首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
From sludge obtained from the sewage digester plant in Marburg-Cappel a strictly anaerobic bacterium was enriched and isolated with carbon monoxide as the sole energy source. Based on morphological and physiological characteristics the isolate was identified as a strain of Peptostreptococcus productus, which was called strain Marburg. The organism was able to grow on CO (50% at 200 kPa) as the sole energy source at a doubling time of 3 h and converted this substrate to acetate and CO2. The type strain of P. productus was not able to grow at the expense of CO. Electron microscopic investigations of strain Marburg cells revealed a cell wall which was different from that of other Gram-positive prokaryotes. DNA:DNA hybridization studies of the DNA isolated from strain Marburg and the type strain as well as some morphological and physiological properties of both strains confirmed the low degree or relatedness between the two strains.  相似文献   

2.
Intrinsic growth and substrate uptake parameters were obtained for Peptostreptococcus productus, strain U-1, using carbon monoxide as the limiting substrate. A modified Monod model with substrate inhibition was used for modeling. In addition, a product yield of 0.25 mol acetate/mol CO and a cell yield of 0.034 g cells/g CO were obtained. While CO was found to be the primary substrate, P. productus is able to produce acetate from CO2 and H2, although this substrate could not sustain growth. Yeast extract was found to also be a growth substrate. A yield of 0.017 g cell/g yeast extract and a product yield of 0.14 g acetate/g yeast extract were obtained. In the presence of acetate, the maximum specific CO uptake rate was increased by 40% compared to the maximum without acetate present. Cell replication was inhibited at acetate concentrations of 30 g/l. Methionine was found to be an essential nutrient for growth and CO uptake by P. productus. A minimum amount of a complex medium such as yeast extract (0.01%) is, however, required.  相似文献   

3.
Anaerobic bacteria were enriched with a sewage digestor sludge inoculum and a mineral medium supplemented with B-vitamins and 0.05% yeast extract and with a 50% CO-30% N2-20% CO2 (2 atm [202 kPa]) gas phase. Microscopic observation revealed an abundance of gram-positive cocci, 1.0 by 1.4 micron, which occurred in pairs or chains. The coccus, strain U-1, was isolated by using roll tubes with CO as the energy source. Based on morphology, sugars fermented, fermentation products from glucose (H2, acetate, lactate, and succinate), and other features, strain U-1 was identified as Peptostreptococcus productus IIb (similar to the type strain). The doubling time with up to 50% CO was 1.5 h; acetate and CO2 were the major products. In addition, no significant change in the doubling time was observed with 90% CO. Some stock strains were also able to use CO, although not as well. Strain U-1 produced acetate during growth with H2-CO2. Other C1 compounds did not support growth. Most probable numbers of CO utilizers morphologically identical with strain U-1 were 7.5 X 10(6) and 1.1 X 10(5) cells per g for anaerobic digestor sludge and human feces, respectively.  相似文献   

4.
Anaerobic bacteria were enriched with a sewage digestor sludge inoculum and a mineral medium supplemented with B-vitamins and 0.05% yeast extract and with a 50% CO-30% N2-20% CO2 (2 atm [202 kPa]) gas phase. Microscopic observation revealed an abundance of gram-positive cocci, 1.0 by 1.4 micron, which occurred in pairs or chains. The coccus, strain U-1, was isolated by using roll tubes with CO as the energy source. Based on morphology, sugars fermented, fermentation products from glucose (H2, acetate, lactate, and succinate), and other features, strain U-1 was identified as Peptostreptococcus productus IIb (similar to the type strain). The doubling time with up to 50% CO was 1.5 h; acetate and CO2 were the major products. In addition, no significant change in the doubling time was observed with 90% CO. Some stock strains were also able to use CO, although not as well. Strain U-1 produced acetate during growth with H2-CO2. Other C1 compounds did not support growth. Most probable numbers of CO utilizers morphologically identical with strain U-1 were 7.5 X 10(6) and 1.1 X 10(5) cells per g for anaerobic digestor sludge and human feces, respectively.  相似文献   

