首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
黄土丘陵区退耕还林地刺槐人工林碳储量及分配规律   总被引:4,自引:0,他引:4  
申家朋  张文辉 《生态学报》2014,34(10):2746-2754
采用样地调查与生物量实测方法,研究了甘肃黄土丘陵区不同坡向(阳坡、阴坡)和退耕年限(退耕5a、8a和11a)刺槐人工林乔木不同器官、灌草层、枯落物层和土壤层的碳含量,以及刺槐人工林乔木层、灌草层、枯落物层和土壤层碳储量及其分配特征。结果表明:刺槐不同器官碳含量均值变化范围为43.02%—50.89%%,从高到低排列顺序为树干细枝中枝粗枝叶根桩大根粗根小根中根树皮细根;灌木层碳含量为35.76%—42.74%;草本层碳含量为35.83%—43.64%;枯落物层碳含量为39.55%—41.77%;土壤层(0—100 cm)碳含量均值变化范围0.22%—0.99%,随退耕年限增加而增大,土壤深度的增加而逐渐下降。刺槐人工林生态系统碳库空间分布序列为土壤层(0—100 cm)植被层枯落物层。阳坡和阴坡退耕5a、8a、11a刺槐林生态系统碳储量分别为52.52、58.93、73.72 t/hm2和49.95、61.83、79.03 t/hm2。退耕年限和坡向是影响刺槐人工林碳储量增加的主要因素。刺槐人工林具有良好的固碳效益,是黄土丘陵区的理想树种。  相似文献   

2.
黄土丘陵区人工林地土壤肥力评价   总被引:24,自引:2,他引:22  
就黄土丘陵区人工林地土壤肥力状况进行了综合评价。结果表明,全氮、碱解氮和有机质是黄土丘陵区人工林土壤主要的肥力指标,其含量能更好地反映土壤肥力状况。利用年限小于10年的土壤肥力处于很低的水平,利用年限在10~20年间的土壤肥力处于较低水平,利用年限在20年以上的土壤肥力接近中等水平。黄土丘陵区人工林土壤养分中除全磷和速效钾外,其它养分含量均偏低,该区人工林土壤肥力总体水平偏低。  相似文献   

3.
以黄土高原丘陵区主要退耕还林树种油松为研究对象,对甘肃省庆阳市合水县采用样地调查与生物量实测方法,分析不同坡向(阳坡、阴坡)及退耕年限(退耕6年、9年和12年)油松人工林的乔木不同器官、灌草层、枯落物层和土壤层的碳含量,以及油松人工林乔木层、灌草层、枯落物层和土壤层碳储量及其分配特征,探讨甘肃黄土高原丘陵区生态林的固碳作用。结果表明:(1)油松不同器官碳含量为48.15%~53.90%,各器官碳含量大小为树干>叶>细枝>粗枝>根桩>粗根>树皮>大根>中根>小根>细根>球果;灌木层碳含量为茎>叶>根;草本层碳含量为地上部分>地下部分。(2)油松人工林的枯落物层碳含量为未分解层大于半分解层。(3)0~100 cm土壤层的碳含量随退耕年限增加而增大,随土壤深度的增加而下降;0~10 cm、10~20 cm土壤层不同坡向间碳含量差异显著。(4)阳坡和阴坡退耕6年、9年和12年油松林总碳储量分别为42.90、50.50、59.22 t·hm-2和45.08、53.77、65.70 t·hm-2。研究认为,黄土高原丘陵区阳坡和阴坡均适宜油松林发挥固碳效益,且阴坡要优于阳坡,是甘肃黄土高原丘陵区的理想树种。  相似文献   

