首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extrusion of sodium ion from cells of Escherichia coli was measured using an Na+ electrode. When oxygen was supplied to an anaerobic cell suspension, extrusion of Na+ was observed. The addition of glucose under anaerobic conditions also caused Na+ efflux. The extrusion of Na+ energized by respiration and glycolysis was completely inhibited by a proton conductor, carbonyl cyanide m-chlorophenylhydrazone. These observations are consistent with the view that Na+ transport occurs secondarily to H+ circulation. Interestgly, induction of the melibiose transport system, which is coupled to Na+, greatly enhanced Na+ transport activity.  相似文献   

2.
Na+/adenosine co-transport in Vibrio parahaemolyticus   总被引:1,自引:0,他引:1  
Adenosine transport in Vibrio parahaemolyticus was studied. Na+ greatly stimulated adenosine uptake. Addition of adenosine to a cell suspension under anaerobic conditions elicited Na+ uptake, and the Na+ uptake was inhibited by monensin, an Na+ ionophore. Imposition of an electrochemical potential of Na+ or a membrane potential in energy-depleted cells elicited adenosine uptake. Therefore, adenosine transport in this organism was concluded to proceed by an Na+/adenosine co-transport mechanism. The Na+/adenosine co-transport system was induced when cells were grown in the presence of adenosine, and repressed by glucose. Although Na+ uptake elicited by adenosine was reduced by glucose, it was enhanced by methyl alpha-glucoside, which reduced the intracellular ATP level. Thus, the effects of glucose and the glucoside on the Na+/adenosine co-transport system did not seem to be due to inducer exclusion, but to be related to the intracellular ATP level.  相似文献   

3.
Proton motive force and Na+/H+ antiport in a moderate halophile.   总被引:4,自引:3,他引:1       下载免费PDF全文
The influence of pH on the proton motive force of Vibrio costicola was determined by measuring the distributions of triphenylmethylphosphonium cation (membrane potential, delta psi) and either dimethyloxazolidinedione or methylamine (osmotic component, delta pH). As the pH of the medium was adjusted from 5.7 to 9.0, the proton motive force steadily decreased from about 170 to 100 mV. This decline occurred, despite a large increase in the membrane potential to its maximum value at pH 9.0, because of the loss of the pH gradient (inside alkaline). The cytoplasm and medium were of equal pH at 7.5; membrane permeability properties were lost at the pH extremes of 5.0 and 9.5. Protonophores and monensin prevented the net efflux of protons normally found when an oxygen pulse was given to an anaerobic cell suspension. A Na+/H+ antiport activity was measured for both Na+ influx and efflux and was shown to be dissipated by protonophores and monensin. These results strongly favor the concept that respiratory energy is used for proton efflux and that the resulting proton motive force may be converted to a sodium motive force through Na+/H+ antiport (driven by delta psi). A role for antiport activity in pH regulation of the cytosol can also explain the broad pH range for optimal growth, extending to the alkaline extreme of pH 9.0.  相似文献   

4.
H Murer  U Hopfer    R Kinne 《The Biochemical journal》1976,154(3):597-604
Studies on proton and Na+ transport by isolated intestinal and renal brush-border-membrane vesicles were carried out to test for the presence of an Na+/H+-exchange system. Proton transport was evaluated as proton transfer from the intravesicular space to the incubation medium by monitoring pH changes in the membrane suspension induced by sudden addition of cations. Na+ transport was determined as Na+ uptake into the vesicles by filtration technique. A sudden addition of sodium salts (but not choline) to the membrane suspension provokes an acidification of the incubation medium which is abolished by the addition of 0.5% Triton X-100. Pretreatment of the membranes with Triton X-100 prevents the acidification. The acidification is also not observed if the [K+] and proton conductance of the membranes have been increased by the simultaneous addition of valinomycin and carbonyl cyanide p-trifluoromethoxyphenylhydrazone to the K+-rich incubation medium. Either valinomycin or carbonyl cyanide p-trifluoromethoxyphenylhydrazone when added alone do not alter the response of the membranes to the addition of Na+. Na+ uptake by brush-border microvilli is enhanced in the presence of a proton gradient directed from the intravesicular space to the incubation medium. Under these conditions a transient accumulation of Na+ inside the vesicles is observed. It is concluded that intestinal and renal brush-border membranes contain a NA+/H+ antiport system which catalyses an electroneutral exchange of Na+ against protons and consequently can produce a proton gradient in the presence of a concentration difference for Na+. This system might be involved in the active proton secretion of the small intestine and the proximal tubule of the kidney.  相似文献   

