首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The core histone tail domains mediate inter-nucleosomal interactions that direct folding and condensation of nucleosome arrays into higher-order chromatin structures. The histone H4 tail domain facilitates inter-array interactions by contacting both the H2A/H2B acidic patch and DNA of neighboring nucleosomes (1, 2). Likewise, H4 tail-H2A contacts stabilize array folding (3). However, whether the H4 tail domains stabilize array folding via inter-nucleosomal interactions with the DNA of neighboring nucleosomes remains unclear. We utilized defined oligonucleosome arrays containing a single specialized nucleosome with a photo-inducible cross-linker in the N terminus of the H4 tail to characterize these interactions. We observed that the H4 tail participates exclusively in intra-array interactions with DNA in unfolded arrays. These interactions are diminished during array folding, yet no inter-nucleosome, intra-array H4 tail-DNA contacts are observed in condensed chromatin. However, we document contacts between the N terminus of the H4 tail and H2A. Installation of acetylation mimics known to disrupt H4-H2A surface interactions did not increase observance of H4-DNA inter-nucleosomal interactions. These results suggest the multiple functions of the H4 tail require targeted distinct interactions within condensed chromatin.  相似文献   

2.
The core histone tail domains are key regulators of eukaryotic chromatin structure and function and alterations in the tail-directed folding of chromatin fibers and higher order structures are the probable outcome of much of the post-translational modifications occurring in these domains. The functions of the tail domains are likely to involve complex intra- and inter-nucleosomal histone-DNA interactions, yet little is known about either the structures or interactions of these domains. Here we introduce a method for examining inter-nucleosome interactions of the tail domains in a model dinucleosome and determine the propensity of each of the four N-terminal tail domains to mediate such interactions in this system. Using a strong nucleosome "positioning" sequence, we reconstituted a nucleosome containing a single histone site specifically modified with a photoinducible cross-linker within the histone tail domain, and a second nucleosome containing a radiolabeled DNA template. These two nucleosomes were then ligated together and cross-linking induced by brief UV irradiation under various solution conditions. After cross-linking, the two templates were again separated so that cross-linking representing inter-nucleosomal histone-DNA interactions could be unambiguously distinguished from intra-nucleosomal cross-links. Our results show that the N-terminal tails of H2A and H2B, but not of H3 and H4, make internucleosomal histone-DNA interactions within the dinucleosome. The relative extent of intra- to inter-nucleosome interactions was not strongly dependent on ionic strength. Additionally, we find that binding of a linker histone to the dinucleosome increased the association of the H3 and H4 tails with the linker DNA region.  相似文献   

3.
The mechanism by which chromatin is decondensed to permit access to DNA is largely unknown. Here, using a model nucleosome array reconstituted from recombinant histone octamers, we have defined the relative contribution of the individual histone octamer N-terminal tails as well as the effect of a targeted histone tail acetylation on the compaction state of the 30 nm chromatin fiber. This study goes beyond previous studies as it is based on a nucleosome array that is very long (61 nucleosomes) and contains a stoichiometric concentration of bound linker histone, which is essential for the formation of the 30 nm chromatin fiber. We find that compaction is regulated in two steps: Introduction of H4 acetylated to 30% on K16 inhibits compaction to a greater degree than deletion of the H4 N-terminal tail. Further decompaction is achieved by removal of the linker histone.  相似文献   

4.
The core histone tail domains are known to be key regulators of chromatin structure and function. The tails are required for condensation of nucleosome arrays into secondary and tertiary chromatin structures, yet little is known regarding tail structures or sites of tail interactions in chromatin. We have developed a system to test the hypothesis that the tails participate in internucleosomal interactions during salt-dependent chromatin condensation, and here we used it to examine interactions of the H3 tail domain. We found that the H3 tail participates primarily in intranucleosome interactions when the nucleosome array exists in an extended "beads-on-a-string" conformation and that tail interactions reorganize to engage in primarily internucleosome interactions as the array successively undergoes salt-dependent folding and oligomerization. These results indicated that the location and interactions of the H3 tail domain are dependent upon the degree of condensation of the nucleosomal array, suggesting a mechanism by which alterations in tail interactions may elaborate different structural and functional states of chromatin.  相似文献   

5.
Chromatin fiber folding: requirement for the histone H4 N-terminal tail   总被引:1,自引:0,他引:1  
We have developed a self-assembly system for nucleosome arrays in which recombinant, post-translationally unmodified histone proteins are combined with DNA of defined-sequence to form chromatin higher-order structure. The nucleosome arrays obtained are highly homogeneous and sediment at 53S when maximally folded in 1mM or 100mM MgCl(2). The folding properties are comparable to established systems. Analytical ultracentrifugation is used to determine the consequence of individual histone tail domain deletions on array folding. Fully compacted chromatin fibers are obtained with any one of the histone tails deleted with the exception of the H4 N terminus. The region of the H4 tail, which mediates compaction, resides in the stretch of amino acids 14-19.  相似文献   