4.
黄土丘陵区是中华文明的起源地,而原有植被却遭受严重破坏。因此,自20世纪70年代末开始的三北防护林工程、退耕还林工程和天然林保护工程等大型生态恢复工程,在本区均有大面积分布。这些工程已经对生态恢复起到重要作用,并将对全球碳素循环起到积极作用。以黄土丘陵区的主要造林树种--油松(Pinus tabulaeformis Carr.)和刺槐(Robinia pseudoacacia L.)为研究对象,共设置样方28个,测定森林乔木、灌木、草本生物量及凋落物碳储量;钻取并分析土样516份,获得土壤有机碳储量。结合文献数据和农田碳储量数据,建立0-86年生油松林和0-56年生刺槐纯林生态系统碳储量-林龄序列;在此基础上分析造林对生态系统碳储量和固碳潜力的影响。结果表明,造林后的油松林和刺槐林生态系统的植被、凋落物及土壤碳储量逐渐增加;在没有人为干扰的情况下,19、27、36、86年生油松林生态系统碳储量分别为70.76、143.43、167.30、271.23-332.26 Mg/hm2;8、17、39年生刺槐林生态系统碳储量分别为80.37、94.08、140.77 Mg/hm2。受间伐干扰、45\,52年生油松林生态系统碳储量分别为136.42\,168.56 Mg/hm2,相对于没有人为干扰的油松林,其植被碳储量明显下降,而土壤碳储量保持稳定甚至升高。受乱砍滥伐干扰的71年生油松林和56年生刺槐林的生态系统碳储量分别为118.87\,76.99 Mg/hm2,相对于没有人为干扰的森林,其植被碳储量和土壤碳储量均呈明显下降趋势。种植油松林之后的86a时间内,其生态系统固碳潜力为211.61-272.64 Mg/hm2;而种植刺槐林、在39a时间内的生态系统固碳潜力为81.15 Mg/hm2。  相似文献   

5.
研究秦岭南坡东段8、25、35、42和61年生油松人工林碳、氮储量和分配格局.结果表明: 油松人工林不同林龄乔木层碳、氮含量为441.40~526.21和3.13~3.99 g·kg-1,灌木层为426.06~447.25和10.62~12.45 g·kg-1,草本层为301.37~401.52和10.35~13.33 g·kg-1,枯落物层为382.83~424.71和8.69~11.90 g·kg-1,土壤层(0~100 cm)为1.51~18.17和0.29~1.45 g·kg-1.树干和树枝分别是乔木层的主要碳库和氮库,占乔木层碳储量的48.5%~62.7%和氮储量的39.2%~48.4%.林龄对生态系统碳、氮储量均有显著影响.生态系统碳储量随林龄增加而增加,35年时达最大值146.06 t·hm-2,成熟后碳储量有所下降.5个林龄段油松林生态系统氮储量的最大值为25年时的10.99 t·hm-2.植被层平均碳、氮储量分别为45.33 t·hm-2和568.55 kg·hm-2,土壤层平均碳、氮储量分别为73.12和8.57 t·hm-2,且土壤层中碳、氮的积累具有明显的表层富集现象.研究区油松人工林生态系统碳、氮储量主要分布在土壤层,其次为乔木层.生态系统碳储量空间分配格局为:土壤层(64.1%)>乔木层(30.0%)>灌草层和枯落物层(5.9%),氮储量为土壤层(93.2%)>乔木层(5.3%)>灌草层和枯落物层(1.5%).  相似文献   

6.
黄土丘陵区刺槐与油松人工林生态系统生态化学计量特征   总被引:10,自引:0,他引:10  
章广琦  张萍  陈云明  彭守璋  曹扬 《生态学报》2018,38(4):1328-1336
为阐明不同人工林生态系统间生态化学计量特征的差异,采用野外采样与室内分析相结合的方式分析了陕北黄土丘陵区落叶阔叶树种刺槐和常绿针叶树种油松人工林乔木、灌草、枯落物和土壤(土层深度0—100cm)C、N、P化学计量特征。结果表明:1)刺槐乔木各器官(叶、枝、干、皮、根)C含量显著低于油松,但N和P含量显著高于油松。因此,油松的C∶N和C∶P显著大于刺槐,而N∶P小于刺槐。2)刺槐林下枯落物N和P含量显著高于油松,但C含量显著小于油松。此外,油松林下枯落物C∶N(70.21)大于刺槐林下枯落物C∶N(19.71),说明油松林下枯落物分解较慢,有利于养分的存储。3)刺槐和油松人工林土壤C、N含量均随土壤深度增加而减少,P含量则基本保持不变。刺槐人工林土壤中C含量低于油松,N、P含量在两者之间无显著差异。4)刺槐人工林内乔灌草叶、枯落物与土壤C、N、P及其计量比的相关性多集中在10—20、20—30cm土层,而油松林中各组分与土壤营养元素的相关性相对较小,其中20—30cm土层中无显著相关性,说明相比刺槐人工林而言,油松人工林内土壤层N、P供应量对植物叶片N、P含量影响不显著。本研究为深入了解黄土丘陵区生态系统养分耦合循环机制奠定了基础,同时也为黄土丘陵区的植被恢复工作提供了一定的指导意义。  相似文献   