5.
Single smooth muscle cells were isolated from circular muscle of the canine gastric corpus by collagenase incubation. Cytoplasmic pH (pHi) of these cells was measured fluorometrically using the trapped dye 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein. Cells were examined for their Na+/H+ exchange activity after intracellular acidification. Cells acid-loaded by propionate exposure, the NH4+ prepulse technique or suspension in a Na+-depleted medium regained almost normal pHi upon exposure to a Na+ medium. The Na+-dependent alkalinization was amiloride sensitive. As well, addition of amiloride to cells suspended in a Na+ medium caused a concurrent decrease in pHi. The study indicates that a Na+/H+ antiport is present in these smooth muscle cells.  相似文献   

6.
Anaerobic growth of Klebsiella aerogenes NCDO 711 (NCTC 418) on citrate was dependent on the presence of Na+ in the medium, and fermentation of citrate was mediated via the fermentation pathway enzymes, citrate lyase and a Na+-dependent oxalacetate decarboxylase. This confirms the previous findings on strain NCTC 418. Growth under aerobic conditions was independent of Na+. The mean generation time for cells grown aerobically on either Na+ or K+ citrate medium was about 60 min, with a molar growth yield of about 40 g (dry weight) of cells per mol of citrate utilized. Citrate was apparently metabolized aerobically in both the Na+ and K+ citrate cells via the citric acid cycle, since cell extracts contained alpha-ketoglutarate dehydrogenase but not the citrate fermentation enzymes. The presence of theother enzymes of the citric acid cycle in K. aerogenes was shown in earlier studies. Under aerated conditions (no detectable oxygen tension in the culture), growth was faster on the Na+ citrate medium (mean generation time, 85 min) than on the K+ citrate medium (mean generation time, 120 min). Both cultures grew slower than under aerobic conditions, presumably because of oxygen limitation. Despite the faster growth rate, the molar growth yield of the aerated Na+ citrate culture was one-half that observed for the aerated K+ citrate culture. Citrate was metabolized via the citric acid cycle in cells grown in the K+ citrate medium under aerated conditions since alpha-ketoglutarate dehydrogenase, but not the fermentation enzymes, was detected in extracts prepared from these cells. Metabolism of citrate in the Na+ citrate medium under aerated conditions occurred via both the fermentation pathway (approximately 75 percent) and the citric acid cycle (about 25 percent), as evidenced by (i) the presence of the fermentation enzymes and alpha-ketoglutarate dehydrogenase in extracts of cells grown under these conditions, (ii) a molar growth yield which was intermediate between that obtained for anaerobic and aerated K+ citrate cultures, and (iii) the excretion of acetate, which also occurred in anaerobic cultures but not in aerated K+ citrate or aerobic cultures.  相似文献   