6.
The linker histones are involved in the salt-dependent folding of the nucleosomes into higher-order chromatin structures. To better understand the mechanism of action of these histones in chromatin, we studied the interactions of the linker histone H1 with DNA at various histone/DNA ratios and at different ionic strengths. In direct competition experiments, we have confirmed the binding of H1 to superhelical DNA in preference to linear or nicked circular DNA forms. We show that the electrophoretic mobility of the H1/supercoiled DNA complex decreases with increasing H1 concentrations and increases with ionic strengths. These results indicate that the interaction of the linker histone H1 with supercoiled DNA results in a soluble binding of H1 with DNA at low H1 or salt concentrations and aggregation at higher H1 concentrations. Moreover, we show that H1 dissociates from the DNA or nucleosomes at high salt concentrations. By the immobilized template pull-down assay, we confirm these data using the physiologically relevant nucleosome array template.  相似文献   

7.
Zheng C  Hayes JJ 《Biopolymers》2003,68(4):539-546
The core histone tail domains are "master control switches" that help define the structural and functional characteristics of chromatin at many levels. The tails modulate DNA accessibility within the nucleosome, are essential for stable folding of oligonucleosome arrays into condensed chromatin fibers, and are important for fiber-fiber interactions involved in higher order structures. Many nuclear signaling pathways impinge upon the tail domains, resulting in posttranslational modifications that are likely to alter the charge, structure, and/or interactions of the core histone tails or to serve as targets for the binding of ancillary proteins or other enzymatic functions. However, currently we have only a marginal understanding of the molecular details of core histone tail conformations and contacts. Here we review data related to the structures and interactions of the core histone tail domains and how these domains and posttranslational modifications therein may define the structure and function of chromatin.  相似文献   

8.
The core histone tail domains are key regulatory elements in chromatin. The tails are essential for folding oligonucleosomal arrays into both secondary and tertiary structures, and post-translational modifications within these domains can directly alter DNA accessibility. Unfortunately, there is little understanding of the structures and interactions of the core histone tail domains or how post-translational modifications within the tails may alter these interactions. Here we review NMR, thermal denaturation, cross-linking, and other selected solution methods used to define the general structures and binding behavior of the tail domains in various chromatin environments. All of these methods indicate that the tail domains bind primarily electrostatically to sites within chromatin. The data also indicate that the tails adopt specific structures when bound to DNA and that tail structures and interactions are plastic, depending on the specific chromatin environment. In addition, post-translational modifications, such as acetylation, can directly alter histone tail structures and interactions.  相似文献   

9.
The core histone tail domains play important roles in different stages of chromatin condensation. The tails are required for folding nucleosome arrays into secondary chromatin structures such as the approximately 30 nm diameter chromatin fiber and for mediating fiber-fiber interactions important for formation of tertiary chromatin structures. Crosslinking studies have demonstrated that inter-nucleosomal tail-DNA contacts appear in conjunction with salt-induced folding of nucleosome arrays into in higher order chromatin structures. However, since both folding of nucleosome arrays and fiber-fiber interactions take place simultaneously in >2-3 mM MgCl(2) such inter-nucleosome interactions may reflect short range (intra-array) or longer range (inter-array) interactions. Here, we describe a novel technique to specifically identify inter-array interactions mediated by the histone tail domains. In addition, we describe a new method for the preparation of H3/H4 tetramers.  相似文献   

10.
Although it is well established that the majority of eukaryotic DNA is sequestered as nucleosomes, the higher-order structure resulting from nucleosome interactions as well as the dynamics of nucleosome stability are not as well understood. To characterize the structural and functional contribution of individual nucleosomal sites, we have developed a chromatin model system containing up to four nucleosomes, where the array composition, saturation, and length can be varied via the ordered ligation of distinct mononucleosomes. Using this system we find that the ligated tetranucleosomal arrays undergo intra-array compaction. However, this compaction is less extensive than for longer arrays and is histone H4 tail-independent, suggesting that well ordered stretches of four or fewer nucleosomes do not fully compact to the 30-nm fiber. Like longer arrays, the tetranucleosomal arrays exhibit cooperative self-association to form species composed of many copies of the array. This propensity for self-association decreases when the fraction of nucleosomes lacking H4 tails is systematically increased. However, even tetranucleosomal arrays with only two octamers possessing H4 tails recapitulate most of the inter-array self-association. Varying array length shows that systems as short as dinucleosomes demonstrate significant self-association, confirming that relatively few determinants are required for inter-array interactions and suggesting that in vivo multiple interactions of short runs of nucleosomes might contribute to complex fiber-fiber interactions. Additionally, we find that the stability of nucleosomes toward octamer loss increases with array length and saturation, suggesting that in vivo stretches of ordered, saturated nucleosomes could serve to protect these regions from histone ejection.  相似文献   