7.
森林碳密度及其分配格局是探究森林碳循环和全球碳循环的重要内容。本研究采用样地清查和异速生长方程的方法测定黑龙江省不同地区(小兴安岭南坡、张广才岭东坡、张广才岭西坡和完达山)红松人工幼龄林碳密度及其分配特征。结果表明:(1)不同地区红松人工林植被碳库、碎屑碳库差异显著,土壤碳库和总碳库碳密度差异不显著,分别在35.95~76.36、3.52~11.34、101.96~173.37和154.54~256.78 tC·hm-2波动;各组分分配比例差异显著,分别为18.78%~30.34%、1.79%~5.24%和65.58%~79.43%。(2)不同地区红松人工林乔木层各器官(除树叶)碳密度及其分配均差异显著,干、枝、叶和根的碳密度分别在22.47~47.11、2.30~12.31、2.90~5.80和7.02~17.16 tC·hm-2波动,各器官分配比例在51.98%~64.80%、6.68%~17.19%、6.55%~8.34%和20.23%~22.55%。(3)不同地区红松人工林根冠比(R/S)、土壤碳密度(含碎屑层碳密度)与植被碳密度比(SC/VC)均差异显著,各地区比值范围分别为0.26~0.29和2.31~4.69。(4)胸高断面积与乔木层碳密度、植被碳库和森林生态系统总碳库皆呈极显著正相关关系(P0.01),能够很好地反映其碳密度的动态变化。  相似文献   

8.
为阐明黄土高原中西部刺槐人工林碳密度区域分布特征及其主要影响因子,基于野外样地调查和室内样品分析估算了黄土高原中西部4个栽培区域的刺槐人工林生态系统碳密度及其分布特征,并利用相关性分析和主成分分析分析了影响生态系统碳密度的主要因子(林分、地形、土壤和气候等)。结果表明:调查区5个林龄的刺槐人工林生态系统生物量为34.13—133.08t/hm~2,不同区域之间各组分生物量存在显著性差异。植被层平均碳含量为221.93—454.67 g/kg,总体上表现为乔木层平均碳含量高于灌、草层,枯落物层平均碳含量最低,不同区域乔木、灌木、草本平均碳含量均存在显著性差异。刺槐人工林生态系统碳密度均值为106.86 t/hm~2,其中土壤层碳密度占刺槐人工林生态系统总碳密度的64.09%,是刺槐人工林生态系统碳密度的主要组成部分。植被层碳密度为38.68 t/hm~2,其中乔木层碳密度(33.88 t/hm~2)占植被层碳密度的87.58%,灌木、草本、枯落物所占比例依次为1.98%(0.77 t/hm~2)、2.00%(0.77 t/hm~2)、8.43%(3.26 t/hm~2)。不同区域土壤、生态系统碳密度均存在显著性差异。相关性分析和主成分分析表明,刺槐人工林生态系统碳密度与林龄、降水量呈显著正相关关系,与林分密度、平均气温、海拔和坡度的相关关系不显著,上述林分因子、地形因子和环境因子转化的主成分方差累积贡献率为91.07%,其中林龄和降水量是影响刺槐人工林生态系统碳密度的主要因子,方差贡献率为37.22%。  相似文献   

9.
山西油松人工林生态系统生物量、碳积累及其分布   总被引:2,自引:0,他引:2  
程小琴  韩海荣  康峰峰 《生态学杂志》2012,31(10):2455-2460
油松是我国北方主要的造林树种之一,准确估计油松人工林生态系统的生物量及碳储存对研究区域人工林的碳储功能具有重要意义。本研究采用固定样地方法对38年生油松人工林的生物量、碳贮量及其空间分布进行测定,并估算了其净生产力与年净碳固定量。结果表明:(1)油松单木生物量与胸径和树高之间均存在着紧密的相关关系。林分平均生物量为145.35t.hm-2,其中乔木层为123.98t.hm-2,占林分生物量的85.30%。(2)油松人工林生态系统各组分碳含量为:树干0.5032gC.g-1,树皮0.4887gC.g-1,树枝0.5414gC.g-1,树叶0.4774gC.g-1,树根0.4862gC.g-1;灌木层0.4468gC.g-1;草本层0.4417gC.g-1;枯落物层0.4112gC.g-1;土壤层(0~100cm)0.0090gC.g-1,随土层深度增加各层次土壤碳含量逐渐减少。(3)油松人工林生态系统总碳贮量为172.95t.hm-2,各层碳贮量的大小顺序为土壤(0~100cm)(102.07t.hm-2)>乔木层(62.08t.hm-2)>枯落物层(7.75t.hm-2)>灌木层(0.58t.hm-2)>草本层(0.47t.hm-2)。油松各器官的碳贮量与其生物量呈正比,树干的生物量最大,其碳贮量也最大,占乔木层碳贮量的58.80%。(4)油松人工林年净生产力为10.19t.hm-2.a-1,有机碳年固定量为5.03tC.hm-2.a-1。  相似文献   