7.
Cells of a glucose-PTS (phosphoenolpyruvate:carbohydrate phosphotransferase system)-negative mutant of Vibrio parahaemolyticus transport D-glucose in the presence of Na+. Maximum stimulation of D-glucose transport was observed at 40 mM NaCl, and Na+ could be replaced partially with Li+. Addition of D-glucose to the cell suspension under anaerobic conditions elicited Na+ uptake. Thus, we conclude that glucose is transported by a Na+/glucose symport mechanism. Calculated Vmax and Km values for the Na(+)-dependent D-glucose transport were 15 nmol/min/mg of protein and 0.57 mM, respectively, when NaCl was added at 40 mM. Na+ lowered the Km value without affecting the Vmax value. D-Glucose was the best substrate for this transport system, followed by galactose, alpha-D-fucose, and methyl-alpha-glucoside, judging from the inhibition pattern of the glucose transport. D-Glucose itself partly repressed the transport system when cells were grown in its presence.  相似文献   

8.
It has previously been shown (Baroin, A., F. Garcia-Romeu, T. Lamarre, and R. Motais. 1984a, b. Journal of Physiology. 350:137, 356:21; Mahé, Y., F. Garcia-Romeu, and R. Motais. 1985. European Journal of Pharmacology. 116:199) that the addition of catecholamines to an isotonic suspension of nucleated red blood cells of the rainbow trout first stimulates a cAMP-dependent, amiloride-sensitive Na+/H+ exchange. This stimulation seems to be transient. It is followed by a more permanent activation of a coupled entry of Na+ and Cl-, which is inhibited by amiloride but also by inhibitors of band 3 protein (DIDS, furosemide, niflumic acid). The coupled entry of Na+ and Cl- could therefore result from the parallel and simultaneous exchange of Na+out for H+in (via the cAMP-dependent Na+/H+ antiporter) and Cl- out for HCO3- in (via the anion exchange system located in band 3 protein). However, in view of the following arguments, it had been proposed that NaCl uptake does not proceed by the double-exchanger system but via an NaCl cotransport: (a) Na+ entry requires Cl- as anion (in NO3- medium, the Na uptake is strongly inhibited, whereas NO3- is an extremely effective substitute for Cl- in the anion exchange system); (b) Na uptake is not significantly affected by the presence of HCO3- in the suspension medium despite the fact that in red cells, Cl-/HCO3- exchange occurs more readily than the exchanges of Cl- for basic equivalents in a theoretically CO2-free medium (the so-called Cl-/OH- exchanges). The purpose of the present paper was a reassessment of the two models by using monensin, an ionophore allowing Na+/H+ exchange. From this study, it appears that NaCl entry results from the simultaneous functioning of the Na+/H+ antiporter and the anion exchange system. The apparent Cl dependence is explained by the fact that, in these erythrocytes, NO3- clearly inhibits the turnover rate of the Na+/H+ antiporter. As Na+/H+ exchange is the driving component in the salt uptake process, this inhibition explains the Cl requirement for Na entry. The lack of stimulation of cell swelling by bicarbonate is explained by the fact that the rate of anion exchange in a CO2-free medium (Cl-/OH- exchange) is roughly equivalent to that of Na+/H+ exchange and thus in practice is not limiting to the net influx of NaCl through the two exchangers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The present study was designed to evaluate the role of protein phosphatases in regulation of sodium transport in the marsh frog erythrocytes using 22Na as a tracer. For this purpose the cells were treated with several known inhibitors of protein phosphatases. In standard isotonic medium, exposure of the cells to 10 mmol l(-1) NaF, 20 nmol l(-1) calyculin A or 0.1 mmol l(-1) cantharidin resulted in a significant (1.7-fold) increase in unidirectional ouabain-insensitive Na+ influx. The Na+ influx in frog red cells was progressively activated as the medium osmolality was increased by addition of 100, 200 or 300 mmol l(-1) sucrose to standard isotonic medium. The stimulatory effect of protein phosphatase blockers on Na+ influx was much higher in hypertonic medium containing 100 or 200 mmol l(-1) sucrose than that in isotonic medium. Stimulation of Na+ transport enhanced with increasing concentrations of calyculin A, and half-maximal activation (EC50) was obtained at 16 nmol l(-1). However, Na+ influx induced by strong hypertonic treatment (+300 mmol l(-1) sucrose) was not altered further in the presence of protein phosphatase inhibitors. The changes in Na+ influx evoked by protein phosphatase inhibitors and hypertonic treatment were associated with a rise in the intracellular Na+, but not K+, content. Enhancement in Na+ influx after addition of protein phosphatase blockers to cell suspension in isotonic or hypertonic media was almost completely inhibited by Na+/H+ exchange inhibitors, amiloride and ethyl-isopropyl-amiloride. The basal Na+ influx in frog erythrocytes in isotonic medium was relatively low (1.7 mmol/l cells/h) and not affected by 1 mmol l(-1) amiloride. Thus, the data obtained clearly indicate that Na+/H+ exchanger in the marsh frog red blood cells is under tight regulatory control, in all likelihood via protein phosphatases of types PP-1 and PP-2A.  相似文献   