5.
Cell extracts of Peptostreptococcus productus (strain Marburg) obtained from CO grown cells mediated the synthesis of acetate from CO plus CO2 at rates of 50 nmol/min × mg of cell protein. 14CO was specifically incorporated into C1 of acetate. No label exchange occurred between 14C1 of acetyl-CoA and CO, indicating that 14CO incorporation into acetate was by net synthesis rather than by an exchange reaction. In acetate synthesis from CO plus CO2 the latter substrate could be replaced to some extent by formate or methyl tetrahydrofolate as the methyl donor. The methyl group of methyl cobalamin was incorporated into acetate ony at very low activities. The cell extracts contained high levels of enzyme activities involved in acetate or cell carbon synthesis from CO2. The following enzymic activities were detected: CO: methyl viologen oxidoreductase, formate dehydrogenase, formyl tetrahydrofolate synthetase, methenyl tetrahydrofolate cyclohydrolase, methylene tetrahydrofolate dehydrogenase, methylene tetrahydrofolate reductase, phosphate acetyltransferase, acetate kinase, hydrogenase, NADPH: benzyl viologen oxidoreductase, and pyruvate synthase. Some kinetic and other properties were studied.  相似文献   

6.
Peptostreptococcus productus strain b-52 (a human fecal isolate) and Eubacterium aerofaciens ATCC 25986 were found to contain NADP-dependent 7 beta-hydroxysteriod dehydrogenase activity. The enzyme was synthesized constitutively by both organisms, and the enzyme yields were suppressed by the addition of 0.5 mM 7 beta-hydroxy bile acid to the growth medium. Purification of the enzyme by chromatography resulted in preparations with 3.5 (P. productus b-52, on Sephadex G-200) and 1.8 (E. aerofaciens, on Bio-Gel A-1.5 M) times the activity of the crude cell extracts. A pH optimum of 9.8 and a molecular weight of approximately 53,000 were shown for the enzyme of strain b-52, and an optimum pH at 10.5 and a molecular weight of 45,000 was shown for that from strain ATCC 25986. Kinetic studies revealed that both enzyme preparations oxidized the 7 beta-hydroxy group in unconjugated and conjugated bile acids, a lower Km value being demonstrated with free bile acid than with glycine and taurine conjugates. No measureable activity against 3 alpha-, 7 alpha-, or 12 alpha-hydroxy groups was detected in either enzyme preparation. When tested with strain ATCC 25986, little 7 beta-hydroxy-steroid dehydrogenase activity was detected in cells grown in the presence of glucose in excess. The enzyme from strain b-52 was found to be heat labile (90% inactivation at 50 degrees C for 3 min) and highly sensitive to sulfhydryl inhibitors.  相似文献   

7.
Naturally mevalonate-resistant acetogen Clostridium sp. MT1243 produced only 425 mM acetate during syngas fermentation. Using Clostridium sp. MT1243 we engineered biocatalyst selectively producing mevalonate from synthesis gas or CO2/H2 blend. Acetate production and spore formation were eliminated from Clostridium sp. MT1243 using Cre-lox66/lox71-system. Cell energy released via elimination of phosphotransacetylase, acetate kinase and early stage sporulation genes powered mevalonate accumulation in fermentation broth due to expression of synthetic thiolase, HMG-synthase, and HMG-reductase, three copies of each, integrated using Tn7-approach. Recombinants produced 145 mM mevalonate in five independent single-step fermentation runs 25 days each in five repeats using syngas blend 60 % CO and 40 % H2 (v/v) (p < 0.005). Mevalonate production was 97 mM if only CO2/H2 blend was fed instead of syngas (p < 0.005). Mevalonate from CO2/H2 blend might serve as a commercial route to mitigate global warming in proportion to CO2 fermentation scale worldwide.  相似文献   

8.
The cell energy fraction that powered maintenance and expression of genes encoding pro-phage elements, pta-ack cluster, early sporulation, sugar ABC transporter periplasmic proteins, 6-phosphofructokinase, pyruvate kinase, and fructose-1,6-disphosphatase in acetogen Clostridium sp. MT871 was re-directed to power synthetic operon encoding isobutanol biosynthesis at the expense of these genes achieved via their elimination. Genome tailoring decreased cell duplication time by 7.0 ± 0.1 min (p < 0.05) compared to the parental strain, with intact genome and cell duplication time of 68 ± 1 min (p < 0.05). Clostridium sp. MT871 with tailored genome was UVC-mutated to withstand 6.1 % isobutanol in fermentation broth to prevent product inhibition in an engineered commercial biocatalyst producing 5 % (674.5 mM) isobutanol during two-step continuous fermentation of CO2/H2 gas blend. Biocatalyst Clostridium sp. MT871RG11IBR6 was engineered to express six copies of synthetic operon comprising optimized synthetic format dehydrogenase, pyruvate formate lyase, acetolactate synthase, acetohydroxyacid reductoisomerase, 2,3-dihydroxy-isovalerate dehydratase, branched-chain alpha-ketoacid decarboxylase gene, aldehyde dehydrogenase, and alcohol dehydrogenase, regaining cell duplication time of 68 ± 1 min (p < 0.05) for the parental strain. This is the first report on isobutanol production by an engineered acetogen biocatalyst suitable for commercial manufacturing of this chemical/fuel using continuous fermentation of CO2/H2 blend thus contributing to the reversal of global warming.  相似文献   