10.
通过野外调查与室内实验相结合的方法,以晋西黄土区不同林分密度的油松人工林为对象,以林下植物多样性、枯落物蓄水、土壤物理性质和土壤蓄水能力为指标,分析了不同密度油松林对这些指标的影响,以期为油松林合理密度的确定提供科学依据。结果表明:油松林内灌木层物种丰富度指数、多样性指数随油松林密度的增大而减小,而均匀度指数无明显规律;草本层物种丰富度指数与灌木层变化规律一致,但多样性指数和均匀度指数均先增后减;油松林密度为1675株·hm-2时草本的多样性和均匀度为最大,整个群落的多样性指数和均匀度指数也最大;油松林灌木层的多样性指数及均匀度指数均大于草本层;不同密度油松林枯落物自然含水率无显著差异,而枯落物蓄积量、最大持水率以及持水量、有效拦蓄率和拦蓄量在一些林分密度间差异显著;密度为1300株·hm-2时,土壤容重最小,总孔隙度、毛管孔隙度及所对应的贮水量均最大;密度为1675株·hm-2时枯落物蓄积量、持水量最大,表层(0~20cm)土壤容重(1.07g·cm-3)相对较低,非毛管孔隙度(17.45%)及滞留贮水量(87.25mm)最大。综合来看,30年生左右的油松人工林,当密度约为1675株·hm-2时林下植物多样性及生态水文效应最好。  相似文献   

11.
森林在陆地生态系统吸收碳素方面起着主要作用,了解其固碳特征对研究地区之间的碳循环至关重要。油松人工林是黄土高原地区一种典型的退耕还林树种,研究其固碳特征有利于综合分析评价油松人工林的生态效益。为了研究黄土高原西部地区油松人工林碳储量及碳密度空间分布特征因降水量不同引起的差异,以黄土高原西部地区3个典型栽培区域的近成熟油松人工林为对象,研究了群落内各组成部分的生物量和碳库特征。乔木层生物量的估算采用以胸径和树高为基础变量的生物量方程,灌木、草本、凋落物采用样方收获法,土壤碳库依据土壤剖面(1 m)和土钻取样相结合的方法测算。结果表明:在兰州官蘑滩地区(372 mm)、太子山(519 mm)和小陇山(632 mm)3个不同降水量区域,油松人工林生物量碳密度分别为(49.08±2.86)t/hm~2、(73.90±9.36)t/hm~2和(82.55±7.36)t/hm~2。小陇山地区的生态系统总碳密度和生物量碳密度与兰州地区存在显著性差异。在3个不同降水量区域,土壤有机碳密度仅在表层土壤(0—10 cm)差异达到显著水平(P0.05),而土壤总碳密度间差异未达到显著水平(P0.05)。黄土高原半干旱区近成熟油松人工林的生物量碳密度与年均降水量间呈现出显著正相关关系。在半干旱地区,降水量可能成为影响油松人工林生产力和碳固存的关键因素。  相似文献   