10.
Over most of the range of salt concentrations in which the moderately halophilic bacterium Vibrio costicola could grow, the sum of the cell-associated Na+ + K+ ions was at least as high as in the external medium. This is in contrast to other moderate halophiles, which have substantially lower internal than external salt concentrations for most of their growth range. The relative amounts of Na+ and K+ in V. costicola varied with environmental conditions. The K+/Na+ ratio fell during anaerobic incubation or when cells were poisoned. As Na+ ions left the cells, K+ ions entered. However, movement of these ions was not tightly coupled, since K+ content of cells could increase without a corresponding decrease in Na+ content. The Mg2+ contents of cells varied little with environmental conditions.  相似文献   

11.
Proton circulation in Vibrio costicola.   总被引:3,自引:2,他引:1       下载免费PDF全文
The importance of proton movements was assessed in the moderate halophile Vibrio costicola. When anaerobic cells in acidic buffer (pH 6.5) were given an O2 pulse, protons were extruded regardless of the presence of Na+. At pH 8.5, however, V. costicola produced an acidic response to an O2 pulse in the absence of Na+ and an alkaline response when Na+ was present. An Na+/H+ antiport activity was confirmed at pH 8.5. All of these effects were prevented by protonophores or butanol treatment. Growth in complex medium at pH 8.5 was prevented by a high concentration (50 microM) of carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) or a low concentration (5 microM) of another protonophore, 3,3',4',5-tetrachlorosalicylanilide (TCS). The relative ineffectiveness of the former protonophore was caused by the proteose peptone and tryptone ingredients of the complex medium, since 5 microM completely prevented growth in their absence. The results are explained by a primary respiratory-linked proton efflux coupled to a secondary Na+/H+ antiport operating at alkaline pH. Evidence was seen for a role of Na+ in stimulating proton influx at alkaline pH, presumably via the pH homeostasis mechanism.  相似文献   

12.
Halobacteroides acetoethylicus grew in media with 6 to 20% NaCl and displayed optimal growth at 10% NaCl. When grown in medium with an [NaCl] of 1.7 M, the internal cytoplasmic [Na+] and [Cl-] were 0.92 and 1.2 M, respectively, while K+ and Mg2+ concentrations in cells were 0.24 and 0.02 M, respectively. Intracellular [Na+] was fourfold higher than intracellular [K+]. Since Na+ and Cl- ions were not excluded from the cell, the influence of high salt concentrations on key enzyme activities was investigated in crude cell extracts. Activities greater than 60% of the maximal activity of the following key catabolic enzymes occurred at the following [NaCl] ranges: glyceraldehyde-3-phosphate dehydrogenase, 1 to 2 M; alcohol dehydrogenase (NAD linked), 2 to 4 M; pyruvate dehydrogenase, 0.5 to 1 M; and hydrogenase (methyl viologen linked), 0.5 to 3 M. These studies support the hypothesis that obligately halophilic, anaerobic eubacteria adapt to extreme salt concentrations differently than do halophilic, aerobic eubacteria, because they do not produce osmoregulants or exclude Cl-. This study also demonstrated that these halophilic, anaerobic eubacteria have a physiological similarity to archaebacterial halophiles, since Na+ and Cl- are present in high concentrations and are required for enzymatic activity.  相似文献   