9.
Evidence is provided that reductive acetogenesis can be stimulated in ruminal samples during short-term (24-h) incubations when methanogenesis is inhibited selectively. While addition of the reductive acetogen Peptostreptococcus productus ATCC 35244 alone had no significant influence on CH4 and volatile fatty acid (VFA) production in ruminal samples, the addition of this strain together with 2-bromoethanesulfonic acid (BES) (final concentration, 0.01 or 0.03 mM) resulted in stimulation of acetic acid production and H2 consumption. Since acetate production exceeded amounts that could be attributed to reductive acetogenesis, as measured by H2 consumption, it was found that P. productus also fermented C6 units (glucose and fructose) heterotrophically to mainly acetate (> 99% of the total VFA). Using 14CH3COOH, we concluded that addition of BES and BES plus P. productus did not alter the consumption of acetate in ruminal samples. The addition of P. productus to BES-treated ruminal samples caused supplemental inhibition of CH4 production and stimulation of VFA production, representing a possible energy gain of about 13 to 15%.  相似文献   

10.
The 5,10-methylenetetrahydrofolate dehydrogenase of heterotrophically grown Peptostreptococcus productus Marburg was purified to apparent homogeneity. The purified enzyme catalyzed the reversible oxidation of methylenetetrahydrofolate with NADP+ as the electron acceptor at a specific activity of 627 U/mg of protein. The Km values for methylenetetrahydrofolate and for NADP+ were 27 and 113 microM, respectively. The enzyme, which lacked 5,10-methenyltetrahydrofolate cyclohydrolase activity, was insensitive to oxygen and was thermolabile at temperatures above 40 degrees C. The apparent molecular mass of the enzyme was estimated by gel filtration to be 66 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of a single subunit of 34 kDa, accounting for a dimeric alpha 2 structure of the enzyme. Kinetic studies on the initial reaction velocities with different concentrations of both substrates in the absence and presence of NADPH as the reaction product were interpreted to indicate that the enzyme followed a sequential reaction mechanism. After gentle ultracentrifugation of crude extracts, the enzyme was recovered to greater than 95% in the soluble (supernatant) fraction. Sodium (10 microM to 10 mM) had no effect on enzymatic activity. The data were taken to indicate that the enzyme was similar to the methylenetetrahydrofolate dehydrogenases of other homoacetogenic bacteria and that the enzyme is not involved in energy conservation of P. productus.  相似文献   

11.
Clostridium thermoaceticum ATCC 39073 converted vanillate to catechol. Although carboxylated aromatic compounds which did not contain methoxyl groups were not by themselves growth supportive, protocatechuate and p-hydroxybenzoate (nonmethoxylated aromatic compounds) were converted to catechol and phenol, respectively, during carbon monoxide-dependent growth. Syringate is not subject to decarboxylation by C. thermoaceticum (Z. Wu, S. L. Daniel, and H. L. Drake, J. Bacteriol. 170:5705-5708, 1988), and sustained growth at the expense of syringate-derived methoxyl groups was dependent on supplemental CO2. In contrast, vanillate was growth supportive in the absence of supplemental CO2, and 14CO2 was the major 14C-labeled product during [carboxyl-14C]vanillate-dependent growth. Furthermore, the decarboxylation of protocatechuate and p-hydroxybenzoate supported methanol- and 1,2,3-trimethoxybenzene-dependent growth (CO2 is required for growth at the expense of these substrates) when supplemental CO2 was depleted from the growth medium, and the decarboxylation of protocatechuate was concomitant with improved cell yields of methanol cultures. These findings demonstrate that (i) C. thermoaceticum is competent in the decarboxylation of certain aromatic compounds and (ii) under certain conditions, decarboxylation may be integrated to the flow of carbon and energy during acetogenesis.  相似文献   