12.
太岳山不同郁闭度油松人工林降水分配特征   总被引:11,自引:4,他引:11  
利用2011年5-9月生长季观测的30场降雨数据,分析了山西太岳山不同郁闭度下油松人工林林冠截留、穿透雨以及树干茎流与降雨量的关系,以及林冠截留过程的特点.结果表明:(1)实验观测期间,该地区降雨总量为634.79mm,单次平均降雨量为21.16mm,单次最大降雨量为58.15mm,单次最小降雨量为0.54mm.其中,8月份的降雨总量最大,为190.77mm,6月份的降雨总量最小,为41.81mm.(2)郁闭度为0.8的油松人工林林冠截留量与降雨量呈一元线性关系,郁闭度为0.7、0.6和0.5均呈幂函数关系;对于各郁闭度的油松人工林,其林冠截留率与降雨量均呈对数函数关系;穿透雨量、树干茎流量与降雨量均呈明显的一元线性关系,穿透雨量和树干茎流量都随着降雨量的增加而增加.(3)不同郁闭度油松人工林之间林冠截留、穿透雨和树干茎流不同,总的趋势为随着郁闭度的减小,林冠截留量减小,穿透雨量增大,树干茎流量增大.林冠截留量与郁闭度表现出正相关关系,而穿透雨量、树干茎流量都与郁闭度表现出负相关关系.(4)各郁闭度林冠截留量、穿透雨量和树干茎流量的月动态变化与总降水量的月变化基本一致.  相似文献   

13.
辽河源不同龄组油松天然次生林生物量及空间分配特征   总被引:1,自引:0,他引:1  
油松是中国暖温带区域主要的森林植被,精确计算油松天然林生物量及准确表征空间分布特征对其在固碳释氧、林木积累营养物质等方面的生态服务功能评估具有重要意义。目前,国内基本上没有进行油松天然次生林生物量及空间分配在一个年龄序列上的研究。研究的主要目的是准确估算河北省平泉县辽河源自然保护区4个龄组油松天然次生林林分各组分的生物量,并揭示生物量在空间的分配特征。在每种林分内,林下植被层(灌木和草本)和凋落物层生物量通过样地调查和全挖取样的方法计算。基于胸径(DBH)和树高(H)的异速生长方程则用于计算乔木层生物量。结果表明:(1)林分生物量大小排序为:成熟林(397.793 t/hm2)近熟林(242.188 t/hm2)中龄林(203.801 t/hm2)幼龄林(132.894 t/hm2);(2)乔木层生物量成熟林(373.128 t/hm2)近熟林(224.991 t/hm2)中龄林(187.750 t/hm2)幼龄林(119.169 t/hm2)。地上部分各组分生物量大小关系略有差异,幼龄林和近熟林为:干根枝叶干皮球果,而中龄林和成熟林则是干根枝干皮叶球果。干生物量对于各龄组乔木层生物量来说是最大的贡献者,所占比例表现为:中龄林(66.25%)近熟林(64.38%)成熟林(62.09%)幼龄林(38.41%),而贡献较小的球果则是成熟林(1.02%)幼龄林(0.88%)近熟林(0.72%)中龄林(0.53%)。根系总生物量在18.315 t/hm2(中龄林)—44.849 t/hm2(成熟林)之间,其组分生物量大小整体上表现为:根桩粗根大根细根小细根;(3)灌木层生物量成熟林(0.861 t/hm2)近熟林(0.790 t/hm2)中龄林(0.559 t/hm2)幼龄林(0.401 t/hm2),各组分生物量大小为根茎叶;(4)草本层生物量幼龄林(3.058 t/hm2)近熟林(2.017 t/hm2)中龄林(1.220 t/hm2)成熟林(1.181 t/hm2),地下部分生物量均大于地上部分;(5)凋落物层生物量成熟林(22.623 t/hm2)近熟林(14.390 t/hm2)中龄林(14.272 t/hm2)幼龄林(10.265 t/hm2),各层生物量大小为:未分解层半分解层全分解层。(6)在各层次生物量的比较中,4个龄组均表现为乔木层凋落物层草本层灌木层。其中,幼龄林乔木层生物量占89.67%、中龄林占92.13%、近熟林占92.90%,成熟林占93.80%。  相似文献   