13.
Proton entry into anaerobic Escherichia coli in response to the addition of HCl was measured by monitoring pH changes in the external solution. Preincubation of cells in a Na+ -free medium containing melibiose or methyl-alpha-galactoside (alpha MG) stimulated the rate of H+ entry in response to the acid pulse. This melibiose- or alpha MG-dependent proton pathway appeared to be identical to the melibiose carrier, since the channel was only observed in melibiose-induced cells. Furthermore, this membrane pathway for protons showed the same temperature sensitivity as the melibiose carrier (active at 30 degrees but inactive at 37 degrees). These observations are consistent with the idea that the melibiose transport system provides a pathway for protons in the presence of appropriate substrates, but that the pathway is closed to protons in the absence of the sugar. Such observations indicate that there is an obligatory coupling between H+ flux and melibiose or alpha MG flux through the carrier when Na+ is omitted from the incubation medium.  相似文献   

14.
The hypothesis that Na+ and K+ gradients have an energy storing function [V. P. Skulachev (1978) FEBS Lett. 87, 171-176] has been tested in experiments with Escherichia coli, the marine bacterium Vibrio harveyi, an extremely halophilic Halobacterium halobium and a fresh-water cyanobacterium Phormidium uncinatum from Lake Baikal living at an extremely low salt concentration. The capability of these microorganisms to maintain delta microH was compared using motility as a delta microH-supported function. It was found that in all cases the gradient of monovalent cations is competent to prolong the period of active motility after other energy sources are exhausted. Maximal prolongation was found in H. halobium, which in a Na+ medium was still motile when light was switched off for 9 h under anaerobic conditions. In V. harveyi the motility was maintained for 1 h, in E. coli for about 10 min and in Ph. uncinatum for about 2 min. Thus the delta microH buffer capacity of the monovalent cation gradient is proportional to the content of these cations in the habitat. It was also found that in Ph. uncinatum only delta pK is effective, whereas in E. coli and V. harveyi both delta pK and delta pNa are. In E. coli when the K+ release is completed and the cells become motionless, motility can be temporarily restored by adding NaCl which initiates an H+ efflux. Under conditions of exhaustion of energy sources, the Na+ and K+ gradient was shown to stabilize potential in H. halobium cells, measured with a tetraphenylphosphonium probe. In H. halobium and E. coli, the anaerobic ATP level was found to stabilize when the Na+ and K+ gradients were present. Addition of N,N'-dicyclohexylcarbodiimide destabilized this level, which indicated that Na+ and K+ gradients could support de novo ATP synthesis. It is concluded that the data obtained are in agreement with the concept of the energy storing by the Na+ and K+ gradients. Other functions of these gradients and the mechanisms of their formation are discussed.  相似文献   

15.
In order to elucidate the effects of amphotericin B (AMB) on the glycolytic pathway, the metabolism of [1-13C]glucose in glucose-grown repressed Saccharomyces cerevisiae was studied. The cells were aerobically suspended in pyrophosphate solutions of high potassium concentration with or without 10(-6) M amphotericin B and measurements were made using 1H-, 13C-NMR spectroscopy and biochemical methods. The results were compared with those obtained under the same experimental conditions but in a medium rich in sodium salts containing the same antibiotic concentration. In general the presence of 10(-6) M AMB reduces the glucose consumption and the ethanol production while favouring the glycerol and trehalose formation. These effects are greatly reduced when a high K+ concentration was used. The AMB effects on the glucose consumption and the production of ethanol, glycerol and trehalose, observed in a suspension rich in Na+, can be fairly well explained by the leakage of K+ through AMB membrane channels. This outflux induces a substantial decrease in the activity of some K(+)-dependent enzymes, such as aldolase, phosphofructokinase and pyruvate kinase. The intensities of the glutamate C2 and C4 signals are higher with a suspension rich in Na+ than with a suspension rich in K+, suggesting that the Krebs cycle operates more effectively in a solution rich in Na+. In the absence of AMB, the passive diffusion of glycerol through the cell membrane is relatively slow and apparently depends on the ionic external medium: it is more efficient in solutions with a high K+ than with a high Na+ concentration. In the presence of 10(-6) M AMB, the glycerol C1,3 resonance drastically decreases at 20 min and then disappears in the noise. This rapid disappearance suggests that glycerol can easily pass through the pores arising from the interaction of AMB with the membrane sterols. However, the rate of pore formation is slow, independent of the external medium (Na+ or K+) and this process is not completed within 20 min.  相似文献   