12.
H2-oxidizing CO2-reducing acetogenic bacteria were isolated from gut contents of Nasutitermes nigriceps termites. Isolates were strictly anaerobic, Gram negative, endospore-forming, straight to slightly curved rods (0.5–0.8×2–8 m) that were motile by means of lateral flagella. Cells were oxidase negative, but catalase positive and possessed a b-type cytochrome(s) associated with the cell membrane. Cells grew anaerobically with H2+CO2 as energy source and catalyzed a total synthesis of acetate from this gas mixture. H2 uptake by a representative isolate (strain JSN-2) displayed a K m=6 M and V max=380 nmol x min-1 x mg protein-1. Other substrates used as energy sources for growth and acetogenesis included CO, methanol, betaine, trimethoxybenzoate, and various other organic acids. Succinate was also fermented, but propionate was formed from this substrate instead of acetate. Of a variety of sugars and sugar alcohols tested, only mannitol supported growth. Cells grew optimally at 30° C and pH 7.2 and required yeast extract or a source of amino acids (e.g. Casamino acids) for good growth. During initial enrichment and isolation, cells appeared sensitive to various reducing agents commonly employed in media for anaerobes. The DNA base composition of strain JSN-2 was 48.6 mol% G+C. On the bases of cell morphology, substrate utilization spectrum, and DNA base composition, strain JSN-2 is here-with proposed as the type strain of the new species Sporomusa termitida.Journal article no. 12513 from the Michigan Agricultural Experiment Station  相似文献   

13.
Methanol-resistant mutant acetogen Clostridium sp. MT1424 originally producing only 365 mM acetate from CO2/CO was engineered to eliminate acetate production and spore formation using Cre-lox66/lox71-system to power subsequent methanol production via expressing synthetic methanol dehydrogenase, formaldehyde dehydrogenase and formate dehydrogenase, three copies of each, assembled in cluster and integrated to chromosome using Tn7-based approach. Production of 2.2 M methanol was steady (p < 0.005) in single step fermentations of 20 % CO2 + 80 % H2 blend (v/v) 25 day runs each in five independent repeats. If the integrated cluster comprised only three copies of formate dehydrogenase the respective recombinants produced 95 mM formate (p < 0.005) under the same conditions. For commercialization, the suggested source of inorganic carbon would be CO2 waste of IGCC power plant. Hydrogen may be produced in situ via powered by solar panels electrolysis.  相似文献   

14.
Three strains of Peptostreptococcus productus were tested for growth at the expense of methoxylated aromatic compounds. Strain M8A-18 (human fecal isolate) was unable to utilize methoxylated aromatic compounds. While the type strain ATCC 27340 (human septicemia isolate) was capable of minimal growth with methoxylated aromatic compounds, ATCC 35244 (sewage sludge isolate) displayed significant growth on methoxylated aromatic compounds. Methoxylated phenols, benzoates, benzyl alcohol and phenylacrylates supported the growth of ATCC 35244 and were O-demethylated to their respective hydroxylated derivatives. During O-methyl- or CO-dependent growth, the double bond of the acrylate side chain of certain methoxylated and non-methoxylated phenylacrylates was reduced. Although other aromatic substituent groups (-COOH and -CH3) were transformed during CO-dependent growth, in short-term growth studies, the aromatic ring was not subject to reduction or degradation. Of the three strains tested, only strain M8A-18 failed to grow at the expense of carbon monoxide (CO).  相似文献   

15.
Peptostreptococcus productus ATCC35244, a reductive acetogenic strain, was added daily over 9 successive days to the fourth vessel (ascending colon) of the SHIME, a six-stage reactor system simulating the in vivo continuous culture conditions of the human gastro-intestinal tract. Final numbers of organisms (cfu)/ml reactor contents (c) were attained such that log10c = 6.9 ± 0.1. The addition caused the CH4 production to decrease below the detection limit while total gas and CO2 production in the fifth (transverse colon) and sixth reactor (descending colon) were lowered and the acetic acid concentration was augmented. Ending the supplementation caused CH4 production to re-establish within 4 days, while CO2 production increased much more slowly. The concentration of acetic acid only started to decrease after 7 days. The results indicate that P. productus, upon regular administration, is able to compete with methanogens for H2 in the gastro-intestinal microbial ecosystem because of its reductive acetogenic character. Received: 11 December 1996 / Received revision: 26 February 1997 / Accepted: 1 March 1997  相似文献   