14.
黄土丘陵区油松人工林与天然林养分分布和生物循环比较   总被引:17,自引:5,他引:17  
对黄土丘陵区油松人工林和天然林的养分积累与分配以及养分循环特征进行了比较研究,结果表明:(1)油松林各组分养分含量的变化趋势为:针叶〉树枝〉树皮〉树根〉树干;地上部分的养分在针叶、树枝、树干和凋落物中呈:Ca〉N〉K〉Mg〉P(林型Ⅰ的针叶、枝干和林型Ⅳ的树枝N含量较其它元素含量高),而在土壤层中呈:Ca〉K〉Mg〉N〉P;不同林型内各养分含量因林龄的不同而有差异。(2)油松林生态系统中养分总贮量的80.83%-98.81%集中在土壤组分中,乔木层养分量占总贮量的0.76%-5.52%,林下植被层和凋落物层的养分贮量分别占系统总贮量的0.05%-0.17%和0.38%~3.48%。人工油松林的养分贮量随抚育林龄的增加先升后降,30a时养分贮量最大,50a时养分贮量明显降低,其中N素衰减较其它养分快(30龄油松林是50龄油松林的4.23倍)。(3)油松林地上部分养分贮量主要集中在针叶,且随着抚育林龄的增加,针叶不但贮量增加而且占地上各组分总贮量比例也增大,树枝和树干只是绝对贮量增加,但所占地上总贮量的比例下降。(4)油松林地上部分养分的年积累量以30a人工林最高,变化趋势为Ⅱ〉Ⅲ〉Ⅳ〉Ⅰ。各组分养分的年积累量总的变化趋势为:针叶〉树枝〉根系〉树皮〉树干,同一组分各养分年积累量与各组分养分贮量变化顺序基本一致,即10年生幼林为N〉Ca〉K〉P〉Mg,人工成熟纯林Ca〉N〉K〉P〉M,天然林与人工成熟林相似。(5)天然林的吸收量、存留量明显高于人工林。人工林随着抚育林龄的增加,吸收量和归还量增大,存留量和循环系数先增后降。各林地油松利用系数为:Ca〉Mg〉N〉K〉P,但同一养分利用率,油松人工林随着林龄的增加而降低,油松天然林与人工成熟林的利用系数和周转期相似。  相似文献   

15.
长沙市区马尾松人工林生态系统碳储量及其空间分布   总被引:3,自引:0,他引:3  
巫涛  彭重华  田大伦  闫文德 《生态学报》2012,32(13):4034-4042
采用样方法和取样法,研究了长沙市区13年生马尾松林生态系统碳含量、碳储量及其空间分布特征。结果表明:马尾松林木各器官平均碳含量为511.17 g/kg,从高到低排列顺序为叶>干>根>皮>枝;林下灌木层、草本层、枯落物层的平均碳含量分别为531.66、465.53、393.92g/kg。林地土壤层有机碳含量为9.40—24.73 g/kg,各层次碳素含量分布不均,表层(0—15cm)土壤碳素含量较高,并随土壤深度的增加而逐渐下降。生态系统碳库的空间分布序列为土壤层>植被层>枯落物层。植被层的碳储量为34.50t/hm2,占整个生态系统碳总储量的21.57%;乔木层碳储量占整个生态系统的20.27%,占植被层碳储量的93.97%。乔木层碳储量中,树干的碳储量最高,占乔木层碳储量的65.52%,其次为根,占乔木层碳储量的19.15%,树皮最少,仅占2.10%;枯落物层碳储量为3.81 t/hm2,仅占整个生态系统碳储量的2.38%;林地土壤层(0—60cm)碳储量相当可观,为121.62 t/hm2,占系统碳储量的76.05%。马尾松林年净生产力为4.88 t.hm-.2a-1,有机碳年净固定量为2.50 t.hm-.2a-1,折合成CO2的量为9.16 t.hm-.2a-1。  相似文献   

16.
Pinus tabulaeformis Carr. forest, the dominant community in Ziwuling Mountain lying in the hilly loess region, was studied for its nutrient distributions and bio-cycle characteristics in both natural and artificial forms. The results showed that the changes in the nutrient contents for different components in the same Pinus tabulaeformis Carr. forest stood in the order of needles > branches > bark > roots > bole. The aboveground nutrient elements in needles, branches, bark bole and litterfalls stood in the order of Ca > N > K > Mg > P, but the nutrients stored in the soil stood in the order of Ca > K > Mg > N > P. The accumulated amounts of nutrients increased first and then decreased with the increased age of the forest. The nutrient amounts reached their maximum when the stand was 30 years old, and decreased greatly when it was 50 years old. The 30-year-old artificial Pinus tabulaeformis Carr. forest had the highest annual accumulated amount of nutrients, and different stands stood in the order of II > III > IV > I. Comparatively, annual accumulated nutrients in different components stood in the order of needles > branches > roots > bark > bole. It was also suggested that the amounts of nutrients annually taken in from and retained in the natural Pinus tabulaeformis Carr. forest were significantly higher than those in artificial forests. The coefficients of nutrient use in various Pinus tabulaeformis Carr. stands stood in the order of Ca > Mg > N > K > P, but the nutrient use efficiency (NUE) of the same element decreased with increased age of the forest. There were no differences in the utilization coefficient and the turnover period of nutrients in both natural and artificial matured Pinus tabulaeformis Carr. forests.  相似文献   