16.
Mechanisms of Li+ stimulation of proline transport were studied in cells of Escherichia coli 7 and NR70, a mutant of strain 7 lacking adenosine triphosphatase (EC 3.6.1.3). An electrochemical potential difference of Li+ induced in an inward direction of energy-depleted cells caused a transient uptake of proline depending on the driving force provided. When proline was added to unbuffered cell suspensions under anaerobic conditions, the medium was found to be acidified only in the presence of Li+ but not in the presence of Na+ or K+. This acidification was abolished by the addition of a permeant anion, SCN-, to the medium containing Li+, but this was not demonstrated with cells of a mutant strain deficient in a carrier protein specific for proline. These results support the assumption that proline is taken up by a mechanism of Li+-proline cotransport in E. coli.  相似文献   

17.
The effects of extracellular Na+, K+ and Cl- on neurite outgrowth of PC12 pheochromocytoma cells were studied. Nerve growth factor (NGF)-induced neurite formation was inhibited upon substitution of choline chloride for NaCl under normal culture conditions. It was found that neurite formation increased proportionately with the concentration of Na+ in medium up to 150 mM. When PC12 cells were exposed to NGF in suspension culture followed by transfer to new dishes, they showed neurite extention in response to NGF in an RNA- and protein synthesis-independent manner. Under these conditions, neurite outgrowth occurred normally in 60-150 mM Na+, whereas it decreased significantly at lower concentrations of Na+. Na+ dependency was also observed for cyclic AMP-mediated neurite formation of PC12 cells. In contrast neurite outgrowth was independent of K+ in the range 5-106 mM, suggesting that membrane potential did not play a role in this process. No alterations were observed in neurite outgrowth with Cl- replaced by NO3-, SO2-4, or 2-hydroxyethanesulfonate. Thus, extracellular Na+ plays a role in controlling neurite formation of these cells. An attempt was made to relate this effect to a decrease in cytoplasmic Ca2+ concentration monitored by a fluorescent dye sensitive to Ca2+.  相似文献   

18.
NMR studies of intracellular sodium ions in mammalian cardiac myocytes   总被引:1,自引:0,他引:1  
The unambiguous measurement of intracellular sodium ion [Na+]i by the noninvasive NMR technique offers a new opportunity to monitor precisely the maintenance and fluctuations of [Na+]i levels in intact cells and tissues. The anionic frequency shift reagent, dysprosium (III) tripolyphosphate, which does not permeate intact cells, when added to suspensions of intact adult rat cardiac myocytes, alters the NMR frequency of extracellular sodium ions, [Na+]o, leaving that of intracellular ions, [Na+]i, unaffected. Using 23Na NMR in conjunction with this shift reagent, we have determined NMR-visible intracellular Na+ ion concentration in a suspension of isolated cardiac myocytes under standard conditions with insulin and Ca2+ in the extracellular medium to be 8.8 +/- 1.2 mmol/liter of cells (n = 4). This value is comparable to that measured by intracellular ion-selective microelectrodes in heart tissue. Cardiac myocytes incubated for several hours in insulin-deficient, Ca2+-containing medium prior to NMR measurement exhibited a somewhat lower [Na+]i value of 6.9 +/- 0.5 mmol/liter of cells (n = 3). Reversible Na+ loading of the cells by manipulation of extracellular calcium levels is readily measured by the NMR technique. Incubation of myocytes in a Ca2+-free, insulin-containing medium causes a 3-fold increase in [Na+]i to a level of 22.8 +/- 2.6 mmol/liter of cells (n = 10). In contrast to cells with insulin, insulin-deficient myocytes exhibit a markedly lower level of [Na+]i of only 14.6 +/- 2.0 mmol/liter of cells (n = 4) in Ca2+-free medium. These observations suggest that insulin may stimulate a pathway for Na+ influx in heart cells.  相似文献   

