneous microbial saccharification and fermentation of the steam-exploded product were attempted usingAspergillus awamori, Trichoderma viride, andSaccharomyces cerevisiae, the ethanol yields of each process were compared. The highest ethanol yield was obtained with simultaneous microbial saccharification and fermentation of exploded product at a steam pressure of 2 MPa and a steaming time of 3 min.  相似文献   

16.
The effects of consecutive treatments by a lignin-degrading fungus Phanerochaete chrysosporium and by steam explosion for the enzymatic saccharification of plant biomass were studied experimentally, and the optimal operational conditions for obtaining the maximum saccharification were evaluated. Beech wood-meal was treated by the fungus for 98 days and then by high steam temperatures of 170-230 degrees C with steaming times of 0-10 min. The treatment of the wood-meal by fungus prior to steam explosion enhanced the saccharification of wood-meal. The treated wood-meal was separated into holo-cellulose, water soluble material, methanol soluble lignin, and Klason lignin. The saccharification decreased linearly with the increase in the amount of Klason lignin. It was estimated by the equation for the saccharification of exploded wood-meal expressed as a function of steam temperature and steaming time that the maximum saccharification of wood-meal was obtained by consecutive treatments such as fungal treatment for 28 days and then steam explosion at a steam temperature of 215 degrees C and a steaming time of 6.5 min. (c) 1995 John Wiley & Sons, Inc.  相似文献   

17.
Lignocellulosic biomass is the most promising feedstock for biofuels production. To enhance the efficiency of enzymatic hydrolysis, lignocellulosics needs to be pretreated to lower their recalcitrance. SO2‐catalyzed steam explosion is an efficient and relatively cost‐efficient pretreatment method for softwood. This work investigates the effects of steam explosion severity on the digestibility, accessibility, and crystallinity of Loblolly pine. Higher severity was found to increase the accessibility of the feedstock while also promoting nonselective degradation of carbohydrates. The adsorption behavior of Celluclast® enzymes on steam‐exploded Loblolly pine (SELP) can be described by a Langmuir isotherm. Cellulose crystallinity was found to first increase and then decrease with increasing pretreatment severity. A linear relationship between initial hydrolysis rates and crystallinity index (CrI) of pretreated Loblolly pine was found; moreover, a strong correlation between X‐ray diffraction intensities and initial rates was confirmed. The findings demonstrate the significance of CrI in enzymatic hydrolysis of pretreated lignocellulosic biomass. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:909–916, 2013  相似文献   

18.
Most preservative-treated wood produced and consumed in the United States is treated with toxic inorganic compounds containing copper, chromium, and arsenic. Because chromated copper arsenate (CCA) is fixed to the wood, CCA-treated wood has not been considered toxic or hazardous and it is currently disposed of in approved landfills. Growing public concern about environmental contamination from treated wood combined with the removal of greater quantities of CCA-treated wood from service have presented a disposal challenge for this fiber source. In this study, CCA-treated wood was processed by acid extraction, steam explosion, and bacterial fermentation and evaluated for removal of copper, chromium, and arsenic. Copper was the easiest to remove by these treatments and chromium the most resistant to removal. Exposing CCA-treated wood to steady-state bacterial growth by continuous culture with Bacillus licheniformis CC01 did not enhance removal of CCA components compared to standard mixed culture when acid extraction preceded bacterial fermentation. Nor did steam explosion, alone or in conjunction with acid extraction and bacterial fermentation, enhance removal of CCA components; the chromium and arsenic components resisted removal. Grinding CCA-treated wood chips into 20-mesh sawdust provided greater access to and removal of CCA components by all processes. However, grinding the chips was unnecessary if they were treated with acid prior to bacterial fermentation. Extraction with oxalic acid as a precursor to bacterial fermentation with B. licheniformis CC01 removed 90% copper (CuO), 80% chromium (CrO3), and 100% arsenic (As2O5) from treated chips. The combination of acid extraction and bacterial fermentation removed 80–100% of these metals from CCA-treated wood. Received 15 December 1997/ Accepted in revised form 08 March 1998  相似文献   

19.
Talarico  L.  Guida  G.  Murano  E.  Piacquadio  A. M. 《Hydrobiologia》1990,(1):597-601
Ultrastructural (SEM, TEM) and cytochemical organization of the skeletal and matrix polysaccharides of fresh and steam exploded Gracilaria verrucosa thalli were compared to chemical analyses of the agar extracted after this treatment. Upon steam explosion, surface microfractures appeared in limited areas of the cortex. SEM preparations indicated that apical and medullary regions were the most affected, resulting in detachment of adjacent cells. In TEM sections, the cuticle of the surface layer exhibited deeply altered zones with a spongy appearance. In the cytoplasm starch grains were disrupted. The skeletal component of the immediate cell wall was maintained with a different organization of the microfibrils and was positive to periodic acid-thiosemicarbazide-silver proteinate. The intercellular matrix contained granules and fibrils and lacked a ruthenium red reaction. These results are consistent with lower sulfate-ester and higher glucose contents detected in agars extracted using steam explosion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号