17.
Pinus tabulaeformis Carr. forest, the dominant community in Ziwuling Mountain lying in the hilly loess region, was studied for its nutrient distributions and bio-cycle characteristics in both natural and artificial forms. The results showed that the changes in the nutrient contents for different components in the same Pinus tabulaeformis Carr. forest stood in the order of needles > branches > bark > roots > bole. The aboveground nutrient elements in needles, branches, bark bole and litterfalls stood in the order of Ca > N > K > Mg > P, but the nutrients stored in the soil stood in the order of Ca > K > Mg > N > P. The accumulated amounts of nutrients increased first and then decreased with the increased age of the forest. The nutrient amounts reached their maximum when the stand was 30 years old, and decreased greatly when it was 50 years old. The 30-year-old artificial Pinus tabulaeformis Carr. forest had the highest annual accumulated amount of nutrients, and different stands stood in the order of II > III > IV > I. Comparatively, annual accumulated nutrients in different components stood in the order of needles > branches > roots > bark > bole. It was also suggested that the amounts of nutrients annually taken in from and retained in the natural Pinus tabulaeformis Carr. forest were significantly higher than those in artificial forests. The coefficients of nutrient use in various Pinus tabulaeformis Carr. stands stood in the order of Ca > Mg > N > K > P, but the nutrient use efficiency (NUE) of the same element decreased with increased age of the forest. There were no differences in the utilization coefficient and the turnover period of nutrients in both natural and artificial matured Pinus tabulaeformis Carr. forests.  相似文献   

18.
胡会峰  刘国华 《生态学报》2013,33(4):1212-1218
采用时空替代法,选取岷江上游大沟流域内不同恢复时期(12、18、25、35a)的人工油松林为研究对象,研究了植被恢复过程中土壤理化性质及有机碳含量的变化特征,同时探讨了它们之间的相互关系.研究结果表明沿恢复梯度,土壤质量得到了改善,主要表现为土壤粘粒含量、比表面积、有机质含量显著增加,土壤粉粒含量和pH值则显著下降.土壤有机质与土壤粘粒和比表面积呈显著正相关,与土壤容重呈显著负相关.此外,土壤有机碳含量沿恢复梯度显著增加,0-50 cm内土壤有机碳含量从5.59 kg/m2增加到12.64 kg/m2,土壤年平均固碳速率为0.31 kg/m2.  相似文献   

19.
山西太岳山油松群落对采伐干扰的生态响应   总被引:2,自引:0,他引:2  
森林群落受到采伐干扰后的生态响应程度一直是森林生态学领域关注的研究前沿。本文以太岳山的油松林为对象,选择受不同采伐干扰强度和恢复时间的4块样地,通过固定标准地群落的调查获得数据资料,选用丰富度指数、Simpson指数(λ)、Shannon-Wiener指数(H')、均匀度指数(E1)和Jaccard、Sprenson两种相似性指数,研究油松林对不同采伐方式生态响应,探讨不同采伐干扰强度和恢复时间下油松林生物多样性变化和更新演替规律。研究结果表明:1)受采伐干扰的样地中阳性植物的种类明显增多,随着恢复时间的增长,植物处于生长逐步旺盛、物种逐步丰富的阶段,其种类组成表现出由简单到复杂、由喜阳植物垄断到耐阴种类不断增多、种类由少变多的动态特征。2)适度的择伐可以提高群落整体的多样性,但皆伐则降低了群落的综合物种多样性。3)受相同择伐强度干扰后,群落之间保持了最高的相似性,皆伐干扰使群落环境有了本质的变化,与天然林的物种相似性最低。4)受采伐干扰后形成的次生林内,恢复初期中更新幼苗幼树出现6个树种,主要以油松和辽东栎(Quercus liaodungensi)为主。天然林中的环境最有利于油松幼苗的生长,择伐后恢复初期18a间幼树数量最高,幼苗数量最低,皆伐后更新幼苗幼树数量最少,环境条件最不利于更新。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号