19.
Respiration, membrane potential generation and motility of the marine alkalotolerant Vibrio alginolyticus were studied. Subbacterial vesicles competent in NADH oxidation and delta psi generation were obtained. The rate of NADH oxidation by the vesicles was stimulated by Na+ in a fashion specifically sensitive to submicromolar HQNO (2-heptyl-4-hydroxyquinoline N-oxide) concentrations. The same amounts of HQNO completely suppressed the delta psi generation. Delta psi was also inhibited by cyanide, gramicidin D and by CCCP + monensin. CCCP (carbonyl cyanide m-chlorophenylhydrazone) added without monensin exerted a much weaker effect on delta psi. Na+ was required to couple NADH oxidation with delta psi generation. These findings are in agreement with the data of Tokuda and Unemoto on Na+-motive NADH oxidase in V. alginolyticus. Motility of V. alginolyticus cells was shown to be (i) Na+-dependent, (ii) sensitive to CCCP + monensin combination, whereas CCCP and monensin, added separately, failed to paralyze the cells, (iii) sensitive to combined treatment by HQNO, cyanide or anaerobiosis and arsenate, whereas inhibition of respiration without arsenate resulted only in a partial suppression of motility. Artificially imposed delta pNa, i.e., addition of NaCl to the K+ -loaded cells paralyzed by HQNO + arsenate, was shown to initiate motility which persisted for several minutes. Monensin completely abolished the NaCl effect. Under the same conditions, respiration-supported motility was only slightly lowered by monensin. The artificially-imposed delta pH, i.e., acidification of the medium from pH 8.6 to 6.5 failed to activate motility. It is concluded that delta mu Na+ produced by (i) the respiratory chain and (ii) an arsenate-sensitive anaerobic mechanism (presumably by glycolysis + Na+ ATPase) can be consumed by an Na+ -motor responsible for motility of V. alginolyticus.  相似文献   

20.
Transport of Na+ and K+ ions through the plasma membrane of intact cells of the halotolerant microalga Dunaliella maritima Massjuk was studied. Ion fluxes through the plasma membrane were induced by hyperosmotic shock (uptake of Na+ by the cells is transformed into extrusion of Na+) or by addition of K+ to a suspension of K+-deficient cells (uptake of K+ by the cells is associated with extrusion of Na+). The pathway of Na+ extrusion from the D. maritima cells does not depend on the direction or value of the proton gradient on the plasma membrane. In particular, the efficiency of Na+ extrusion was not changed at extracellular pH values varying from 6.0 to 8.0. The protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) (20 microM) and the H+-ATPase inhibitor N,N-dicyclohexyl carbodiimide (DCCD) (25 and 100 microM) inhibited accumulation of K+ by the cells but did not influence Na+ extrusion. Significant acidification of the medium did not induce a net current of Na+ from the cells through a Na+/H+ antiporter. The data indicate that the Na+/H+ antiporter of the plasma membrane of D. maritima is not responsible for Na+ extrusion from the cells. These results can be explained by the involvement of a primary electrogenic Na+ pump (a Na+-transporting ATPase) in Na+ transfer through the plasma membrane of this alga.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号