16.
We describe three new species of the genus Peptostreptococcus which were isolated from human specimens and were tentatively identified as Peptostreptococcus prevotii. These three organisms were not homologous with previously described type strains of the genus Peptostreptococcus. A total of 12 strains that were identified biochemically as P. prevotii were divided into five independent DNA similarity groups; 10 of these strains were divided into three similarity groups which exhibited significant phenotypic differences from previously described species. Therefore, we propose the following new species: Peptostreptococcus vaginalis for group 1 strains, Peptostreptococcus lacrimalis for group 2 strains, and Peptostreptococcus lactolyticus for group 3 strains. The type strain of P. vaginalis is strain GIFU 12669 (= JCM 8138), the type strain of P. lacrimalis is strain GIFU 7667 (= JCM 8139), and the type strain of P. lactolyticus is strain GIFU 8586 (= JCM 8140).  相似文献   

17.
CO2气载乙醇固态发酵分离耦合过程的初步研究   总被引:1,自引:0,他引:1  
固态乙醇发酵中高浓度产物乙醇和发酵温度升高对酵母的抑制作用严重地制约了发酵的性能。本研究以固态基质材料发酵乙醇,利用发酵过程中由酵母产生的CO2作为循环载气,将载气在冷凝器中冷却分离乙醇与气体,降温后的CO2重新加压返回固态基质反应器中,及时有效的除去产物乙醇,并能使固态基质反应器的温度有一定程度的降低,解除了两者的抑制,提高了发酵效率,从而为解决大规模固体厌氧发酵温度的控制问题提供了工艺路线。  相似文献   

18.
19.
Studies to examine the microbial fermentation of coal gasification products (CO2, H2 and CO) to methane have been done with a mixed culture of anaerobic bacteria selected from an anaerobic sewage digestor. The specific rate of methane production at 37°C reached 25 mmol/g cell hr. The stoichiometry for methane production was 4 mmol H2/mol CO2. Cell recycle was used to increase the cell concentration from 2.5 to 8.3 g/liter; the volumetric rate of methane production ran from 1.3 to 4 liter/liter hr. The biogasification was also examined at elevated pressure (450 psi) and temperature to facilitate interfacing with a coal gasifier. At 60°C, the specific rate of methane production reached 50 mmol/g cell hr. Carbon monoxide utilization by the mixed culture of anaerobes and by a Rhodopseudomonas species was examined. Both cultures are able to carry out the shift conversion of CO and water to CO2 and hydrogen.  相似文献   

20.
To study the effect of chronically elevated CO2 on the excitability and function of neurons, we exposed mice to 7.5–8% CO2 for 2 wk (starting at 2 days of age) and examined the properties of freshly dissociated hippocampal neurons. Neurons from control mice (CON) and from mice exposed to chronically elevated CO2 had similar resting membrane potentials and input resistances. CO2-exposed neurons, however, had a lower rheobase and a higher Na+ current density (580 ± 73 pA/pF; n = 27 neurons studied) than did CON neurons (280 ± 51 pA/pF, n = 34; P < 0.01). In addition, the conductance-voltage curve was shifted in a more negative direction in CO2-exposed than in CON neurons (midpoint of the curve was –46 ± 3 mV for CO2 exposed and –34 ± 3 mV for CON, P < 0.01), while the steady-state inactivation curve was shifted in a more positive direction in CO2-exposed than in CON neurons (midpoint of the curve was –59 ± 2 mV for CO2 exposed and –68 ± 3 mV for CON, P < 0.01). The time constant for deactivation at –100 mV was much smaller in CO2-exposed than in CON neurons (0.8 ± 0.1 ms for CO2 exposed and 1.9 ± 0.3 ms for CON, P < 0.01). Immunoblotting for Na+ channel proteins (subtypes I, II, and III) was performed on the hippocampus. Our data indicate that Na+ channel subtype I, rather than subtype II or III, was significantly increased (43%, n = 4; P < 0.05) in the hippocampi of CO2-exposed mice. We conclude that in mice exposed to elevated CO2, 1) increased neuronal excitability is due to alterations in Na+ current and Na+ channel characteristics, and 2) the upregulation of Na+ channel subtype I contributes, at least in part, to the increase in Na+ current density. sodium ion channels; oxygen deprivation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号