11.
DNA in eukaryotic organisms does not exist free in cells, but instead is present as chromatin, a complex assembly of DNA, histone proteins, and chromatin-associated proteins. Chromatin exhibits a complex hierarchy of structures, but in its simplest form it is composed of long linear arrays of nucleosomes. Nucleosomes contain 147 base pairs of DNA wrapped around a histone octamer, consisting of two copies each of histones H2A, H2B, H3 and H4, where 15-38 amino terminal residues of each histone protein extends past the DNA gyres to form histone “tails” 1. Chromatin provides a versatile regulatory platform for nearly all cellular processes that involve DNA, and improper chromatin regulation results in a wide range of diseases, including various cancers and congenital defects. One major way that chromatin regulates DNA utilization is through a wide range of post-translational modification of histones, including serine and threonine phosphorylation, lysine acetylation, methylation, ubiquitination, and sumoylation, and arginine methylation 2. Histone H4 K16 acetylation is a modification that occurs on the H4 histone tail and is one of the most frequent of the known histone modifications. We have demonstrated that this mark both disrupts formation of higher-order chromatin structure and changes the functional interaction of chromatin-associated proteins 3. Our results suggest a dual mechanism by which H4 K16 acetylation can ultimately facilitate genomic functions.  相似文献   

12.
The ATPase ISWI can be considered the catalytic core of several multiprotein nucleosome remodeling machines. Alone or in the context of nucleosome remodeling factor, the chromatin accessibility complex (CHRAC), or ACF, ISWI catalyzes a number of ATP-dependent transitions of chromatin structure that are currently best explained by its ability to induce nucleosome sliding. In addition, ISWI can function as a nucleosome spacing factor during chromatin assembly, where it will trigger the ordering of newly assembled nucleosomes into regular arrays. Both nucleosome remodeling and nucleosome spacing reactions are mechanistically unexplained. As a step toward defining the interaction of ISWI with its substrate during nucleosome remodeling and chromatin assembly we generated a set of nucleosomes lacking individual histone N termini from recombinant histones. We found the conserved N termini (the N-terminal tails) of histone H4 essential to stimulate ISWI ATPase activity, in contrast to other histone tails. Remarkably, the H4 N terminus, but none of the other tails, was critical for CHRAC-induced nucleosome sliding and for the generation of regularity in nucleosomal arrays by ISWI. Direct nucleosome binding studies did not reflect a dependence on the H4 tail for ISWI-nucleosome interactions. We conclude that the H4 tail is critically required for nucleosome remodeling and spacing at a step subsequent to interaction with the substrate.  相似文献   

13.
14.
Widlund HR  Vitolo JM  Thiriet C  Hayes JJ 《Biochemistry》2000,39(13):3835-3841
Modulation of nucleosome stability in chromatin plays an important role in eukaryotic gene expression. The core histone N-terminal tail domains are believed to modulate the stability of wrapping nucleosomal DNA and the stability of the chromatin filament. We analyzed the contribution of the tail domains to the stability of nucleosomes containing selected DNA sequences that are intrinsically straight, curved, flexible, or inflexible. We find that the presence of the histone tail domains stabilizes nucleosomes containing DNA sequences that are intrinsically straight or curved. However, the tails do not significantly contribute to the free energy of nucleosome formation with flexible DNA. Interestingly, hyperacetylation of the core histone tail domains does not recapitulate the effect of tail removal by limited proteolysis with regard to nucleosome stability. We find that acetylation of the tails has the same minor effect on nucleosome stability for all the selected DNA sequences. A comparison of histone partitioning between long donor chromatin, acceptor DNA, and free histones in solution shows that the core histone tails mediate internucleosomal interactions within an H1-depleted chromatin fiber amounting to an average free energy of about 1 kcal/mol. Thus, such interactions would be significant with regard to the free energies of sequence-dependent nucleosome positioning. Last, we analyzed the contribution of the H2A/H2B dimers to nucleosome stability. We find that the intact nucleosome is stabilized by 900 cal/mol by the presence of the dimers regardless of sequence. The biological implications of these observations are discussed.  相似文献   

15.
16.
17.
Role of histone tails in nucleosome remodeling by Drosophila NURF.   总被引:6,自引:1,他引:5       下载免费PDF全文
P T Georgel  T Tsukiyama    C Wu 《The EMBO journal》1997,16(15):4717-4726
  相似文献   

18.
The core histone tail domains play a central role in chromatin structure and epigenetic processes controlling gene expression. Although little is known regarding the molecular details of tail interactions, it is likely that they participate in both short-range and long-range interactions between nucleosomes. Previously, we demonstrated that the H3 tail domain participates in internucleosome interactions during MgCl(2)-dependent condensation of model nucleosome arrays. However, these studies did not distinguish whether these internucleosome interactions represented short-range intra-array or longer-range interarray interactions. To better understand the complex interactions of the H3 tail domain during chromatin condensation, we have developed a new site-directed cross-linking method to identify and quantify interarray interactions mediated by histone tail domains. Interarray cross-linking was undetectable under salt conditions that induced only local folding, but was detected concomitant with salt-dependent interarray oligomerization at higher MgCl(2) concentrations. Interestingly, lysine-to-glutamine mutations in the H3 tail domain to mimic acetylation resulted in little or no reduction in interarray cross-linking. In contrast, binding of a linker histone caused a much greater enhancement of interarray interactions for unmodified H3 tails compared to "acetylated" H3 tails. Collectively these results indicate that H3 tail domain performs multiple functions during chromatin condensation via distinct molecular interactions that can be differentially regulated by acetylation or binding of linker histones.  相似文献   

19.
BACKGROUND: The discovery of histone-like proteins in Archaea urged studies into the possible organization of archaeal genomes in chromatin. Despite recent advances, a variety of structural questions remain unanswered. RESULTS: We have used the atomic force microscope (AFM) with traditional nuclease digestion assays to compare the structure of nucleoprotein complexes reconstituted from tandemly repeated eukaryal nucleosome-positioning sequences and histone octamers, H3/H4 tetramers, and the histone-fold archaeal protein HMf. The data unequivocally show that HMf reconstitutes are indeed organized as chromatin fibers, morphologically indistinguishable from their eukaryal counterparts. The nuclease digestion patterns revealed a clear pattern of protection at regular intervals, again similar to the patterns observed with eukaryal chromatin fibers. In addition, we studied HMf reconstitutes on mononucleosome-sized DNA fragments and observed a great degree of similarity in the internal organization of these particles and those organized by H3/H4 tetramers. A difference in stability was observed at the level of mono-, di-, and triparticles between the HMf particles and canonical octamer-containing nucleosomes. CONCLUSIONS: The in vitro reconstituted HMf-nucleoprotein complexes can be considered as bona fide chromatin structures. The differences in stability at the monoparticle level should be due to structural differences between HMf and core histone H3/H4 tetramers, i.e., to the complete absence in HMf of histone tails beyond the histone fold. We speculate that the existence of core histone tails in eukaryotes may provide a greater stability to nucleosomal particles and also provide the additional ability of chromatin structure to regulate DNA function in eukaryotic cells by posttranslational histone tail modifications.  相似文献   

20.
During chromatin replication and nucleosome assembly, newly synthesized histone H4 is acetylated before it is deposited onto DNA, then deacetylated as assembly proceeds. In a previous study (Perry and Annunziato, Nucleic Acids Res. 17, 4275 [1989]) it was shown that when replication occurs in the presence of sodium butyrate (thereby inhibiting histone deacetylation), nascent chromatin fails to mature fully and instead remains preferentially sensitive to DNaseI, more soluble in magnesium, and depleted of histone H1 (relative to mature chromatin). In the following report the relationships between chromatin replication, histone acetylation, and H1-mediated nucleosome aggregation were further investigated. Chromatin was replicated in the presence or absence of sodium butyrate; isolated nucleosomes were stripped of linker histone, reconstituted with H1, and treated to produce Mg(2+)-soluble and Mg(2+)-insoluble chromatin fractions. Following the removal of H1, all solubility differences between chromatin replicated in sodium butyrate for 30 min (bu-chromatin) and control chromatin were lost. Reconstitution with H1 completely restored the preferential Mg(2+)-solubility of bu-chromatin, demonstrating that a reduced capacity for aggregation/condensation is an inherent feature of acetylated nascent nucleosomes; however, titration with excess H1 caused the solubility differences to be lost again. Moreover, when the core histone N-terminal "tails" (the sites of acetylation) were removed by trypsinization prior to reconstitution, H1 was unable to reestablish the altered solubility of chromatin replicated in butyrate. Thus, the core histone "tails," and the acetylation thereof, not only modulate H1-mediated nucleosome interactions in vitro, but also strongly influence the ability of H1 to differentiate between new and old nucleosomes. The data suggest a possible mechanism for the control of H1 deposition and/or chromatin folding during nucleosome assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号